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which lies at a distance d

i

from the origin that is at the mean of the data points. This point also

turns out to be the mean of the principal component values. Suppose, now, that we drop a line

down into the plane that contains the axes corresponding to the first two principal components.

This is indicated by the vertical dotted line in the figure. This point in the plane we could now

project onto the value for the first and second principal components. These values, with lengths

f

i1 and f

i2, are the same as we would get by dropping perpendiculars directly from the point to

those two axes. Again, we might assess the adequacy of the characterization of the data point

by the first two principal components by comparing the length of its projection in the plane,

g

i

, with the length of the line from the origin to the original data point, d

i

. If we compare the

squares of these two lengths, each summed over all of the data points, and use the Pythagorean

theorem again, the following results hold:

∑

n

i=1 g

2
i

∑

n

i=1 d

2
i

=

∑

n

i=1 f

2
i1 +

∑

n

i=1 f

2
i2

∑

n

i=1 d

2
i

=

∑

n

i=1[(Y
i1 − Y 1)

2
/(n − 1)] +

∑

n

i=1[(Y
i1 − Y 2)

2
/(n − 1)]

∑

n

i=1 d

2
i

/(n − 1)

=

V1 + V2

V

Using this equation, we see that the percent of the variability explained by the first two

principal components is the ratio of the squared lengths of the projections onto the plane of the

first two principal components divided by the squared lengths of the original data points about

their mean. This also gives us a geometric interpretation of the total variance. It is the sum for

all the data points of the squares of the distance between the point corresponding to the mean

of the sample and the original data points. In other words, the first two principal components

may be characterized as giving a plane for which the projected points onto the plane contain

as high a proportion as possible of the squared lengths associated with the original data points.

From this we see that the percent of variability explained by the first two principal components

will be 100 if and only if all of the data points lie in some plane through the origin, which is

the mean of the data.

The coefficients associated with the principal components are usually calculated by computer;

in general, there is no easy formula to obtain them. Thus, the examples in this chapter will

begin with the coefficients for the principal components and their variance. (There is an explicit

solution when there are only two variables, and this is given in Problem 14.9.)

Example 14.1. We turn to the data of Table 14.1. Equations for the principal components

are

Y1 = −0.6245X + 0.7809Y

Y2 = 0.7809X + 0.6245Y

For the first data point, (X, Y ) = (−0.52, 0.60), the values are

Y1 = −0.6245 × (−0.52) + 0.7809 × 0.60 = 0.79

Y2 = 0.7809 × (−0.52) + 0.6245 × 0.60 = −0.03

If we compute all of the numbers, we find that the values for each of the 20 data points on

the principal components are as given in Table 14.2.
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Table 14.2 Data Point Values

Principal Principal

Component Component

Data Values Data Values

X Y Y1 Y2 X Y Y1 Y2

−0.52 0.60 0.79 −0.03 0.08 0.23 0.13 0.21

0.04 −0.51 −0.42 −0.28 −0.06 −0.59 −0.42 −0.42

1.29 −1.19 −1.74 0.26 1.25 −1.25 −1.76 0.19

−1.12 1.90 2.19 0.31 0.53 −0.45 −0.68 0.13

−1.02 0.31 0.88 −0.60 0.14 0.47 0.28 0.40

0.10 −1.15 −0.96 −0.64 0.48 −0.11 −0.39 0.31

−0.32 −0.13 0.10 −0.33 −0.61 1.04 1.20 0.17

0.08 −0.17 −0.18 −0.04 −0.47 0.34 0.56 −0.16

0.49 0.18 −0.16 0.50 0.41 0.29 −0.02 0.50

0.54 0.20 0.49 −0.29 −0.22 −0.00 0.13 −0.18

From these data we may compute the sample variance of Y1 and Y2 as well as the variance

of X and Y . We find the following values:

V1 = 0.861, V2 = 0.123, var(X) = 0.411, var(Y ) = 0.573

From these data we may compute the percent of variability explained by the two principal

components, individually and together.

1. Percent of variability explained by the first principal component = 100 × 0.861/(0.411 +

0.573) = 87.5%.

2. Percent of variability explained by the second principal component = 100 ×

0.123/(0.411 + 0.573) = 12.5%.

3. Percent of variability explained by the first two principal components = 100 × (0.861 +

0.123)/(0.411 + 0.573) = 100%.

We see that the first principal component of the data in Figure 14.4 contains a high proportion

of the variability. This may also be seen visually by examining the plot while orienting your

eyes so that the horizontal line is the direction of the first principal component. Certainly,

there is much more variability in that direction than in direction 2, the direction of the second

principal component.

14.5 USE OF THE COVARIANCE, OR CORRELATION, VALUES AND PRINCIPAL

COMPONENT ANALYSIS

The coefficients of the principal components and their variances can be computed by knowing

the covariances between the X

j

’s. One might think that as a general search for relationships

among X

j

’s, the principal component will be appropriate as an exploratory tool. Sometimes,

this is true. However, consider what happens when we have different scales of measurement.

Suppose, for example, that among our units, one unit is height in inches and another is systolic

blood pressure in mmHg. In principal component analysis we are adding the variability in the

two variables. Suppose now that we change our measurement of height from inches to feet.

Then the standard deviation of the height variable will be divided by 12 and the variance will

be divided by 144. In the total variance the contribution of height will have dropped greatly.
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Equivalently, the blood pressure contribution (and any other variables) will become much more

important. Recomputing the principal components will produce a different answer. In other

words, the measurement units are important in finding the principal component because the

variance of any individual variable is compared directly to the variance of another variable

without regard to whether or not the units are appropriate for the comparison. We reiterate: The

importance of a variable in principal component analysis changes with a change of scale of one

or more of the variables. For this reason, principal component analysis is most appropriate and

probably has its best applications when all the variables are measured in the same units; for

example, the X

j

variables may be measurements of length in inches, with the variables being

measurements of different parts of the body, and the covariances between variables such as arm

length, leg length, and body length.

In some situations with differing units, one still wants to try principal component analyses. In

this case, standardized variables are often used; that is, we divide each variable by its standard

deviation. Each rescaled variable then has a variance of 1 and the covariance matrix of the

new standardized variables is the correlation matrix of the original variables. The interpretation

of the principal components is now less clear. If many of the variables are highly correlated,

the first principal component will tend to pick up this fact; for example, with two variables,

a high correlation means the variables lie along a line. The ellipse of concentration has one

axis along the line; that direction gives us the direction of the first principal component. When

standardized variables are used, since each variable has a variance of 1, the sum of the variances

is p. In looking at the percent of variability explained, there is no need to compute the total

variance separately; it is p, the number of variables. We emphasize that when the correlations

are used, there should be some reason for doing this beside the fact that the variables do not

have measurements in comparable units.

14.6 STATISTICAL RESULTS FOR PRINCIPAL COMPONENT ANALYSIS

Suppose that we have a sample of size n from a multivariate normal distribution with unknown

covariances. Let V

i

(pop) be the true (unknown) population value for the variance of the ith

principal component when computed from the (unknown) true variances; let V

i

be the variance

of the principal components computed from the sample covariances. Then the following are true:

1.

V

i

− V

i

(pop)

V

i

(pop)

√

2/(n − 1)

, i = 1, . . . , p (8)

for large n is approximately a standard normal, N(0, 1), random variable. These variables

are approximately statistically independent.

2. 100(1 − α)% confidence intervals for V

i

(pop) for large n are given by

(

V

i

1 + z1−α/2

√

2/(n − 1)

,

V

i

1 − z1−α/2

√

2/(n − 1)

)

(9)

where z1−α/2 is the 1 − α/2 percentile value of the N(0, 1) distribution.

Further statistical results on principal component analysis are given in Morrison [1976] and

Timm [1975].

Principal component analysis is a least squares technique, as were analysis of variance and

multiple linear regression. Outliers in the data can have a large effect on the results (as in other

cases where least squares techniques are used).
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14.7 PRESENTING THE RESULTS OF A PRINCIPAL COMPONENT ANALYSIS

We have seen that principal component analysis is designed to explain the variability in data.

Thus, any presentation should include:

1. The variance of the principal components

2. The percent of the total variance explained by each individual principal component

3. The percent of the total variance explained cumulatively by the first m terms (for each m)

It is also useful to know how closely each variable X

j

is related to the values of the principal

components Y

i

; this is usually done by presenting the correlations between each variable and

each of the principal components. Let

Y

i

= a

i1X1 + · · · + a

ip

X

p

The correlation between one of the original variables X

j

and the kth principal component Y

i

is

given by

r

jk

= correlation of X

j

and Y

k

=

a

kj

√

V

k

s

j

(10)

In this equation, V

i

is the variance of the ith principal component, while s

j

is the standard

deviation of X

j

. These results are summarized in Table 14.3.

By examining the variables that are highly correlated with a principal component, we can

see which variables contribute most to the principal component. Alternatively, glancing across

the rows for each variable X

j

we may see which principal component has the highest corre-

lation with the variable. An X

i

that has the highest correlations with the first few principal

components is contributing more to the overall variability than variables with small correla-

tions with the first few principal components. In Section 14.9, several examples of principal

component analysis are given, including an example of the use of such a summary table

(Table 14.4).

Table 14.3 Summary of a Principal Component Analysis Using Covariances

Correlation of the Principal

Components and the X

j

’s
Standard

Variables 1 2 · · · p Deviations of the X

j

X1
a11

√

V1

s1

· · · · · ·

a

p1

√

V

p

s1

s1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

p

a1p

√

V1

s

p

· · · · · ·

a

pp

√

V

p

s

p

s

p

Variance of principal component V1 V2 · · · V

p

% of total variance
100V1

V

· · · · · ·

100V

p

V

Cumulative % of total variance
100V1

V

100(V1 + V2)

V

· · · 1
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Table 14.4 Data for Example 14.2

Principal Variance Percent of Total Cumulative Percent

Component Explained Variance of Total Variance

1 7.82 41.1 41.1

2 4.46 23.5 64.6

3 1.91 10.1 74.7

4 0.88 4.6 79.4

5 0.76 4.0 83.3

6 0.56 2.9 86.3

7 0.45 2.4 88.6

8 0.38 2.0 90.7

9 0.35 1.9 92.5

10 0.31 1.6 94.1

11 0.19 1.0 95.1

12 0.18 0.9 96.1

13 0.16 0.8 96.9

14 0.14 0.7 97.7

15 0.13 0.7 98.3

16 0.10 0.5 98.9

17 0.10 0.5 99.4

18 0.06 0.3 99.7

19 0.05 0.3 100.0

14.8 USES AND INTERPRETATION OF PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a technique for explaining variability. Following are some of

the uses of principal components:

1. Principal component analysis is a search for linear relationships for explaining variability

in a multivariate sample. The first few principal components are important because they may

summarize a large proportion of the variability. However, the understanding of which variables

contribute to the variability is important only if most of the variance comes about because

of important relationships among the variables. After all, we can increase the variance of a

variable, say X1, by increasing the error of measurement. If we have a phenomenally large error

of measurement, the variance of X1 will be much larger than the variances of the rest of the

variables. In this case, the first principal component will be approximately equal to X1, and the

amount of variability explained will be close to 1. However, such knowledge is not particularly

useful, since the variability in X1 does not make X1 the most important variable, but in this case,

reflects a very poorly measured quantity. Thus, to decide that the first few principal components

are important summary variables, you must feel that the relationships among them come from

linear relationships which may shed some light on the data being studied.

2. In some cases the first principal component is relatively uninteresting, with more infor-

mative relationships being found in the next few components. One simple case comes from

analyzing physical measurements of plants or animals to display species differences: the first

principal component may simply reflect differences in size, and the next few components give

the more interesting differences in shape.

3. We may take the first two principal components and plot the values for the first two

principal components of the data points. We know that among all possible plots in only two

dimensions, this one gives the best fit in one precise mathematical sense. However, it should be

noted that other techniques of multivariate analysis give two-dimensional plots that are the best

fit or most interesting in other precise mathematical senses (see Note 14.1).
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4. In some situations we have many measurements of somewhat related variables. For

example, we might have a large number of size measurements on different portions of the

human body. It may be that we want to perform a statistical inference, but the large number

of variables for the relatively small number of cases involved makes such statistical analysis

inappropriate. We may summarize the data by using the values on the first few principal compo-

nents. If the variability is important (!), we have then reduced the number of variables without

getting involved in multiple comparison problems. We may proceed to statistical analysis. For

example, suppose that we are trying to perform a discriminant analysis and want to use size as

one of the discriminating variables. However, for each of a relatively small number of cases we

may have many anthropometric measurements. We might take the first principal component as

a variable to summarize all the size relationships. One of the examples of principal component

analysis below gives a principal component analysis of physical size data.

14.9 PRINCIPAL COMPONENT ANALYSIS EXAMPLES

Example 14.2. Stoudt et al. [1970] consider measurements taken on a sample of adult females

from the United States. The correlations among these measurements (as well as weight and age)

are given in Table 11.21. The variance explained for each principal component is presented in

Table 14.4.

These data are very highly structured. Only three (of 19) principal components explain

over 70% of the variance. Table 14.5 summarizes the first three principal components. The

Table 14.5 Example 14.2: First Three Principal Components

Correlation of the

Principal Components

and the Variables

Variables 1 2 3

SITHTER 0.252 0.772 0.485

SITHTNORM 0.235 0.748 0.470

KNEEHT 0.385 0.722 −0.392

POPHT 0.005 0.759 −0.444

ELBOWHT 0.276 0.243 0.783

THIGHHT 0.737 −0.007 0.204

BUTTKN 0.677 0.476 −0.348

BUTTPOP 0.559 0.411 −0.444

ELBOWBR 0.864 −0.325 −0.033

SEATBR 0.832 −0.050 0.096

BIACROM 0.504 0.350 −0.053

CHEST 0.890 −0.228 −0.018

WAIST 0.839 −0.343 −0.106

ARMGTH 0.893 −0.267 0.068

ARMSKIN 0.733 −0.231 0.124

INFRASCA 0.778 −0.371 0.056

HT 0.251 0.923 −0.051

WT 0.957 −0.057 0.001

AGE 0.222 −0.488 −0.289

Variance of principal components 7.82 4.46 1.91

Percent of total variance 41.1 23.5 10.1

Cumulative percent of total variance 41.1 64.6 74.7
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first component, in the direction of greatest variation, is associated heavily with the weight

variables. The highest correlation is with weight, 0.957. Other variables associated with size—

such as chest and waist measurements, arm girth, and skinfolds—also are highly correlated

with the first principal component. The second component is most closely associated with

physical length measurements. Height is the most highly correlated variable. Other variables

with correlations above 0.7 are the sitting heights (normal and erect), knee height, and popliteal

height.

Since we are working with a correlation matrix, the total variance is 19, the number of

variables. The average variance, in fact the exact variance, per variable is 1. Only these first

three principal components have variance greater than 1. The other 16 directions correspond to

a variance of less than 1.

Example 14.3. Reeck and Fisher [1973] performed a statistical analysis of the amino acid

composition of protein. The mole percent of the 18 amino acids in a sample of 207 proteins was

examined. The covariances and correlations are given in Table 14.6. The diagonal entries and

numbers above them give the variances and covariances; the lower numbers are the correlations.

The mnemonics are:

Asp Aspartic acid Met Methionine

Thr Threonine Ile Isoleucine

Ser Serine Leu Leucine

Glu Glutamic acid Tyr Tyrosine

Pro Proline Phe Phenylalanine

Gly Glycine Trp Tryptophan

Ala Alanine Lys Lysine

Cys/2 Half-cystine His Histidine

Val Valine Arg Arginine

The principal component analysis applied to the data produced Table 14.7, where k is the

dimension of the subspace used to represent the data and C is the proportion of the total variance

accounted for in the best k-dimensional representation.

In contrast to Example 14.2, eight principal components are needed to account for 70% of

the variance. In this example there are no simple linear relationships (or directions) that account

for most of the variability. In this case the principal component correlations are not presented,

as the results are not very useful.

14.10 FACTOR ANALYSIS

As in principal component analysis, factor analysis looks at the relationships among variables as

expressed by their correlations or covariances. While principal component analysis is designed

to model and explain as much of the variability as possible, factor analysis seeks to explain

the relationships among the variables. The assumption of the model is that the relationships

may be explained by a few unobserved variables, which will be called factors. It is hoped that

fewer factors than the original number of variables will be needed to explain the relationships

among the variables. Thus, conceptually, one may simplify the understanding of the correlations

between the variables.

It is difficult to present the technique without having the model and many of the related

issues discussed first. However, it is also difficult to understand the related issues without

examples. Thus, it is suggested that you read through the material about the mathematical

model, go through the examples, and then with this understanding, reread the material about the

mathematical model.
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Table 14.7 Principal Component

Analysis Data

k C k C k C

1 0.13 7 0.66 13 0.90

2 0.26 8 0.70 14 0.93

3 0.37 9 0.75 15 0.95

4 0.46 10 0.79 16 0.98

5 0.55 11 0.83 17 1.00

6 0.61 12 0.86 18 1.00

We now turn to the model. We observe jointly distributed random variable X1, . . . , X

p

. The

assumption is that each X is a linear sum of the factors plus some remaining residual variability.

That is, the model is the following:

X1 = E(X1) + λ11F1 + λ12F2 + · · · + λ1k

F

k

+ e1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

p

= E(X

p

) + λ

p1F1 + λ

p2F2 + · · · + λ

pk

F

k

+ e

p

(11)

In this model, each X

i

is equal to its expected value, plus a linear sum of k factors and a term for

residual variability. This looks like a series of multiple regression equations; each of the variables

X

i

is regressed on the variables F1, . . . , F

k

. There are, however, major differences between this

model and the multiple regression model of Chapter 11. Observations and assumptions about

this model are the following:

1. The factors F

j

are not observed; only the X1, . . . , X

p

are observed, although the X

i

variables are expressed in terms of these smaller number of factors F

j

.

2. The e

i

(which are also unobserved) represent variability in the X

i

not explained by the

factors. We do not assume that these residual variability terms have the same distribution.

3. Usually, the number of factors k is unknown and must be determined from the data. We

shall first consider the model and the analysis where the number of factors is known;

later, we consider how one might search for the appropriate number of factors.

Assumptions made in the model, in addition to the linear equations given above, are the

following:

1. The factors F

j

are standardized; that is, they have mean zero and variance 1.

2. The factors F

j

are uncorrelated with each other, and they are uncorrelated with the e

i

terms. See Section 14.12 for a relaxation of this requirement.

3. The e

i

’s have mean zero and are uncorrelated with each other as well as with the F

j

’s.

They may have different variances.

It is a fact that if p factors F are allowed, there is no need for the residual variability terms e

i

.

One can reproduce any pattern of covariances or correlations using p factors when p variables

X

i

are observed. This, however, is not very useful because we have summarized the p variables

which were observed with p unknown variables. Thus, in general, we will be interested in k

factors, where k is less than p.

Let ψ

i

be the variance of e

i

. With the assumptions of the model above, the variance of each

X

i

can be expressed in terms of the coefficients λ

ij

of the factors and the residual variance ψ

i

.
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The equation giving the relationship for k factors is

var(X
i

) = λ

2
i1 + · · · + λ

2
ik

+ ψ

i

(12)

In words, the variance of each X

i

is the sum of the squares of the coefficients of the factors, plus

the variance of e

i

. The variance of X

i

has two parts. The sum of the coefficients λ

ij

squared

depends on the factors; the factors contribute in common to all of the X

i

’s. The e

i

’s correlate

only with their own variable X

i

and not with other variables in the model. In particular, they are

uncorrelated with all of the X

i

’s except for the one corresponding to their index. Thus, we have

broken down the variance into a part related to the factors that each variable has in common,

and the unique part related to the residual variability term. This leads to the following definition.

Definition 14.5. c

i

=

∑

k

j=1 λ

2
ij

is called the common part of the variance of X

i

, c

i

is also

called the communality of X

i

, ψ

i

is called the unique or specific part of the variance of X

i

,

and ψ

i

is also called the uniqueness or specificity.

Although factor analysis is designed to explain the relationships between the variables and

not the variance of the individual variables, if the communalities are large compared to the

specificities of the variables, the model has also succeeded in explaining not only the relationships

among the variables but the variability in terms of the common factors.

Not only may the variance be expressed in terms of the coefficients of the factors, but the

covariance between any two variables may also be expressed by

cov(X

i

, X

j

) = λ

i1λj1 + · · · + λ

ik

λ

jk

for i �= j (13)

These equations explain the relationships among the variables. If both X

i

and X

j

have

variances equal to 1, this expression gives the correlation between the two variables. There is a

standard name for the coefficients of the common factors.

Definition 14.6. The coefficients λ

ij

are called the factor loadings or loadings. λ

ij

repre-

sents the loading of variable X

i

and factor F

j

.

In general, cov(X

i

, F

j

) = λ

ij

. That is, λ

ij

is the covariance between X

i

and F

j

. If X

i

has

variance 1, for example if it is standardized, then since F

j

has variance 1, the factor loading is

the correlation coefficient between the variable and the factor.

We illustrate the method by two examples.

Example 14.4. We continue with the measurement data of U.S. females of Example 14.2.

A factor analysis with three underlying factors was performed on these data. Since we are trying

to explain the correlations between the variables, it is useful to examine the fit of the model

by comparing the observed and modeled correlations. We do this by examining the residual

correlation.

Definition 14.7. The residual correlation is the observed correlation minus the fitted cor-

relation from the factor analysis model.

Table 14.8 gives the residual correlations below the diagonal; on the diagonal are the esti-

mated uniquenesses, the part of the (standardized) variance not explained by the three factors.

A rule of thumb is that the correlation has been explained reasonably when the residual is less

than 0.1 in absolute value. This is convenient because it is easy to scan the residual matrix for

a zero after a decimal point. Of course, depending on the purpose, more stringent requirements

may be considered.
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Table 14.8 Residual Correlations: Example 14.4

STHTER STHTNORM KNEEHT POPHT ELBOWHT

1 2 3 4 5

STHTER 1 0.034

STHTNORM 2 0.002 0.151

KNEEHT 3 −0.001 0.001 0.191

POPHT 4 0.001 0.002 0.048 0.276

ELBOWHT 5 −0.001 −0.011 0.011 −0.004 0.474

THIGHHT 6 −0.009 0.004 0.003 −0.076 0.035

BUTTKN 7 −0.002 0.000 −0.016 −0.056 −0.021

BUTTPOP 8 −0.002 0.011 −0.042 −0.064 −0.035

ELBOWBR 9 0.000 0.013 −0.004 0.014 −0.010

SEATBR 10 −0.002 0.013 0.016 −0.041 0.020

BIACROM 11 0.004 −0.005 −0.000 0.014 −0.089

CHEST 12 0.003 0.004 0.003 0.030 −0.015

WAIST 13 0.005 −0.004 0.002 0.032 0.006

ARMGTH 14 −0.001 −0.004 0.004 −0.009 0.003

ARMSKIN 15 −0.005 0.016 0.025 −0.012 −0.004

INFRASCA 16 −0.002 0.006 0.020 0.016 0.004

HT 17 0.000 −0.001 −0.000 0.003 0.008

WT 18 −0.000 −0.009 −0.004 −0.005 0.008

AGE 19 0.002 0.024 0.003 0.024 −0.042

THIGHHT BUTTKN BUTTPOP ELBOWBR SEATBR

6 7 8 9 10

THIGHHT 6 0.499

BUTTKN 7 0.062 0.251

BUTTPOP 8 0.040 0.136 0.425

ELBOWBR 9 −0.012 −0.017 −0.016 0.158

SEATBR 10 0.035 0.070 0.010 −0.016 0.338

BIACROM 11 0.049 −0.035 −0.039 0.012 −0.042

CHEST 12 −0.038 −0.044 −0.017 0.036 −0.056

WAIST 13 −0.067 −0.023 −0.021 0.037 −0.029

ARMGTH 14 0.005 0.005 0.007 −0.014 0.008

ARMSKIN 15 0.048 0.019 0.021 −0.030 0.047

INFRASCA 16 0.004 −0.025 −0.007 −0.003 −0.030

HT 17 −0.003 −0.001 0.001 0.004 −0.014

WT 18 0.017 0.009 −0.004 −0.011 0.019

AGE 19 −0.172 −0.056 −0.034 0.078 0.002

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 0.679

CHEST 12 0.072 0.148

WAIST 13 −0.008 0.032 0.172

ARMGTH 14 −0.014 −0.014 −0.031 0.134

ARMSKIN 15 −0.053 −0.041 −0.046 0.075 0.487

INFRASCA 16 −0.010 0.013 0.003 0.013 0.171

HT 17 0.002 −0.000 −0.002 −0.001 0.003

WT 18 −0.003 0.000 0.004 0.009 −0.030

AGE 19 −0.106 0.033 0.105 −0.017 −0.012

INFRASCA HT WT AGE

16 17 18 19

INFRASCA 16 0.317

HT 17 0.002 0.056

WT 18 −0.018 0.001 0.057

AGE 19 −0.017 0.016 −0.034 0.770
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Table 14.9 Factor Loadings for a Three-Factor Model:

Example 14.4

Factor Loadings (Pattern)a

Variable Number Factor 1 Factor 2 Factor 3

SITHTER 1 0.346 0.920

SITHTNORM 2 0.332 0.859

KNEEHT 3 0.884 0.146

POPHT 4 −0.271 0.801

ELBOWHT 5 0.222 −0.120 0.680

THIGHHT 6 0.672 0.125 0.181

BUTTKN 7 0.436 0.741

BUTTPOP 8 0.339 0.679

ELBOWBR 9 0.914

SEATBR 10 0.781 0.171 0.150

BIACROM 11 0.344 0.390 0.225

CHEST 12 0.916 0.114

WAIST 13 0.898 −0.126

ARMGTH 14 0.929

ARMSKIN 15 0.714

INFRASCA 16 0.823

HT 17 0.804 0.538

WT 18 0.929 0.265 0.103

AGE 19 0.328 −0.124 −0.328

VP 7.123 3.632 2.628

Proportion var. 0.375 0.191 0.138

Cumulative var. 0.375 0.566 0.704

aLoadings less than 0.1 have been omitted.

In this example there are four large absolute values of residuals (−0.172, 0.171, 0.136, and

−0.106). This suggests that more factors are needed. (In Problem 14.10 we consider analysis of

these data with more factors.) The factor loadings are presented in Table 14.9. Loadings below

0.1 in absolute value are omitted, making it easier to see which variables are related to which

factors. In this example the first factor has high loadings on weight and bulk measurements

(variables 14, 18, 12, 9, 13, 16, 10, 15, and 6) and might be called a weight factor. The second

factor has high loadings on length or height measurements (variables 3, 17, 4, 7, and 8) and

might be considered a height factor. The third factor seems to be a sitting height factor.

The variables have been reordered so that variables loading on the same factor appear

together. When this is done, clusters of correlated variables often appear, which may be appre-

ciated visually by replacing correlations by symbols or colors. Figure 14.7 is a graph of the

correlation data from Table 11.21 using circles whose radius is proportional to the correlation,

shaded light gray for positive correlations and dark gray for negative correlations.

The sum of the squares of loadings for a factor (VP) is the portion of the sum of the X

i

variances (the total variance) that is explained by the factor. The table also gives this as a

proportion of the total and as a cumulative proportion of the total. In all, these factors explain

70% of the variability in the measurements.

Example 14.5. As a second example, consider coronary artery disease patients with left

main coronary artery disease. This patient group was discussed in Chaitman et al. [1981]. In

this factor analysis, 12 variables were considered and four factors were used with 357 cases.

The factor analysis was based on the correlation matrix. The variables and their mnemonics

(names) are:
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Figure 14.7 Correlations for Example 14.4. The radius of the circle is proportional to the absolute value

of the correlation. Light gray circles indicate positive correlations; dark gray circles, negative. (Data from

Stoudt et al. [1970].)

• SEX : 0 = male, 1 = female.

• PREVMI : 0 = history of prior myocardial infarction, 1 = no such history.

• FEPCHEP : time in weeks since the first episode of anginal chest pain; this analysis was

restricted to patients with anginal chest pain.

• CHCLASS : severity of impairment due to angina (chest pain); ranging from I (mildly

impaired) to IV (any activity is limited; almost totally bedridden).

• LMCA: the percent diameter narrowing of the left main coronary artery; this analysis was

restricted to 50% or more narrowing.

• AGE : in years.

• SCORE : the amount of impairment of the pumping chamber (left ventricle) of the heart;

score ranges from 5 (normal) to 30 (not attained).

• PS70 : the number of proximal (near the beginning of the blood supply) segments of the

coronary arteries with 70% or more diameter narrowing.

• LEFT : this variable (and RIGHT) tells if the right artery of the heart carries as much

blood as normal. LEFT (dominant) implies that the right coronary artery carries little

blood; 8.8% of these cases fell into this category. Code: LEFT = 1 (left dominant);

LEFT = 0 otherwise.
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Table 14.10 Correlations (as the Bottom Entry in Each Cell) and the Residual Correlations (as the

Top Entry) in Each Cella

SEX PREMI FEPCHEP CHCLASS LMCA AGE

SEX 0.933

1.000

PREVMI 0.053 0.802

0.040 1.000

FEPCHEP −0.013 −0.043 0.714

−0.002 −0.161 1.000

CHCLASS 0.056 −0.000 −0.001 0.796

0.073 −0.117 0.217 1.000

LMCA 0.010 0.049 0.005 −0.037 0.989

0.012 0.036 0.041 0.004 1.000

AGE −0.026 0.019 0.012 −0.001 0.024 0.727

−0.013 −0.107 0.286 0.227 0.065 1.000

SCORE 0.000 −0.001 −0.000 0.000 0.000 0.000

0.030 −0.427 0.143 0.185 0.019 0.175

PS70 −0.028 −0.057 −0.027 0.062 −0.016 0.013

−0.054 −0.188 0.129 0.087 −0.034 0.044

LEFT 0.015 −0.011 −0.015 0.025 0.011 −0.005

−0.027 −0.022 0.014 0.099 0.063 0.064

RIGHT 0.009 −0.007 −0.009 0.015 0.006 −0.003

0.054 0.017 −0.033 −0.062 −0.049 −0.077

NOVESLS 0.000 0.000 0.000 −0.000 0.000 0.000

−0.033 −0.183 0.206 0.014 −0.034 0.130

LVEDP 0.014 0.023 0.001 0.024 0.019 −0.015

0.020 −0.072 0.119 0.135 0.041 0.109

SCORE PS70 LEFT RIGHT NOVESLS LVEDP

SCORE 0.021

1.000

PS70 0.001 0.514

0.198 1.000

LEFT −0.000 −0.004 0.281

0.007 0.004 1.000

RIGHT −0.000 −0.004 0.002 0.175

−0.041 −0.013 −0.767 1.000

NOVESLS 0.000 0.000 0.000 0.000 0.000

0.284 0.693 −0.071 0.073 1.000

LVEDP 0.000 −0.025 −0.007 −0.004 0.000 0.930

0.175 0.029 0.068 −0.086 0.063 1.000

aThe diagonal entry on top is the estimated uniqueness for each variable. Four factors were used.

• RIGHT : there are three types of dominance of the coronary arteries: LEFT above, unbal-

anced (implicitly coded when LEFT = 0 and RIGHT = 0), and RIGHT. Right dominance

is the usual case and occurs when the right coronary artery carries a usual amount of

blood. 85.8% of these cases are right dominant: RIGHT = 1; otherwise, RIGHT =

0.

• NOVESLS : the number of diseased vessels with ≥ 70% stenosis or narrowing of the three

major arterial branches above and beyond the left main disease.

• LVEDP : the left ventricular end diastolic pressure. This is the pressure in the heart when

it is relaxed between beats. A damaged or failing heart has a higher pressure.
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Table 14.11 Factor Loadings: Example 14.5

Factora

1 2 3 4

SEX

PREVMI −0.103 −0.396 −0.174

FEPCHEP 0.152 0.535

CHCLASS 0.125 0.428

LMCA

AGE 0.502

SCORE 0.108 0.981 0.158

PS70 0.683 0.117

LEFT −0.818 0.124

RIGHT 0.917 −0.121

NOVESLS 0.980 0.166

LVEDP 0.143 0.215

VPb 1.525 1.487 1.210 0.872

Proportion var. 0.127 0.124 0.101 0.073

Cumulative var. 0.127 0.251 0.352 0.425

aLoadings below 0.100 are omitted.
bVP is the portion of sum of squares explained by the factor.

Factor analysis is designed primarily for continuous variables. In this example we have

many discrete variables, and even dummy or indicator variables. The analysis is considered

more descriptive or explanatory in this case.

Examining the residual values in Table 14.10, we see a fairly satisfactory fit; the maximum

absolute value of a residual is 0.062, but most are much smaller. Examination of the uniqueness

diagonal column on top shows that the number of vessels diseased, NOVESLS, and SCORE are

explained essentially by the factors (uniqueness = 0.000). Some other variables retain almost all

of their variability: SEX (uniqueness = 0.993) and LMCA (uniqueness = 0.989). Since we have

explained most of the relationships among the variables without using the variability of these fac-

tors, SEX and LMCA must be weakly related to the other factors. This is readily verified by look-

ing at the correlation matrix; the maximum absolute correlation involving either of the variables

is r = 0.073, r

2
= 0.005. They explain 1

2
of 1% or less of the variability in the other variables.

Let us now look at the factor loading (or correlation) values in Table 14.11. The first factor

has heavy loadings on the two dominance variables. This factor could be labeled a dominance

factor. The second factor looks like a coronary artery disease (CAD) factor. The third is a heart

attack, a ventricular function factor. The fourth might be labeled a history variable.

The first factor exists largely by definition; if LEFT = 1, then RIGHT = 0, and vice versa.

The second factor is also expected; if proximal segments are diseased, the arteries are diseased.

The third factor makes biological sense. A damaged ventricle often occurs because of a heart

attack. The factor with moderate loadings on AGE, FEPCHEP, and CHCLASS is not as clear.

14.11 ESTIMATION

Many methods have been suggested for estimation of the factor loadings and the specificities,

that is, the coefficients λ

ij

and the variance of the residual term e

i

. Consider equation (11)

and suppose that we change the scale of X

i

. Effectively, this is the same as looking at a new

variable cX

i

; the new value is the old value multiplied by a constant. Multiplying through the

equations of equation (11) by the constant, and remembering that we have restricted the factors
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to have variance 1, we see that factor loading should be multiplied by the same factor as X

i

.

Only one method of estimation has this property, which also implies that we can use either the

covariance matrix or correlation matrix as input to the estimation. This method is the maximum

likelihood method; it is our method of choice. The method seems to give the best fit, where

fit is examined as described below. There are drawbacks to the method. There can be multiple

possible solutions, and software may not converge to the best solution, particularly if the best

solution involves a communality of 1.00 for some variable (the “Heywood case”). The examples

in this chapter are fairly well behaved, and essentially the same solution was obtained with the

programs BMDP and R. For a review of other methods, we recommend the book by Gorsuch

[1983]. This book, which is cited extensively below, contains a nice review of many of the

issues of factor analysis. Two shorter volumes are those of Kim and Mueller [1983, 1999].

14.12 INDETERMINACY OF THE FACTOR SPACE

There appears to be something magical about factor analysis; we are estimating coefficients of

variables that are not even observed. It is difficult to imagine that one can estimate this at all.

In point of fact, it is not possible to estimate the F

i

uniquely, but one can estimate the F

i

up to

a certain indeterminacy. It is necessary to describe this indeterminacy in mathematical terms.

Mathematically, the factors are unique except for possible linear combinations. Geometrically,

suppose that we think of the factors (e.g., a model with k = 2) as corresponding to values in a

plane. Let this plane exist in three-dimensional space. For example, the subspace corresponding

to the two factors (i.e., the plane) might be the plane of the paper of this book. Within this

three-dimensional space, factor analysis would determine which plane contains the two factors.

However, any two perpendicular directions in the factor plane would correspond to factors that

equally well fit the data in terms of explaining the covariances or correlations between the

variables. Thus, we have the factors identified up to a certain extent, but we are allowed to

rotate them within a subspace.

This indeterminacy allows one to “fiddle” with different combinations of factors (i.e., rota-

tions) so that the factors are considered “easy to interpret.” As discussed at some length below,

one of the strengths and weaknesses of factor analysis is the possibility of finding factors that

represent some abstract concept. This task is easiest when the factors are associated with some

subset of the variables. That is, one would like factors that have high loadings (in terms of

absolute value) on some subset of variables and very low (near zero in absolute value) loadings

on the rest of the variables. In this case, the factor is closely associated with the subset of

the variables that have large absolute loadings. If these variables have something in common

conceptually (e.g., they are all measures of blood pressure) or in a psychological study they all

seem to be related to aggressive behavior, one might then identify the specific factor as a blood

pressure factor or an aggression factor.

Another complication in the literature of factor analysis is related to the choice of a specific

basis in the factor subspace. Suppose for the moment that we are dealing with the correlations

among the X

i

’s. In this case, as we saw before, the loadings on the factors are correlations of

the factor with the variable. Thus each loading will be in absolute value less than or equal to

1. It will be easy to interpret our factors if the absolute value is near zero or near 1. Consider

Figure 14.8(a) and (b), plots of the loadings on factors 1 and 2, with a separate point for each

of the variables X

i

. In Figure 14.8(a) there is a very nice pattern. The variables corresponding

to points on the factor 1 axis of ±1 or on the factor 2 axis of ±1 are variables associated with

each of the factors. The variables plotted near zero on both factors have little relationship to

the two factors; in particular, factor 1 would be associated with the variables having points near

±1 along its axis, including variables 1 and 10 as labeled. This would be considered a very

nice loading pattern, and easy to interpret, having the simple structure as described above. In

Figure 14.8(b) we see that if we look at the original factors 1 and 2, it is difficult to interpret
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the data points, but should we rotate by θ as indicated in the figure, we would have factors easy

to interpretation (i.e., each factor associated with a subset of the X

i

variables). By looking at

such plots and then drawing lines and deciding on the angle θ visually, we have what is called

visual rotation. When the factor subspace contains a variety of factors (i.e., k > 2), the situation

is not as simple. If we rotate factors 1 and 2 to find a simple interpretation, we will have

altered the relationship between factors 1 and 2 and the other factors, and thus, in improving the

relationship between 1 and 2 to have a simple form, we may weaken the relationship between

1 and 5, for example. Visual rotation of factors is an art that can take days or even weeks. The

advantage of such rotation is that the mind can weigh the different trade-offs. One drawback

of visual rotation is that it may be rotated to give factors that conform to some pet hypothesis.

Again, the naming and interpretation of factors are discussed below. Thus, visual rotation can

take an enormous amount of time and is subject to the biases of the data analyst (as well as to

his or her creativity).

Because of the time constraints for analysis, the complexity of the rotation, and the potential

biases, considerable effort has been devoted to developing analytic methods of rotating the

factors to get the best rotation. By analytic we mean that there is an algorithm describing

whether or not a particular rotation for all of the factors is desirable. The computer software,

then, finds the best orientation.

Note 14.2 describes two popular criteria, the varimax method and the quartimax method. A

factor analysis is said to have a general factor if there is a factor that is associated with all or

almost all of the variables. The varimax method can be useful but does not allow general factors

and should not be used when such factors may occur. Otherwise, it is considered one of the most

Figure 14.8 Two-factor loading patterns. (Continued overleaf )
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Figure 14.8 continued

satisfactory methods. (In fact, factor analysis was developed in conjunction with the study of

intelligence. In particular, one of the issues was: Does intelligence consist of one general factor

or a variety of uncorrelated factors corresponding to different types of intelligence? Another

alternative model for intelligence is a general factor plus other factors associated with some

subset of measures of performance thought to be associated with intelligence.)

The second popular method is the quartimax method. This method, in contrast to the varimax

method, tends to have one factor with large loadings on all the variables and not many large

loadings among the rest of the factors. In the examples of this chapter we have used the varimax

method. We do not have the space to get into all the issues involved in the selection of a rotation

method.

Returning to visual rotation, suppose that we have the pattern shown in Figure 14.9. We

see that there are no perpendicular axes for which the loadings are 1 or −1, but if we took

two axes corresponding to the dashed lines, the interpretation might be simplified. Factors

corresponding to the two dashed lines are no longer uncorrelated with each other, and one may

wonder to what extent they are “separate” factors. Such factors are called oblique factors, the

word oblique coming from the geometric picture and the fact that in geometry, oblique lines are

lines that do not intersect at a right angle. There are a number of analytic methods for getting

oblique rotations, with snappy names such as oblimax, biquartimin, binormamin, and maxplane.

References to these may be found in Gorsuch [1983]. If oblique axes or bases are used, the

formulas for the variance and covariances of the X

i

’s as given above no longer hold. Again,

see Gorsuch for more in-depth consideration of such issues.
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Figure 14.9 Orthogonal and oblique axes for factor loadings.

To try a factor analysis it is not necessary to be expert with every method of estimation

and rotation. An exploratory data analysis may be performed to see the extent to which things

simplify. We suggest the use of the maximum likelihood estimation method for estimating the

coefficients λ

ij

, where the rotation is performed using the varimax method unless one large

general factor is suspected to occur.

Example 14.6. We return to Examples 14.4 and 14.5 and examine plots of the correlations

of the variables with the factors. Figure 14.10 shows the plots for Example 14.4, where the

numbers on the plot correspond to the variable numbers in Table 14.9.

The plot for factors 2 and 3 looks reasonable (absolute values near 0 or 1). The other two

plots have in-between points making interpretation of the factors difficult. This, along with the

large residuals mentioned above, suggests trying an analysis with a few more factors.

The plots for Example 14.5 are given in Figure 14.11. These plots suggest factors fairly

easy of interpretation, with few, if any, points with moderate loadings on several factors. The

interpretation of the factors, discussed in Example 14.5, was fairly straightforward.

14.13 CONSTRAINED FACTOR ANALYSIS

In some situations there are physical constraints on the factors that affect the fitting and interpre-

tation of the factor analysis model. One important application of this sort is in the study of air

pollution. Particulate air pollution consists of small particles of smoke, dust, or haze, typically

10 µm in size or smaller. These particles come from a relatively small number of sources, such
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Figure 14.10 Factor loadings for Example 14.4.

as car and truck exhaust, smoke from fireplaces, road dust, and chemical reactions between gases

in the air. Particles from different sources have differing distributions of chemical composition,

so the chemical composition of particles in the air will be approximately an average of those for

each source, weighted according to that source’s contribution to overall pollution. That is, we

have a factor analysis model in which the factor loadings λ represent the contribution of each

source to overall particulate air pollution, the factors F characterize the chemical composition

of each source, and the uniquenesses c

i

are due largely to measurement error.

In this context the factor analysis model is modified slightly by removing the intercept in each

of the regression models of equation (11). Rather than constraining each factor to have zero mean

and unit variance, we constrain all the coefficients F and λ to be nonnegative. That is, a source

cannot contain a negative amount of some chemical element and cannot contribute a negative

concentration of particles. These physical constraints reduce the rotational indeterminacy of the

model considerably. On the other hand, it is not reasonable to require that factors are orthogonal

to each other, so that oblique rotations must be considered, restoring some of the indeterminacy.

The computation is even more difficult than for ordinary factor analysis, and specialized

software is needed [Paatero, 1997, 1999; Henry, 1997]. The full data are needed rather than just

a correlation or covariance matrix.
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Figure 14.11 Factor loadings for Example 14.5.

Example 14.7. In February 2000, the U.S. Environmental Protection Agency held a work-

shop on source apportionment for particulate air pollution [U.S. EPA, 2000]. The main part of

the workshop was a discussion of two constrained factor analysis methods which were used

to investigate fine particulate air pollution from Phoenix, Arizona. Data were available for 981

days, from March 1995 through June 1998, on concentrations of 44 chemical elements and on

carbon content, divided into organic carbon and elemental carbon.
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The UNMIX method [Henry, 1997] gave a five-factor model:

Source Concentration (µg/m3
)

Vehicles 4.7

Secondary aerosol 2.6

Soil 1.8

Diesel 1.2

Vegetative burning 0.7

Unidentified 1.6

and the PMF method [Paatero, 1997] gave a six-factor model:

Source Concentration (µg/m3
)

Motor vehicles 3.5

Coal-fired power 2.1

Soil 1.9

Smelter 0.5

Biomass burning 4.4

Sea salt 0.1

Some of these factors were expected and their likely composition known a priori, such

as vehicle exhaust with large amounts of both organic and elemental carbon, and soil with

aluminium and silicon. Others were found and interpreted as a result of the analysis; the diesel

source had both the elemental carbon characteristic of diesel exhaust and the maganese attributed

to fuel additives. The secondary aerosol source in the UNMIX results probably corresponds to

the coal-fired power source of PMF and perhaps some of the other burning; it would consist of

sulfate and nitrate particles formed by chemical reactions in the atmosphere.

The attributions of fine particles to combustion, soil, and chemical reactions in the atmosphere

were reasonably consistent between these methods, but separating different types of combustion

proved much more difficult. This is probably a typical case and illustrates that the indeterminacy

in the basic factor analysis model can partly, but not entirely, be overcome by substantive

knowledge.

14.14 DETERMINING THE NUMBER OF FACTORS

In this section we consider what to do when the number of factors is unknown. Estimation

methods of factor analysis begin with knowledge of k, the number of factors. But this number is

usually not known or hypothesized. There is no universal agreement on how to select k; below

we examine a number of ways of doing this. The first step is always carried out.

1. Examine the values of the residual correlations. In this section we suppose that we are

trying to model the correlations between variables rather than their covariances. Recall that with

maximum likelihood estimation, fitting one is the same as fitting the other. In looking at the

residual correlations, as done in Examples 14.4 and 14.5, we may feel that we have done a

good job if all of the correlations have been fit to within a specified difference. If the residual

correlations reveal large discrepancies, the model does not fit.

2. There are statistical tests if we can assume that multivariate normality holds and we

use the maximum likelihood estimation method. In this case, there is an asymptotic chi-square

test for any hypothesized fixed number of factors. Computation of the test statistic is complex
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and given in Note 14.3. However, it is available in many statistical computer programs. One

approach is to look at successively more factors until the statistic is not statistically significant;

that is, there are enough factors so that one would not reject at a fixed significance level the

hypothesis that the number of factors is as given. This is analogous to a stepwise regression

procedure. If we do this, we are performing a stepwise procedure, and the true and nominal

significance levels differ (as usual in a stepwise analysis).

3. Looking at the roots of the correlation matrix:

a. If the correlations are arranged in a square pattern or matrix, as usually done, this

pattern is called a correlation matrix. Suppose that we perform a principal component

analysis and examine the variances of the principal components V1 ≥ V2 ≥ · · · ≥ V

p

.

These values are called the eigenvalues or roots of the correlation matrix. If we have the

correlation matrix for the entire population, Guttman [1954] showed that the number

of factors, k, must be greater than or equal to the number of roots greater than or

equal to 1. That is, the number of factors in the factor analytic model must be greater

than or equal to the number of principal components whose variance is greater than

or equal to 1. Of course, in practice we do not have the population correlation matrix

but an estimate. The number of such roots greater than or equal to 1 in a sample may

turn out to be smaller or larger. However, because of Guttman’s result, a reasonable

starting value for k is the number of roots greater than or equal to 1 for the sample

correlation matrix. For a thorough factor analysis, values of k above and below this

number should be tried and the residual patterns observed. The number of factors in

Examples 14.4 and 14.5 was chosen by this method.

b. Scree is the name for the rubble at the bottom of a cliff. The scree test plots the

variances of the principal components. If the plot looks somewhat like Figure 14.12,

one looks to separate the climb of the cliff from the scree at the bottom of the cliff.

We are directed to pick the cliff, components 1, 2, 3, and possibly 4, rather than the

rubble. A clear plastic ruler is laid across the bottom points, and the number of values

above the line is the number of important factors. This advice is reasonable when a

sharp demarcation can be seen, but often the pattern has no clear breakpoint.

c. Since we are interested in the correlation structure, we might plot as a function of k (the

number of factors) the maximum absolute value of all the residuals of the estimated

Figure 14.12 Plot for the scree test.
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Figure 14.13 Plot of the maximum absolute residual and the average root mean square residual.

correlations. Another useful plot is the square root of the sum of the squares of all of

the residual correlations divided by the number of such residual correlations, which is

p(p − 1)/2. If there is a break in the plots of the curves, we would then pick k so

that the maximum and average squared residual correlations are small. For example,

in Figure 14.13 we might choose three or four factors. Gorsuch suggests: “In the final

report, interpretation could be limited to those factors which are well stabilized over

the range which the number of factors may reasonably take.”

14.15 INTERPRETATION OF FACTORS

Much of the debate about factor analysis stems from the naming and interpretation of factors.

Often, after a factor analysis is performed, the factors are identified with concepts or objects.

Is a factor an underlying concept or merely a convenient way of summarizing interrelationships

among variables? A useful word in this context is reify, meaning to convert into or to regard

something as a concrete thing. Should factors be reified?

As Gorsuch states: “A prime use of factor analysis has been in the development of both

the theoretical constructs for an area and the operational representatives for the theoretical

constructs.” In other words, a prime use of factor analysis requires reifying the factors. Also,

“The first task of any research program is to establish empirical referents for the abstract concepts

embodied in a particular theory.”

In psychology, how would one deal with an abstract concept such as aggression? On a

questionnaire a variety of possible “aggression” questions might be used. If most or all of them

have high loadings on the same factor, and other questions thought to be unrelated to aggression

had low loadings, one might identify that factor with aggression. Further, the highest loadings

might identify operationally the questions to be used to examine this abstract concept.

Since our knowledge is of the original observations, without a unique set of variables loading

a factor, interpretation is difficult. Note well, however, that there is no law saying that one must

interpret and name any or all factors.

Gorsuch makes the following points:

1. “The factor can only be interpreted by an individual with extensive background in the

substantive area.”
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2. “The summary of the interpretation is presented as the factor’s name. The name may be

only descriptive or it may suggest a causal explanation for the occurrence of the factor.

Since the name of the factor is all most readers of the research report will remember, it

should be carefully chosen.” Perhaps it should not be chosen at all in many cases.

3. “The widely followed practice of regarding interpretation of a factor as confirmed solely

because the post-hoc analysis ‘makes sense’ is to be deplored. Factor interpretations can

only be considered hypotheses for another study.”

Interpretation of factors may be strengthened by using cases from other populations. Also,

collecting other variables thought to be associated with the factor and including them in the

analysis is useful. They should load on the same factor. Taking “marker” variables from other

studies is useful in seeing whether an abstract concept has been embodied in more or less the

same way in two different analyses.

For a perceptive and easy-to-understand discussion of factor analysis, see Chapter 6 in Gould

[1996], which deals with scientific racism. Gould discusses the reification of intelligence in the

Intelligence Quotient (IQ) through the use of factor analysis. Gould traces the history of factor

analysis starting with the work of Spearman. Gould’s book is a cautionary tale about scientific

presuppositions, predilections, and perceptions affecting the interpretation of statistical results

(it is not necessary to agree with all his conclusions to benefit from his explanations). A recent

book by McDonald [1999] has a more technical discussion of reification and factor analysis.

For a semihumorous discussion of reification, see Armstrong [1967].

NOTES

14.1 Graphing Two-Dimensional Projections

As noted in Section 14.8, the first two principal components can be used as plot axes to give a

two-dimensional representation of higher-dimensional data. This plot will be best in the sense

that it shows the maximum possible variability. Other multivariate graphical techniques give

plots that are “the best” in other senses.

Multidimensional scaling gives a two-dimensional plot that reproduces the distances between

points as accurately as possible. This view will be similar to the first two principal components

when the data form a football (ellipsoid) shape, but may be very different when the data have

a more complicated structure. Other projection pursuit techniques specifically search for views

of the data that reveal holes, clusters, lines, and other departures from an ellipsoidal shape. A

relatively nontechnical review of this concept is given by Jones and Sibson [1987].

Rather than relying on a single two-dimensional projection, it is also possible to display

animated sequences of projections on a computer screen. The projections can be generated by

random rotations of the data or by projection pursuit methods that attempt to show “interesting”

projections. The free computer program GGobi (http://www.ggobi.org) implements many of

these techniques.

Of course, more sophisticated searches performed by computer mean that more caution

in interpretation is needed from the analyst. Substantial experience with these techniques is

needed to develop a feeling for which graphs indicate real structure as opposed to overinter-

preted noise.

14.2 Varimax and Quartimax Methods of Choosing Factors in a Factor Analysis

Many analytic methods of choosing factors have been developed so that the loading matrix is

easy to interpret, that is, has a simple structure. These many different methods make the factor

analysis literature very complex. We mention two of the methods.
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1. Varimax method. The varimax method uses the idea of maximizing the sum of the vari-

ances of the squares of loadings of the factors. Note that the variances are high when

the λ

2
ij

are near 1 and 0, some of each in each column. In order that variables with large

communalities are not overly emphasized, weighted values are used. Suppose that we

have the loadings λ

ij

for one selection of factors. Let θ

ij

be the loadings for a different

set of factors (the linear combinations of the old factors). Define the weighted quantities
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Some problems have a factor where all variables load high (e.g., general IQ). Varimax

should not be used if a general factor may occur, as the low variance discourages general

factors. Otherwise, it is one of the most satisfactory methods.

2. Quartimax method. The quartimax method works with the variance of the square of all

p

k

loadings. We maximize over all possible loadings θ

ij

:
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Quartimax is used less often, since it tends to include one factor with all major loadings

and no other major loadings in the rest of the matrix.

14.3 Statistical Test for the Number of Factors in a Factor Analysis When X1, . . . , Xp

Are Multivariate Normal and Maximum Likelihood Estimation Is Used

This note presupposes familiarity with matrix algebra. Let A be a matrix and A

′ denote the

transpose of A; if A is square, let |A| be the determinant of A and Tr(A) be the trace of A.

Consider a factor analysis with k factors and estimated loading matrix

� =







λ11 · · · λ1k

.

.

.

.

.

.

.

.

.

λ

n1 · · · λ

nk







The test statistic is

X

2
=

(

n − 1 −

2p + 5

6
−

2k

3

)

log
e

(

|��

′
+ ψ |

|S|

)

Tr(S(��

′
+ ψ)

−1
)p

where S is the sample covariance matrix, ψ a diagonal matrix where ψ

ii

= s

i

− (��

′
)

ii

, and

s

i

the sample variance of X

i

. If the true number of factors is less than or equal to k, X

2 has a

chi-square distribution with [(p − k)

2
− (p + k)]/2 degrees of freedom. The null hypothesis of

only k factors is rejected if X

2 is too large.

One could try successively more factors until this is not significant. The true and nominal

significance levels differ as usual in a stepwise procedure. (For the test to be appropriate, the

degrees of freedom must be > 0.)
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PROBLEMS

The first four problems present principal component analyses using correlation matrices. Portions

of computer output (BMDP program 4M) are given. The coefficients for principal components

that have a variance of 1 or more are presented. Because of the connection of principal component

analysis and factor analysis mentioned in the text (when the correlations are used), the principal

components are also called factors in the output. With a correlation matrix the coefficient

values presented are for the standardized variables. You are asked to perform a subset of the

following tasks.

(a) Fill in the missing values in the “variance explained” and “cumulative proportion

of total variance” table.

(b) For the principal component(s) specified, give the percent of the total variance

accounted for by the principal component(s).

(c) How many principal components are needed to explain 70% of the total variance?

90%? Would a plot with two axes contain most (say,≥ 70%) of the variability in

the data?

(d) For the case(s) with the value(s) as given, compute the case(s) values on the first

two principal components.

14.1 This problem uses the psychosocial Framingham data in Table 11.20. The mnemonics go

in the same order as the correlations presented. The results are presented in Tables 14.12

and 14.19. Perform tasks (a) and (b) for principal components 2 and 4, and task (c).

14.2 Measurement data on U.S. females by Stoudt et al. [1970] were discussed in this chapter.

The same correlation data for adult males were also given (Table 14.14). The principal

Table 14.12 Problem 14.1: Variance Explained by

Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 4.279180 0.251716

2 1.633777 0.347821

3 1.360951 ?

4 1.227657 0.500092

5 1.166469 0.568708

6 ? 0.625013

7 0.877450 0.676627

8 0.869622 0.727782

9 0.724192 0.770381

10 0.700926 0.811612

11 0.608359 ?

12 0.568691 0.880850

13 0.490974 0.909731

14 ? 0.935451

15 0.386540 0.958189

16 0.363578 0.979576

17 ? ?

aThe variance explained by each factor is the eigenvalue for that
factor. Total variance is defined as the sum of the diagonal elements
of the correlation (covariance) matrix.
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Table 14.13 Problem 14.1: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor Factor Factor Factor

1 2 3 4 5

TYPEA 1 0.633 −0.203 0.436 −0.049 0.003

EMOTLBLE 2 0.758 −0.198 −0.146 0.153 −0.005

AMBITIOS 3 0.132 −0.469 0.468 −0.155 −0.460

NONEASY 4 0.353 0.407 −0.268 0.308 0.342

NOBOSSPT 5 0.173 0.047 0.260 −0.206 0.471

WKOVRLD 6 0.162 −0.111 0.385 −0.246 0.575

MTDISSAG 7 0.499 0.542 0.174 −0.305 −0.133

MGDISSAT 8 0.297 0.534 −0.172 −0.276 −0.265

AGEWORRY 9 0.596 0.202 0.060 −0.085 −0.145

PERSONWY 10 0.618 0.346 0.192 −0.174 −0.206

ANGERIN 11 0.061 −0.430 −0.470 −0.443 −0.186

ANGEROUT 12 0.306 0.178 0.199 0.607 −0.215

ANGRDISC 13 0.147 −0.181 0.231 0.443 −0.108

STRESS 14 0.665 −0.189 0.062 −0.053 0.149

TENSION 15 0.771 −0.226 −0.186 0.039 0.118

ANXSYMPT 16 0.594 −0.141 −0.352 0.022 0.067

ANGSYMPT 17 0.723 −0.242 −0.256 0.086 −0.015

VPa 4.279 1.634 1.361 1.228 1.166

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP
is the variance explained by the factor.

component analysis gave the results of Table 14.15. Perform tasks (a) and (b) for prin-

cipal components 2, 3, and 4, and task (c).

14.3 The Bruce et al. [1973] exercise data for 94 sedentary males are used in this problem (see

Table 9.16). These data were used in Problems 9.9 to 9.12. The exercise variables used

are DURAT (duration of the exercise test in seconds), VO2 MAX [the maximum oxy-

gen consumption (normalized for body weight)], HR [maximum heart rate (beats/min)],

AGE (in years), HT (height in centimeters), and WT (weight in kilograms). The cor-

relation values are given in Table 14.17. The principal component analysis is given

in Table 14.18. Perform tasks (a) and (b) for principal components 4, 5, and 6, and

task (c) (Table 14.19). Perform task (d) for a case with DURAT = 600, VO2 MAX =

38, HR = 185, AGE = 29, HT = 165, and WT = 71. (N.B.: Find the value of the

standardized variables.)

14.4 The variables are the same as in Problem 14.3. In this analysis 43 active females

(whose individual data are given in Table 9.14) are studied. The correlations are given in

Table 14.21. the principal component analysis in Tables 14.22 and 14.23. Perform tasks

(a) and (b) for principal components 1 and 2, and task (c). Do task (d) for the two cases

in Table 14.24 (use standard variables). See Table 14.21.

Problems 14.5, 14.7, 14.8, 14.10, 14.11, and 14.12 consider maximum likelihood

factor analysis with varimax rotation (from computer program BMDP4M). Except for

Problem 14.10, the number of factors is selected by Guttman’s root criterion (the number

of eigenvalues greater than 1). Perform the following tasks as requested.
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Table 14.14 Problem 14.2: Correlations

STHTER STHTHL KNEEHT POPHT ELBWHT

1 2 3 4 5

STHTER 1 1.000

STHTHL 2 0.873 1.000

KNEEHT 3 0.446 0.443 1.000

POPHT 4 0.410 0.382 0.798 1.000

ELBWHT 5 0.544 0.454 −0.029 −0.062 1.000

THIGHHT 6 0.238 0.284 0.228 −0.029 0.217

BUTTKNHT 7 0.418 0.429 0.743 0.619 0.005

BUTTPOP 8 0.227 0.274 0.626 0.524 −0.145

ELBWELBW 9 0.139 0.212 0.139 −0.114 0.231

SEATBRTH 10 0.365 0.422 0.311 0.050 0.286

BIACROM 11 0.365 0.335 0.352 0.275 0.127

CHESTGRH 12 0.238 0.298 0.229 0.000 0.258

WSTGRTH 13 0.106 0.184 0.138 −0.097 0.191

RTARMGRH 14 0.221 0.265 0.194 −0.059 0.269

RTARMSKN 15 0.133 0.191 0.081 −0.097 0.216

INFRASCP 16 0.096 0.152 0.038 −0.166 0.247

HT 17 0.770 0.717 0.802 0.767 0.212

WT 18 0.403 0.433 0.404 0.153 0.324

AGE 19 −0.272 −0.183 −0.215 −0.215 −0.192

THIGH-HT BUTT-KNHT BUTT-POP ELBW-ELBW SEAT-BRTH

6 7 8 9 10

THIGHHT 6 1.000

BUTTKNHT 7 0.348 1.000

BUTTPOP 8 0.237 0.736 1.000

ELBWELBW 9 0.603 0.299 0.193 1.000

SEATBRTH 10 0.579 0.449 0.265 0.707 1.000

BIACROM 11 0.303 0.365 0.252 0.311 0.343

CHESTGRH 12 0.605 0.386 0.252 0.833 0.732

WSTGRTH 13 0.537 0.323 0.216 0.820 0.717

RTARMGRH 14 0.663 0.342 0.224 0.755 0.675

RTARMSKN 15 0.480 0.240 0.128 0.524 0.546

INFRASCP 16 0.503 0.212 0.106 0.674 0.610

HT 17 0.210 0.751 0.600 0.069 0.309

WT 18 0.684 0.551 0.379 0.804 0.813

AGE 19 −0.190 −0.151 −0.108 0.156 0.043

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 1.000

CHESTGRH 12 0.418 1.000

WSTGRTH 13 0.249 0.837 1.000

RTARMGRH 14 0.379 0.784 0.712 1.000

RTARMSKN 15 0.183 0.558 0.552 0.570 1.000

INFRASCP 16 0.242 0.710 0.727 0.667 0.697

HT 17 0.381 0.189 0.054 0.139 0.060

WT 18 0.474 0.885 0.821 0.849 0.562

AGE 19 −0.261 0.062 0.299 −0.115 −0.039

INFRASCP HT WT AGE

16 17 18 19

INFRASCP 16 1.000

HT 17 −0.003 1.000

WT 18 0.709 0.394 1.000

AGE 19 0.045 −0.270 −0.058 1.000
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Table 14.15 Problem 14.2: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 7.839282 0.412594

2 4.020110 0.624179

3 1.820741 0.720007

4 1.115168 0.778700

5 0.764398 0.818932

6 ? 0.850389

7 0.475083 ?

8 0.424948 0.897759

9 0.336247 0.915456

10 ? 0.931210

11 0.252205 0.944484

12 ? 0.955404

13 0.202398 0.966057

14 0.169678 0.974987

15 0.140613 0.982388

16 0.119548 ?

17 0.117741 0.994872

18 0.055062 0.997770

19 0.042365 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.16 Exercise Data for Problem 14.3

Univariate Summary Statistics

Variable Mean Standard Deviation

1 DURAT 577.10638 123.83744

2 VO2 MAX 35.63298 7.51007

3 HR 175.39362 18.59195

4 AGE 49.78723 11.06955

5 HT 177.39851 6.58285

6 WT 79.00000 8.71286

Table 14.17 Problem 14.3: Correlation Matrix

DURAT VO2 MAX HR AGE HT WT

DURAT 1 1.000

VO2 MAX 2 0.905 1.000

HR 3 0.678 0.647 1.000

AGE 4 −0.687 −0.656 −0.630 1.000

HT 5 0.035 0.050 0.107 −0.161 1.000

WT 6 −0.134 −0.147 0.015 −0.069 0.536 1.000
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Table 14.18 Problem 14.3: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 3.124946 0.520824

2 1.570654 ?

3 0.483383 0.863164

4 ? 0.926062

5 ? 0.984563

6 0.092621 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.19 Problem 14.3: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor

1 2

DURAT 1 0.933 −0.117

VO2 MAX 2 0.917 −0.120

HR 3 0.832 0.057

AGE 4 −0.839 −0.134

HT 5 0.128 0.860

WT 6 −0.057 0.884

VPa 3.125 1.571

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP is
the variance explained by the factor.

Table 14.20 Exercise Data for Problem 14.4

Univariate Summary Statistics

Variable Mean Standard Deviation

1 DURAT 514.88372 77.34592

2 VO2 MAX 29.05349 4.94895

3 HR 180.55814 11.41699

4 AGE 45.13953 10.23435

5 HT 164.69767 6.30017

6 WT 61.32558 7.87921

Table 14.21 Problem 14.4: Correlation Matrix

DURAT VO2 MAX HR AGE HT WT

DURAT 1 1.000

VO2 MAX 2 0.786 1.000

HR 3 0.528 0.337 1.000

AGE 4 −0.689 −0.651 −0.411 1.000

HT 5 0.369 0.299 0.310 −0.455 1.000

WT 6 0.094 −0.126 0.232 −0.042 0.483 1.000
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Table 14.22 Problem 14.4: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 3.027518 ?

2 1.371342 0.733143

3 ? ?

4 0.416878 0.918943

5 ? 0.972750

6 ? 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.23 Problem 14.4: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor

1 2

DURAT 1 0.893 −0.201

VO2 MAX 2 0.803 −0.425

HR 3 0.658 0.162

AGE 4 −0.840 0.164

HT 5 0.626 0.550

WT 6 0.233 0.891

VPa 3.028 1.371

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP is
the variance explained by the factor.

Table 14.24 Data for Two

Cases, Problem 14.3

Subject 1 Subject 2

DURAT 660 628

VO2 MAX 38.1 38.4

HR 184 183

AGE 23 21

HT 177 163

WT 83 52

a. Examine the residual correlation matrix. What is the maximum residual correlation?

Is it < 0.1? < 0.5?

b. For the pair(s) of variables, with mnemonics given, find the fitted residual correla-

tion.

c. Consider the plots of the rotated factors. Discuss the extent to which the interpre-

tation will be simple.
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d. Discuss the potential for naming and interpreting these factors. Would you be

willing to name any? If so, what names?

e. Give the uniqueness and communality for the variables whose numbers are given.

f. Is there any reason that you would like to see an analysis with fewer or more

factors? If so, why?

g. If you were willing to associate a factor with variables (or a variable), identify the

variables on the shaded form of the correlations. Do the variables cluster (form a

dark group), which has little correlation with the other variables?

14.5 A factor analysis is performed upon the Framingham data of Problem 14.1. The results

are given in Tables 14.25 to 14.27 and Figures 14.14 and 14.15. Communalities were

obtained from five factors after 17 iterations. The communality of a variable is its squared

multiple correlation with the factors; they are given in Table 14.26. Perform tasks (a), (b)

Table 14.25 Problem 14.5: Residual Correlations

TYPEA EMOTLBLE AMBITIOS NONEASY NOBOSSPT WKOVRLD

1 2 3 4 5 6

TYPEA 1 0.219

EMOTLBLE 2 0.001 0.410

AMBITIOS 3 0.001 0.041 0.683

NONEASY 4 0.003 0.028 −0.012 0.635

NOBOSSPT 5 −0.010 −0.008 0.001 −0.013 0.964

WKOVRLD 6 0.005 −0.041 −0.053 −0.008 0.064 0.917

MTDISSAG 7 0.007 −0.010 −0.062 −0.053 0.033 0.057

MGDISSAT 8 0.000 0.000 0.000 0.000 0.000 0.000

AGEWORRY 9 0.002 0.030 0.015 0.017 0.001 −0.017

PERSONWY 10 −0.002 −0.010 0.007 0.007 −0.007 −0.003

ANGERIN 11 0.007 −0.006 −0.028 0.005 −0.018 0.028

ANGEROUT 12 0.001 0.056 0.053 0.014 −0.070 −0.135

ANGRDISC 13 −0.011 0.008 0.044 −0.019 −0.039 0.006

STRESS 14 0.002 −0.032 −0.003 0.018 0.030 0.034

TENSION 15 −0.004 −0.006 −0.016 −0.017 0.013 0.024

ANXSYMPT 16 0.004 −0.026 −0.028 −0.019 0.009 −0.015

ANGSYMPT 17 −0.000 0.018 −0.008 −0.012 −0.006 0.009

MTDISSAG MTDISSAT AGEWORRY PERSONWY ANGERIN ANGEROUT

7 8 9 10 11 12

MTDISSAG 7 0.574

MGDISSAT 8 0.000 0.000

AGEWORRY 9 0.001 −0.000 0.572

PERSONWY 10 −0.002 0.000 0.001 0.293

ANGERIN 11 0.010 −0.000 0.015 −0.003 0.794

ANGEROUT 12 0.006 −0.000 −0.006 −0.001 −0.113 0.891

ANGRDISC 13 −0.029 −0.000 0.000 0.001 −0.086 0.080

STRESS 14 −0.017 −0.000 −0.015 0.013 0.022 −0.050

TENSION 15 0.004 −0.000 −0.020 0.007 −0.014 −0.045

ANXSYMPT 16 0.026 −0.000 0.037 −0.019 0.011 −0.026

ANGSYMPT 17 0.004 −0.000 −0.023 0.006 0.012 0.049

ANGRDISC STRESS TENSION ANXSYMPT ANGSYMPT

13 14 15 16 17

ANGRDISC 13 0.975

STRESS 14 −0.011 0.599

TENSION 15 −0.005 0.035 0.355

ANXSYMPT 16 −0.007 0.015 0.020 0.645

ANGSYMPT 17 0.027 −0.021 −0.004 −0.008 0.398
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Table 14.26 Problem 14.5: Communalities

1 TYPEA 0.7811

2 EMOTLBLE 0.5896

3 AMBITIOS 0.3168

4 NONEASY 0.3654

5 NOBOSSPT 0.0358

6 WKOVRLD 0.0828

7 MTDISSAG 0.4263

8 MGDISSAT 1.0000

9 AGEWORRY 0.4277

10 PERSONWY 0.7072

11 ANGERIN 0.2063

12 ANGEROUT 0.1087

13 ANGRDISC 0.0254

14 STRESS 0.4010

15 TENSION 0.6445

16 ANXSYMPT 0.3555

17 ANGSYMPT 0.6019

Table 14.27 Problem 14.5: Factors (Loadings Smaller Than 0.1 Omitted)

Factor Factor Factor Factor Factor

1 2 3 4 5

TYPEA 1 0.331 0.185 0.133 0.753 0.229

EMOTLBLE 2 0.707 0.194 0.215

AMBITIOS 3 0.212 0.515

NONEASY 4 0.215 0.105 0.163 0.123 −0.516

NOBOSSPT 5 0.101 0.142

WKOVRLD 6 0.281

MTDISSAG 7 0.474 0.391 0.178

MGDISSAT 8 0.146 0.971 −0.143

AGEWORRY 9 0.288 0.576

PERSONWY 10 0.184 0.799 0.138 0.127

ANGERIN 11 0.263 −0.238 0.272

ANGEROUT 12 0.128 0.179 0.196 −0.148

ANGRDISC 13 0.117 0.102

STRESS 14 0.493 0.189 0.337

TENSION 15 0.753 0.193 0.190

ANXSYMPT 16 0.571 0.138

ANGSYMPT 17 0.748 0.191

VPa 2.594 1.477 1.181 1.112 0.712

aThe VP for each factor is the sum of the squares of the elements of the column of the factor pattern matrix corresponding
to that factor. When the rotation is orthogonal, the VP is the variance explained by the factor.

(TYPEA, EMOTLBLE) and (ANGEROUT, ANGERIN), (c), (d), and (e) for variables 1,

5, and 8, and tasks (f) and (g). In this study, the TYPEA variable was of special interest.

Is it associated particularly with one of the factors?

14.6 This question requires you to do the fitting of the factor analysis model. Use the Florida

voting data of Problem 9.34 available on the Web appendix to examine the structure of
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Figure 14.14 Problem 14.5, plots of factor loadings.

voting in the two Florida elections. As the counties are very different sizes, you will

need to convert the counts to proportions voting for each candidate, and it may be useful

to use the logarithm of this proportion. Fit models with one, two, or three factors and

try to interpret them.
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Figure 14.15 Shaded correlation matrix for Problem 14.5.

14.7 Starkweather [1970] performed a study entitled “Hospital Size, Complexity, and Formal-

ization.” He states: “Data on 704 United States short-term general hospitals are sorted

into a set of dependent variables indicative of organizational formalism and a number of

independent variables separately measuring hospital size (number of beds) and various

types of complexity commonly associated with size.” Here we used his data for a factor

analysis of the following variables:

• SIZE: number of beds.

• CONTROL: a hospital was scored: 1 proprietary control; 2 nonprofit community con-

trol; 3 church operated; 4 public district hospital; 5 city or county control; 6 state

control.

• SCOPE (of patient services): “A count was made of the number of services reported

for each sample hospital. Services were weighted 1, 2, or 3 according to their relative

impact on hospital operations, as measured by estimated proportion of total operating

expenses.”

• TEACHVOL: “The number of students in each of several types of hospital training pro-

grams was weighted and the products summed. The number of paramedical students
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Table 14.28 Problem 14.7: Correlation Matrix

SIZE CONTROL SCOPE TEACHVOL TECHTYPE NONINPRG

1 2 3 4 5 6

SIZE 1 1.000

CONTROL 2 −0.028 1.000

SCOPE 3 0.743 −0.098 1.000

TEACHVOL 4 0.717 −0.040 0.643 1.000

TECHTYPE 5 0.784 −0.034 0.547 0.667 1.000

NONINPRG 6 0.523 −0.051 0.495 0.580 0.440 1.000

Table 14.29 Problem 14.7: Communalitiesa

1 SIZE 0.8269

2 CONTROL 0.0055

3 SCOPE 0.7271

4 TEACHVOL 0.6443

5 TECHTYPE 1.0000

6 NONINPRG 0.3788

aCommunalities obtained from two factors after eight
iterations. The communality of a variable is its squared
multiple correlation with the factors.

Table 14.30 Problem 14.7: Residual Correlations

SIZE CONTROL SCOPE TEACHVOL TECHTYPE NONINPRG

1 2 3 4 5 6

SIZE 1 0.173

CONTROL 2 0.029 0.995

SCOPE 3 0.013 −0.036 0.273

TEACHVOL 4 −0.012 0.012 −0.014 0.356

TECHTYPE 5 −0.000 0.000 −0.000 −0.000 0.000

NONINPRG 6 −0.020 −0.008 −0.027 0.094 −0.000 0.621

was weighted by 1.5, the number of RN students by 3, and the number of interns

and residents by 5.5. These weights represent the average number of years of training

typically involved, which in turn constitute a rough measure of the relative impact of

students on hospital operations.”

• TECHTYPE: types of teaching programs. The following scores were summed: 1 for

practical nurse training program; 2 for RN; 3 for medical students; 4 for interns; 5 for

residents.

• NONINPRG: noninpatient programs. Sum the following scores: 1 for emergency ser-

vice; 2 for outpatient care; 3 for home care.

The results are given in Tables 14.28 to 14.31, and Figures 14.16 and 14.17. The factor

analytic results follow. Perform tasks (a), (c), (d), and (e) for 1, 2, 3, 4, 5, and 6, and

tasks (f) and (g).
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Table 14.31 Problem 14.7: Factors

(Loadings 14.31 Smaller Than 0.1

Omitted)

Factor Factor

1 2

SIZE 1 0.636 0.650

CONTROL 2

SCOPE 3 0.357 0.774

TEACHVOL 4 0.527 0.605

TECHTYPE 5 0.965 0.261

NONINPRG 6 0.312 0.530

VPa 1.840 1.743

aThe VP for each factor is the sum of the
squares of the elements of the column of the
factor pattern matrix corresponding to that
factor. When the rotation is orthogonal, the
VP is the variance explained by the factor.
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Figure 14.16 Problem 14.7, plot of factor loadings.
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Figure 14.17 Shaded correlation matrix for Problem 14.7.

Table 14.32 Problem 14.8: Residual Correlations

DURAT VO2 MAX HR AGE HT WT

DURAT 1 0.067

VO2 MAX 2 0.002 0.126

HR 3 −0.005 −0.011 0.678

AGE 4 0.004 0.011 −0.092 0.441 6

HT 5 −0.006 0.018 −0.021 0.0106 0.574

WT 6 0.004 −0.004 −0.008 0.007 0.605 0.301

14.8 This factor analysis examines the data used in Problem 14.3, the maximal exercise test

data for sedentary males. The results are given in Tables 14.32 to 14.34 and Figures 14.18

and 14.19. Perform tasks (a), (b) (HR, AGE), (c), (d), and (e) for variables 1 and 5, and

tasks (f) and (g).

14.9 Consider two variables, X and Y , with covariances (or correlations) given in the following

notation. Prove parts (a) and (b) below.

Variable

Variable 1 2

X a c

Y c b
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Table 14.33 Problem 14.8: Communalitiesa

1 DURAT 0.9331

2 VO2 MAX 0.8740

3 HR 0.5217

4 AGE 0.5591

5 HT 0.4264

6 WT 0.6990

aCommunalities obtained from two factors after six iter-
ations. The communality of a variable is its squared mul-
tiple correlation with the factors.

Table 14.34 Problem 14.8: Factors

Factor Factor

1 2

DURAT 1 0.962 0.646

VO2 MAX 2 0.930 −0.092

HR 3 0.717

AGE 4 −0.732 −0.154

HT 5 0.833

WT 6 0.833

VPa 2.856 1.158

aThe VP for each factor is the sum of the squares
of the elements of the column of the factor pattern
matrix corresponding to that factor. When the rotation
is orthogonal, the VP is the variance explained by the
factor.
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Figure 14.18 Problem 14.8, plot of factor loadings.
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(a) We suppose that c �= 0. The variance explained by the first principal component

is

V1 =

(a + b) +

√

(a − b)

2
+ 4c

2

2

The first principal component is

√

c

2

c

2
+ (V1 − a)

2
X +

c

|c|

√

(V1 − a)

2

c

2
+ (V1 − a)

2
Y

(b) Suppose that c = 0. The first principal component is X if a ≥ b, and is Y if

a < b.

(c) The introduction to Problems 9.30–9.33 presented data on 20 patients who had their

mitral valve replaced. The systolic blood pressure before and after surgery had the

following variances and covariance:

SBP

Before After

Before 349.74 21.63

After 21.63 91.94

Find the variance explained by the first and second principal components.

14.10 The exercise data of the 43 active females of Problem 14.4 are used here. The find-

ings are given in Tables 14.35 to 14.37 and Figures 14.20 and 14.21. Perform tasks (a),

(c), (d), (f), and (g). Problem 14.8 examined similar exercise data for sedentary males.
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Table 14.35 Problem 14.10: Residual Correlations

DURAT VO2 MAX HR AGE HT WT

DURAT 1 0.151

VO2 MAX 2 0.008 0.241

HR 3 0.039 −0.072 0.687

AGE 4 0.015 0.001 −0.013 0.416

HT 5 −0.045 0.013 −0.007 −0.127 0.605

WT 6 0.000 0.000 0.000 −0.000 0.000 0.000

Table 14.36 Problem 14.10: Communalitiesa

1 DURAT 0.8492

2 VO2 MAX 0.7586

3 HR 0.3127

4 AGE 0.5844

5 HT 0.3952

6 WT 1.0000

aCommunalities obtained from two factors after 10 itera-
tions. The communality of a variable is its squared multi-
ple correlation with the factors.

Table 14.37 Problem 14.10: Factors

Factor Factor

1 2

DURAT 1 0.907 0.165

VO2 MAX 2 0.869

HR 3 0.489 0.271

AGE 4 −0.758 −0.102

HT 5 0.364 0.513

WT 6 0.997

VPa 2.529 1.371

aThe VP for each factor is the sum of the
squares of the elements of the column of the
factor pattern matrix corresponding to that
factor. When the rotation is orthogonal, the
VP is the variance explained by the factor.

Which factor analysis do you feel was more satisfactory in explaining the relationship

among variables? Why? Which analysis had the more interpretable factors? Explain your

reasoning.

14.11 The data on the correlation among male body measurements (of Problem 14.2) are

factor analyzed here. The computer output gave the results given in Tables 14.38 to

14.40 and Figure 14.22. Perform tasks (a), (b) (POPHT, KNEEHT), (STHTER, BUT-

TKNHT), (RTARMSKN, INFRASCP), and (e) for variables 1 and 11, and tasks (f) and

(g). Examine the diagonal of the residual values and the communalities. What values are

on the diagonal of the residual correlations? (The diagonals are the 1–1, 2–2, 3–3, etc.

entries.)
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Table 14.38 Problem 14.11: Residual Correlations

STHTER STHTNORM KNEEHT POPHT ELBWHT

1 2 3 4 5

STHTER 1 0.028
STHTNORM 2 0.001 0.205

KNEEHT 3 0.000 −0.001 0.201

POPHT 4 0.000 −0.006 0.063 0.254

ELBWHT 5 −0.001 −0.026 −0.012 0.011 0.519
THIGHHT 6 −0.003 0.026 0.009 −0.064 −0.029

BUTTKNHT 7 0.001 −0.004 −0.024 −0.034 −0.014

BUTTPOP 8 −0.001 0.019 −0.038 −0.060 −0.043

ELBWELBW 9 −0.001 0.008 0.007 −0.009 0.004
SEATBRTH 10 −0.002 0.023 0.015 −0.033 −0.013

BIACROM 11 0.006 −0.009 0.009 0.035 −0.077

CHESTGRH 12 −0.001 0.004 −0.004 0.015 −0.007

WSTGRTH 13 0.001 −0.004 −0.002 0.008 0.006
RTARMGRH 14 0.002 0.011 0.012 −0.006 −0.021

RTARMSKN 15 −0.002 0.025 −0.002 −0.012 0.009

INFRASCP 16 −0.002 0.003 −0.009 −0.002 0.020

HT 17 −0.000 0.001 −0.003 −0.003 0.007
WT 18 0.000 −0.007 0.001 0.004 0.007

AGE 19 −0.001 0.006 0.010 −0.014 −0.023

THIGHHT BUTTKNHT BUTTPOP ELBWELBW SEATBRTH

6 7 8 9 10

THIGHHT 6 0.462

BUTTKNHT 7 0.012 0.222

BUTTPOP 8 0.016 0.076 0.409

ELBWELBW 9 0.032 −0.002 0.006 0.215
SEATBRTH 10 0.023 0.020 −0.017 0.007 0.305

BIACROM 11 −0.052 −0.019 −0.027 0.012 −0.023

CHESTGRH 12 −0.020 −0.013 −0.011 0.025 −0.020

WSTGRTH 13 −0.002 0.006 0.009 −0.006 −0.009
RTARMGRH 14 0.009 0.000 0.013 0.011 −0.017

RTARMSKN 15 0.038 0.039 0.015 −0.019 0.053

INFRASCP 16 −0.025 0.008 −0.000 −0.022 0.001

HT 17 0.005 0.005 0.005 0.000 −0.001
WT 18 −0.004 −0.005 −0.007 −0.006 0.004

AGE 19 −0.012 −0.010 −0.014 0.011 0.007

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 0.684

CHESTGRH 12 0.051 0.150

WSTGRTH 13 −0.011 0.000 0.095

RTARMGRH 14 −0.016 −0.011 −0.010 0.186
RTARMSKN 15 −0.065 −0.011 0.009 0.007 0.601

INFRASCP 16 −0.024 −0.005 0.014 −0.022 0.199

HT 17 −0.008 0.000 −0.003 −0.005 0.004

WT 18 0.006 0.002 0.002 0.006 −0.023
AGE 19 −0.015 −0.006 −0.002 0.014 −0.024

INFRASCP HT WT AGE
16 17 18 19

INFRASCP 16 0.365
HT 17 0.003 0.034

WT 18 −0.003 0.001 0.033

AGE 19 −0.022 0.002 0.002 0.311
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Table 14.39 Problem 14.11: Communalitiesa

1 STHTER 0.9721

2 STHTNORM 0.7952

3 KNEEHT 0.7991

4 POPHT 0.7458

5 ELBWHT 0.4808

6 THIGHHT 0.5379

7 BUTTKNHT 0.7776

8 BUTTPOP 0.5907

9 ELBWELBW 0.7847

10 SEATBRTH 0.6949

11 BIACROM 0.3157

12 CHESTGRH 0.8498

13 WSTGRTH 0.9054

14 RTARMGRH 0.8144

15 RTARMSKN 0.3991

16 INFRASCP 0.6352

17 HT 0.9658

18 WT 0.9671

19 AGE 0.6891

aCommunalities obtained from four factors after six iter-
ations. The communality of a variable is its squared
multiple correlation with the factors.

Table 14.40 Problem 14.11: Factors (Loadings Smaller Than

0.1 Omitted)

Factor Factor Factor Factor

1 2 3 4

Unrotateda

STHTER 1 0.100 0.356 0.908 −0.104

STHTNORM 2 0.168 0.367 0.795

KNEEHT 3 0.113 0.875 0.128

POPHT 4 −0.156 0.836 0.133

ELBWHT 5 0.245 −0.151 0.617 −0.131

THIGHHT 6 0.675 0.131 0.114 −0.230

BUTTKNHT 7 0.308 0.819 0.100

BUTTPOP 8 0.188 0.742

ELBWELBW 9 0.873 0.131

SEATBRTH 10 0.765 0.209 0.247

BIACROM 11 0.351 0.298 0.213 −0.242

CHESTGRH 12 0.902 0.137 0.118

WSTGRTH 13 0.892 0.323

RTARMGRH 14 0.873 −0.198

RTARMSKN 15 0.625

INFRASCP 16 0.794

HT 17 0.836 0.507 −0.098

WT 18 0.907 0.308 0.218 −0.049

AGE 19 −0.135 −0.160 0.801

VPa 6.409 3.964 2.370 0.978

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor pattern matrix corresponding to that factor. When the
rotation is orthogonal, the VP is the variance explained by the factor
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Figure 14.22 Shaded correlation matrix for Problem 14.11.
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Rates and Proportions

15.1 INTRODUCTION

In this chapter and the next we want to study in more detail some of the topics dealing with

counting data introduced in Chapter 6. In this chapter we want to take an epidemiological

approach, studying populations by means of describing incidence and prevalence of disease.

In a sense this is where statistics began: with a numerical description of the characteristics

of a state, frequently involving mortality, fecundity, and morbidity. We call the occurrence of

one of those outcomes an event. In the next chapter we deal with more recent developments,

which have focused on a more detailed modeling of survival (hence also death, morbidity, and

fecundity) and dealt with such data obtained in experiments rather than observational studies. An

implication of the latter point is that sample sizes have been much smaller than used traditionally

in the epidemiological context. For example, the evaluation of the success of heart transplants

has, by necessity, been based on a relatively small set of data.

We begin the chapter with definitions of incidence and prevalence rates and discuss some

problems with these “crude” rates. Two methods of standardization, direct and indirect, are

then discussed and compared. In Section 15.4, a third standardization procedure is presented to

adjust for varying exposure times among individuals. In Section 15.5, a brief tie-in is made to

the multiple logistic procedures of Chapter 13. We close the chapter with notes, problems, and

references.

15.2 RATES, INCIDENCE, AND PREVALENCE

The term rate refers to the amount of change occurring in a quantity with respect to time. In

practice, rate refers to the amount of change in a variable over a specified time interval divided

by the length of the time interval.

The data used in this chapter to illustrate the concepts come from the Third National Cancer

Survey [National Cancer Institute, 1975]. For this reason we discuss the concepts in terms of

incidence rates. The incidence of a disease in a fixed time interval is the number of new cases

diagnosed during the time interval. The prevalence of a disease is the number of people with

the disease at a fixed time point. For a chronic disease, incidence and prevalence may present

markedly different ideas of the importance of a disease.

Consider the Third National Cancer Survey [National Cancer Institute, 1975]. This survey

examined the incidence of cancer (by site) in nine areas during the time period 1969–1971.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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The areas were the Detroit SMSA (Standard Metropolitan Statistical Area); Pittsburgh SMSA,

Atlanta SMSA, Birmingham SMSA, Dallas–Fort Worth SMSA, state of Iowa, Minneapolis–St.

Paul SMSA, state of Colorado, and the San Francisco–Oakland SMSA. The information used

in this chapter refers to the combined data from the Atlanta SMSA and San Francisco–Oakland

SMSA. The data are abstracted from tables in the survey. Suppose that we wanted the rate for

all sites (of cancer) combined. The rate per year in the 1969–1971 time interval would be simply

the number of cases divided by 3, as the data were collected over a three-year interval. The

rates are as follows:

Combined area :
181,027

3
= 60,342.3

Atlanta :
9,341

3
= 3,113.7

San Francisco–Oakland :
30,931

3
= 10,310.3

Can we conclude that cancer incidence is worse in the San Francisco–Oakland area than in the

Atlanta area? The answer is “yes and no.” Yes, in that there are more cases to take care of

in the San Francisco–Oakland area. If we are concerned about the chance of a person getting

cancer, the numbers would not be meaningful. As the San Francisco–Oakland area may have

a larger population, the number of cases per number of the population might be less. To make

comparisons taking the population size into account, we use

incidence per time interval =

number of new cases

total population × time interval
(1)

The result of equation (1) would be quite small, so that the number of cases per 100,000

population is used to give a more convenient number. The rate per 100,000 population per year

is then

incidence per 100,000 per time interval =

number of new cases

total population × time interval
× 100,000

For these data sets, the values are:

Combined area :
181,027 × 100,000

21,003,451 × 3
= 287.3 new cases per 100,000 per year

Atlanta :
9,341 × 100,000

1,390,164 × 3
= 224.0 new cases per 100,000 per year

San Francisco-Oakland :
30,931 × 100,000

3,109,519 × 3
= 331.6 new cases per 100,000 per year

Even after adjusting for population size, the San Francisco–Oakland area has a higher over-

all rate.

Note several facts about the estimated rates. The estimates are binomial proportions times a

constant (here 100,000/3). Thus, the rate has a standard error easily estimated. Let N be the total

population and n the number of new cases; the rate is n/N×C (C = 100,000/3 in this example)

and the standard error is estimated by

√

C

2
1

N

n

N

(

1 −

n

N

)

or

standard error of rate per time interval = C

√

1

N

n

N

(

1 −

n

N

)
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For example, the combined area estimate has a standard error of

100,000

3

√

1

21,003,451

181,027

21,003,451

(

1 −

181,027

21,003,451

)

= 0.67

As the rates are assumed to be binomial proportions, the methods of Chapter 6 may be used to

get adjusted estimates or standardized estimates of proportions.

Rates computed by the foregoing methods,

number of new cases in the interval

population size × time interval

are called crude or total rates. This term is used in distinction to standardized or adjusted rates,

as discussed below.

Similarly, a prevalence rate can be defined as

prevalence =

number of cases at a point in time

population size

Sometimes a distinction is made between point prevalence and prevalence to facilitate discussion

of chronic disease such as epilepsy and a disease of shorter duration, for example, a common

cold or even accidents. It is debatable whether the word prevalence should be used for accidents

or illnesses of short duration.

15.3 DIRECT AND INDIRECT STANDARDIZATION

15.3.1 Problems with the Use of Crude Rates

Crude rates are useful for certain purposes. For example, the crude rates indicate the load of

new cases per capita in a given area of the country. Suppose that we wished to use the cancer

rates as epidemiologic indicators. The inference would be that it was likely that environmental or

genetic differences were responsible for a difference, if any. There may be simpler explanations,

however. Breast cancer rates would probably differ in areas that had differing gender proportions.

A retirement community with an older population will tend to have a higher rate. To make fair

comparisons, we often want to adjust for the differences between populations in one or more

factors (covariates). One approach is to find an index that is adjusted in some fashion. We

discuss two methods of adjustment in the next two sections.

15.3.2 Direct Standardization

In direct standardization we are interested in adjusting by one or more variables that are divided

(or naturally fall) into discrete categories. For example, in Table 15.1 we adjust for gender and

for age divided into a total of 18 categories. The idea is to find an answer to the following

question: Suppose that the distribution with regard to the adjusting factors was not as observed,

but rather, had been the same as this other (reference) population; what would the rate have been?

In other words, we apply the risks observed in our study population to a reference population.

In symbols, the adjusting variable is broken down into I cells. In each cell we know the

number of events (the numerator) n

i

and the total number of individuals (the denominator) N

i

:

Level of adjusting factor, i: 1 2 · · · i · · · I

Proportion observed in study population:
n1

N1

n2

N2
· · ·

n

i

N

i

· · ·

n1

N1
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Table 15.1 Rate for Cancer of All Sites for Blacks in the San

Francisco–Oakland SMSA and Reference Population

Study Population n

i

/N

i

Reference Population M

i

Age Females Males Females Males

<5 8/16,046 6/16,493 872,451 908,739

5–9 6/18,852 7/19,265 1,012,554 1,053,350

10–14 6/19,034 3/19,070 1,061,579 1,098,507

15–19 7/16,507 6/16,506 971,894 964,845

20–24 16/15,885 9/14,015 919,434 796,774

25–29 27/12,886 19/12,091 755,140 731,598

30–34 28/10,705 18/10,445 620,499 603,548

35–39 46/9,580 25/8,764 595,108 570,117

40–44 83/9,862 47/8,858 650,232 618,891

45–49 109/10,341 108/9,297 661,500 623,879

50–54 125/8,691 131/8,052 595,876 558,124

55–59 120/6,850 189/6,428 520,069 481,137

60–64 102/5,017 158/4,690 442,191 391,746

65–69 119/3,806 159/3,345 367,046 292,621

70–74 75/2,264 154/1,847 300,747 216,929

75–79 44/1,403 72/931 224,513 149,867

80–84 28/765 51/471 139,552 84,360

>85 25/629 26/416 96,419 51,615

Subtotal 974/169,123 1,188/160,984 10,806,804 10,196,647

Total 2,162/330,107 21,003,451

Source: National Cancer Institute [1975].

Both numerator and denominator are presented in the table. The crude rate is estimated by

C

∑

I

i=1 n

i

∑

I

i=1 N

i

Consider now a standard or reference population, which instead of having N

i

persons in the ith

cell has M

i

.

Reference Population

Level of adjusting factor 1 2 · · · i · · · I

Number in reference population M1 M2 · · · M

i

· · · M

I

The question now is: If the study population has M

i

instead of N

i

persons in the ith cell,

what would the crude rate have been? We cannot determine what the crude rate was, but we can

estimate what it might have been. In the ith cell the proportion of observed deaths was n

i

/N

i

.

If the same proportion of deaths occurred with M

i

persons, we would expect

n

∗

i

=

n

i

N

i

M

i

deaths

Thus, if the adjusting variables had been distributed with M

i

persons in the ith cell, we estimate

that the data would have been:
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Level of adjusting factor: 1 2 · · · i · · · I

Expected proportion of cases:
n1M1/N1

M1

n2M2/N2

M2
· · ·

n

∗

i

M

i

· · ·

n

I

M

I

/N

I

M

I

The adjusted rate, r , is the crude rate for this estimated standard population:

r =

C

∑

I

i=1 n

i

M

i

/N

i

∑

I

i=1 M

i

=

C

∑

I

i=1 n

∗

i

∑

I

i=1 M

i

As an example, consider the rate for cancer for all sites for blacks in the San Francisco–

Oakland SMSA, adjusted for gender and age to the total combined sample of the Third Cancer

Survey, as given by the 1970 census. There are two gender categories and 18 age categories,

for a total of 36 cells. The cells are laid out in two columns rather than in one row of 36 cells.

The data are given in Table 15.1.

The crude rate for the San Francisco–Oakland black population is

100,000

3

974 + 1188

169,123 + 160,984
= 218.3

Table 15.2 gives the values of n

i

M

i

/N

i

.

The gender- and age-adjusted rate is thus

100,000

3

193,499.42

21,003,451
= 307.09

Note the dramatic change in the estimated rate. This occurs because the San Francisco–Oakland

SMSA black population differs in its age distribution from the overall sample.

The variance is estimated by considering the denominators in the cell as fixed and using the

binomial variance of the n

i

’s. Since the cells constitute independent samples,

var(r) = var

(

C

I

∑

i=1

n

i

M

i

N

i

/

I

∑

i=1

M

i

)

=

C

2

M

2
·

I

∑

i=1

(

M

i

N

i

)2

var(n
i

)

Table 15.2 Estimated Number of Cases per Cell (niMi/Ni) if the San Francisco–Oakland Area

Had the Reference Population Age and Gender Distribution

Age Females Males Age Females Males

<5 434.97 330.59 55–59 9,110.70 14,146.69

5–9 322.26 382.74 60–64 8,990.13 13,197.41

10–14 334.64 172.81 65–69 11,476.21 13,909.34

15–19 412.14 350.73 70–74 9,962.91 18,087.20

20–24 926.09 511.66 75–79 7,041.03 11,590.14

25–29 1,582.24 1,149.65 80–84 5,107.79 9,134.52

30–34 1,622.98 1,040.10 >85 3,832.23 3,225.94

35–39 2,857.51 1,629.30

40–44 5,472.45 3,283.80
Subtotal 85,029.16 108,470.26

45–49 6,972.58 7,247.38
Total 193,499.42

50–54 8,570.30 9,080.26



DIRECT AND INDIRECT STANDARDIZATION 645

=

C

2

M

2
·

I

∑

i=1

(

M

i

N

i

)2

N

i

n

i

N

i

(

1 −

n

i

N

i

)

=

C

2

M

2
·

I

∑

i=1

M

i

N

i

n

i

M

i

N

i

(

1 −

n

i

N

i

)

where M· =

∑

I

i=1 M

i

.

If n

i

/N

i

is small, then 1 − n

i

/N

i

.

= 1 and

var(r)
.

=

C

2

M

2
·

I

∑

i=1

M

i

N

i

(

n

i

M

i

N

i

)

(2)

We use this to compute a 95% confidence interval for the adjusted rate computed above. Using

equation (2), the standard error is

SE(r) =

C

M·

√

√

√

√

I

∑

i=1

M

i

N

i

(

n

i

M

i

N

i

)

=

100,000

3

1

21,003,451

(

872,451

16,046
434.97 + · · ·

)1/2

= 7.02

The quantity r is approximately normally distributed, so that the interval is

307.09 ± 1.96 × 7.02 or (293.3, 320.8)

If adjusted rates are estimated for two different populations, say r1 and r2, with standard errors

SE(r1) and SE(r2), respectively, equality of the adjusted rates may be tested by using

z =

r1 − r2
√

SE(r1)
2
+ SE(r2)

2

The N(0,1) critical values are used, as z is approximately N(0,1) under the null hypothesis of

equal rates.

15.3.3 Indirect Standardization

In indirect standardization, the procedure of direct standardization is used in the opposite direc-

tion. That is, we ask the question: What would the mortality rate have been for the study

population if it had the same rates as the population reference? That is, we apply the observed

risks in the reference population to the study population.

Let m

i

be the number of deaths in the reference population in the ith cell. The data are:

Level of adjusting factor: 1 2 · · · i · · · I

Observed proportion in reference population:
m1

M1

m2

M2
· · ·

m

i

M

i

· · ·

m

I

M

I

where both numerator and denominators are presented in the table. Also,
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Level of adjusting factor: 1 2 · · · i · · · I

Denominators in study population: N1 N2 · · · N

i

· · · N

I

The estimate of the rate the study population would have experienced is (analogous to the

argument in Section 15.3.2)

rREF =

C

∑

I

i=1 N

i

(m

i

/M

i

)

∑

I

i=1 N

i

The crude rate for the study population is

rSTUDY =

C

∑

I

i=1 n

i

∑

I

i=1 N

i

where n

i

is the observed number of cases in the study population at level i. Usually, there is

not much interest in comparing the values rREF and rSTUDY as such, because the distribution of

the study population with regard to the adjusting factors is not a distribution of much interest.

For this reason, attention is usually focused on the standardized mortality ratio (SMR), when

death rates are considered, or the standardized incidence ratio (SIR), defined to be

standardized ratio = s =

rSTUDY

rREF
=

∑

I

i=1 n

i

∑

I

i=1 N

i

m

i

/M

i

(3)

The main advantage of the indirect standardization is that the SMR involves only the total

number of events, so you do not need to know in which cells the deaths occur for the study

population. An alternative way of thinking of the SMR is that it is the observed number of

deaths in the study population divided by the expected number if the cell-specific rates of the

reference population held.

As an example, let us compute the SIR of cancer in black males in the Third Cancer Survey,

using white males of the same study as the reference population and adjusting for age. The data

are presented in Table 15.3. The standardized incidence ratio is

s =

8793

7474.16
= 1.17645 = 1.18

One reasonable question to ask is whether this ratio is significantly different from 1. An

approximate variance can be derived as follows:

s =

O

E

where O =

I

∑

i=1

n

i

= n· and E =

I

∑

i=1

N

i

(

m

i

M

i

)

The variance of s is estimated by

var(s) =

var(O) + s

2 var(E)

E

2
(4)

The basic “trick” is to (1) assume that the number of cases in a particular cell follows a Poisson

distribution and (2) to note that the sum of independent Poisson random variables is Poisson.

Using these two facts yields

var(O)

.

=

I

∑

i=1

n

i

= n (5)
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Table 15.3 Cancer of All Areas Combined, Number of Cases, Black and White Males by Age and

Number Eligible by Age

Black Males White Males

Age n1 N1 m1 M1
N

i

m

i

M

i

(

N

i

M

i

)2

m

i

<5 45 120,122 450 773,459 69.89 10.85

5–9 34 130,379 329 907,543 47.26 6.79

10–14 39 134,313 300 949,669 42.43 6.00

15–19 45 112,969 434 837,614 58.53 7.89

20–24 49 86,689 657 694,670 81.99 10.23

25–29 63 71,348 688 647,304 75.83 8.36

30–34 84 57,844 724 533,856 78.45 8.50

35–39 129 54,752 1,097 505,434 118.83 12.87

40–44 318 57,070 2,027 552,780 209.27 21.61

45–49 582 56,153 3,947 559,241 396.31 39.79

50–54 818 48,753 6,040 503,163 585.23 56.71

55–59 1,170 42,580 8,711 432,982 856.65 84.24

60–64 1,291 33,892 10,966 352,315 1,054.91 101.48

65–69 1,367 27,239 11,913 261,067 1,242.97 129.69

70–74 1,266 17,891 11,735 196,291 1,069.59 97.49

75–79 788 9,827 10,546 138,532 748.10 53.07

80–84 461 4,995 6,643 78,044 425.17 27.21

>85 244 3,850 3,799 46,766 312.75 25.75

Total 8,793 1,070,700 81,006 8,970,730 7,474.16 708.53

and

var(E)

.

= var

(

I

∑

i=1

N

i

M

i

m

i

)

=

I

∑

i=1

(

N

i

M

i

)2

m

i

(6)

The variance of s is estimated by using equations (4), (5), and (6):

var(s) =

n· + s

2
∑

(N

i

/M

i

)

2
m

i

E

2

A test of the hypothesis that the population value of s is 1 is obtained from

z =

s − 1
√

var(s)

and N(0, 1) critical values.

For the example,

I

∑

i=1

n

i

= n· = 8793

E =

I

∑

i=1

N

i

M

i

m

i

= 7474.16
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var(E)

.

=

I

∑

i=1

(

N

i

M

i

)2

m

i

= 708.53

var(s)
.

=

8793 + (1.17645)

2
× 708.53

(7474.16)

2
= 0.000174957

From this and a standard error of s

.

= 0.013, the ratio is significantly different from one using

z =

s − 1

SE(s)

=

0.17645

0.013227
= 13.2

and N(0, 1) critical values.

If the reference population is much larger than the study population, var(E) will be much

less than var(O) and you may approximate var(s) by var(O)/E2.

15.3.4 Drawbacks to Using Standardized Rates

Any time a complex situation is summarized in one or a few numbers, considerable information

is lost. There is always a danger that the lost information is crucial for understanding the situation

under study. For example, two populations may have almost the same standardized rates but

may differ greatly within the different cells; one population has much larger values in one subset

of the cells and the reverse situation in another subset of cells. Even when the standardized rates

differ, it is not clear if the difference is somewhat uniform across cells or results mostly from

one or a few cells with much larger differences.

The moral of the story is that whenever possible, the rates in the cells used in standardization

should be examined individually in addition to working with the standardized rates.

15.4 HAZARD RATES: WHEN SUBJECTS DIFFER IN EXPOSURE TIME

In the rates computed above, each person was exposed (eligible for cancer incidence) over

the same length of time (three years, 1969–1971). (This is not quite true, as there is some

population mobility, births, and deaths. The assumption that each person was exposed for three

years is valid to a high degree of approximation.) There are other circumstances where people

are observed for varying lengths of time. This happens, for example, when patients are recruited

sequentially as they appear at a medical care facility. One approach would be to restrict the

analysis to those who had been observed for at least some fixed amount of time (e.g., for one

year). If large numbers of persons are not observed, this approach is wasteful by throwing away

valuable and needed information. This section presents an approach that allows the rates to use

all the available information if certain assumptions are satisfied.

Suppose that we observe subjects over time and look for an event that occurs only once. For

definiteness, we speak about observing people where the event is death. Assume that over the

time interval observed, if a subject has survived to some time t0, the probability of death in a

short interval from t0 to t1 is almost λ(t1 − t0). The quantity λ is called the hazard rate, force
of mortality, or instantaneous death rate. The units of λ are deaths per time unit.

How would we estimate λ from data in a real-life situation? Suppose that we have n indi-

viduals and begin observing the ith person at time B

i

. If the person dies, let the time of death

be D

i

. Let the time of last contact be C

i

for those people who are still alive. Thus, the time we

are observing each person at risk of death is

O

i

=

{

C

i

− B

i

if the subject is alive

D

i

− B

i

if the subject is dead
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An unbiased estimate of λ is

estimated hazard rate =̂

λ

=

number of observed deaths
∑

n

i=1 O

i

=

L

∑

n

i=1 O

i

(7)

As in the earlier sections of this chapter, ̂

λ is often normalized to have different units. For

example, suppose that ̂λ is in deaths per day of observation. That is, suppose that O

i

is measured

in days. To convert to deaths per 100 observation years, we use

̂

λ × 365
days

year
× 100

As an example, consider the paper by Clark et al. [1971]. This paper discusses the prog-

nosis of patients who have undergone cardiac (heart) transplantation. They present data on 20

transplanted patients. These data are presented in Table 15.4. To estimate the deaths per year of

exposure, we have
12 deaths

3599 exposure days

365 days

year
= 1.22

deaths

exposure year

To compute the variance and standard error of the observed hazard rate, we again assume that

L in equation (7) has a Poisson distribution. So conditional on the total observation period, the

variability of the estimated hazard rate is proportional to the variance of L, which is estimated

by L itself. Let

̂

λ =

CL

∑

n

i=1 O

i

where C is a constant that standardizes the hazard rate appropriately.

Table 15.4 Stanford Heart Transplant Data

Date of Date of Time at Risk

i Transplantation Death in Days (∗if alive)a

1 1/6/68 1/21/68 15

2 5/2/68 5/5/68 3

3 8/22/68 10/7/68 46

4 8/31/68 — 608∗

5 9/9/68 1/14/68 127

6 10/5/68 12/5/68 61

7 10/26/68 — 552∗

8 11/20/68 12/14/68 24

9 11/22/68 8/30/69 281

10 2/8/69 — 447∗

11 2/15/69 2/25/69 10

12 3/29/69 5/7/69 39

13 4/13/69 — 383∗

14 5/22/69 — 344∗

15 7/16/69 11/29/69 136

16 8/16/69 8/17/69 1

17 9/3/69 — 240∗

18 9/14/69 11/13/69 60

19 1/3/70 — 118∗

20 1/16/70 — 104∗

aTotal exposure days = 3599, L = 12.
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Then the standard error of ̂

λ, SE(

̂

λ), is approximately

SE(

̂

λ)

.

=

C

∑

n

i=1 O

i

√

L

A confidence interval for λ can be constructed by using confidence limits (L1, L2) for E(L)

as described in Note 6.8:

confidence interval for λ =

(

CL1
∑

n

i=1 O

i

,

CL2
∑

n

i=1 O

i

)

For the example, a 95% confidence interval for the number of deaths is (6.2–21.0). A 95%

confidence interval for the hazard rate is then

(

6.2

3599
× 365,

21.0

3599
× 365

)

= (0.63, 2.13)

Note that this assumes a constant hazard rate from day of transplant; this assumption is suspect.

In Chapter 16 some other approaches to analyzing such data are given.

As a second more complicated illustration, consider the work of Bruce et al. [1976]. This

study analyzed the experience of the Cardiopulmonary Research Institute (CAPRI) in Seattle,

Washington. The program provided medically supervised exercise programs for diseased sub-

jects. Over 50% of the participants dropped out of the program. As the subjects who continued

participation and those who dropped out had similar characteristics, it was decided to compare

the mortality rates for men to see if the training prevented mortality. It was recognized that

subjects might drop out because of factors relating to disease, and the inference would be weak

in the event of an observed difference.

The interest of this example is in the appropriate method of calculating the rates. All subjects,

including the dropouts, enter into the computation of the mortality for active participants! The

reason for this is that had they died during training, they would have been counted as active

participant deaths. Thus, training must be credited with the exposure time or observed time

when the dropouts were in training. For those who did not die and dropped out, the date of last

contact as an active participant was the date at which the subjects left the training program.

(Topics related to this are dealt with in Chapter 16).

In summary, to compute the mortality rates for active participants, all subjects have an

observation time. The times are:

1. O

i

= (time of death − time of enrollment) for those who died as active participants

2. O

i

= (time of last contact − time of enrollment) for those in the program at last contact

3. O

i

= (time of dropping the program−time of enrollment) for those who dropped whether

or not a subsequent death was observed

The rate ̂

λ

A

for active participants is then computed as

̂

λ

A

=

number of deaths observed during training
∑

all individuals O

i

=

L

A

∑

O

i

To estimate the rate for dropouts, only those who drop out have time at risk of dying as a

dropout. For those who have died, the time observed is

O

′

i

= (time of death − time the subject dropped out)



MULTIPLE LOGISTIC MODEL FOR ESTIMATED RISK AND ADJUSTED RATES 651

For those alive at the last contact,

O

′

i

= (time of last contact − time the subject dropped out)

The hazard rate for the dropouts, ̂λ
D

, is

̂

λ

D

=

number of deaths observed during dropout period
∑

dropouts O

′

i

=

L

D

∑

O

′

i

The paper reports rates of 2.7 deaths per 100 person-years for the active participants based

on 16 deaths. The mortality rate for dropouts was 4.7 based on 34 deaths.

Are the rates statistically different at a 5% significance level? For a Poisson variable, L, the

variance equals the expected number of observations and is thus estimated by the value of the

variable itself. The rates ̂

λ are of the form

̂

λ = CL (L the number of events)

Thus, var(̂λ) = C

2 var(L)

.

= C

2
L =̂

λ

2
/L.

To compare the two rates,

var(̂λ
A

−̂

λ

D

) = var(̂λ
A

) + var(̂λ
D

) =

̂

λ

2
A

L

A

+

̂

λ

2
D

L

D

The approximation is good for large L.

An approximate normal test for the equality of the rates is

z =

̂

λ

A

−̂

λ

D

√

̂

λ

2
A

/L

A

+̂

λ

2
D

/L

D

For the example, L

A

= 16,

̂

λ

A

= 2.7, and L

D

= 34,

̂

λ

D

= 4.7, so that

z =

2.7 − 4.7
√

(2.7)

2
/16 + (4.7)

2
/34

= −1.90

Thus, the difference between the two groups was not statistically significant at the 5% level.

15.5 MULTIPLE LOGISTIC MODEL FOR ESTIMATED RISK

AND ADJUSTED RATES

In Chapter 13 the linear discriminant model or multiple logistic model was used to estimate the

probability of an event as a function of covariates, X1, . . . , X

n

. Suppose that we want a direct

adjusted rate, where X1(i), . . . , X

n

(i) was the covariate value at the midpoints of the ith cell.

For the study population, let p

i

be the adjusted probability of an event at X1(i), . . . , X

n

(i). An

adjusted estimate of the probability of an event is

p̂ =

∑

I

i=1 M

i

p

i

∑

I

i=1 M

i
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where M

i

is the number of reference population subjects in the ith cell. This equation can be

written as

p̂ =

I

∑

i=1

(

M

i

M·

p

i

)

where M· =

∑

I

i=1 M

i

.

If the study population is small, it is better to estimate the p

i

using the approach of Chapter 13

rather than the direct standardization approach of Section 15.3. This will usually be the case

when there are several covariates with many possible values.

NOTES

15.1 More Than One Event per Subject

In some studies, each person may experience more than one event: for example, seizures in

epileptic patients. In this case, each person could contribute more than once to the numerator

in the calculation of a rate. In addition, exposure time or observed time would continue beyond

an event, as the person is still at risk for another event. You need to check in this case that

there are not people with “too many” events; that is, events “cluster” in a small subset of the

population. A preliminary test for clustering may then be called for. This is a complicated

topic. See Kalbfleisch and Prentice [2002] for references. One possible way of circumventing

the problem is to record the time to the second or kth event. This builds a certain robustness

into the data, but of course, makes it not possible to investigate the clustering, which may be

of primary interest.

15.2 Standardization with Varying Observation Time

It is possible to compute standardized rates when the study population has the rate in each cell

determined by the method of Section 15.4; that is, people are observed for varying lengths of

time. In this note we discuss only the method for direct standardization.

Suppose that in each of the i cells, the rates in the study population is computed as CL

i

/O

i

,

where C is a constant, L

i

the number of events, and O

i

the sum of the times observed for

subjects in that cell. The adjusted rate is

∑

I

i=1 (M

i

/L

i

)O

i

∑

I

i=1 M

i

=

C

∑

I

i=1 M

i

̂

λ

i

M·

where ̂

λ

i

=

L

i

O

i

The standard error is estimated to be

C

M·

√

√

√

√

I

∑

i=1

(

M

i

O

i

)

L

i

15.3 Incidence, Prevalence, and Time

The incidence of a disease is the rate at which new cases appear; the prevalence is the proportion

of the population that has the disease. When a disease is in a steady state, these are related via

the average duration of disease:

prevalence = incidence × duration

That is, if you catch a cold twice per year and each cold lasts a week, you will spend two

weeks per year with a cold, so 2/52 of the population should have a cold at any given time.
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This equation breaks down if the disease lasts for all or most of your life and does not describe

transient epidemics.

15.4 Sources of Demographic and Natural Data

There are many government sources of data in all of the Western countries. Governments of

European countries, Canada, and the United States regularly publish vital statistics data as well

as results of population surveys such as the Third National Cancer Survey [National Cancer

Institute, 1975]. In the United States, the National Center for Health Statistics (http://www.cdc.
gov/nhcs) publishes more than 20 series of monographs dealing with a variety of topics. For

example, Series 20 provides natural data on mortality; Series 21, on natality, marriage, and

divorce. These reports are obtainable from the U.S. government.

15.5 Binomial Assumptions

There is some question whether the binomial assumptions (see Chapter 6) always hold. There

may be “extrabinomial” variation. In this case, standard errors will tend to be underestimated

and sample size estimates will be too low, particularly in the case of dependent Bernoulli trials.

Such data are not easy to analyze; sometimes a logarithmic transformation is used to stabilize

the variance.

PROBLEMS

15.1 This problem will give practice by asking you to carry out analyses similar to the ones

in each of the sections. The numbers from the National Cancer Institute [1975] for

lung cancer cases for white males in the Pittsburgh and Detroit SMSAs are given in

Table 15.5.

Table 15.5 Lung Cancer Cases by Age for White Males in

the Detroit and Pittsburgh SMSAs

Detroit Pittsburgh

Age Cases Population Size Cases Population Size

<5 0 149,814 0 82,242

5–9 0 175,924 0 99,975

10–14 2 189,589 1 113,146

15–19 0 156,910 0 100,139

20–24 5 113,003 0 68,062

25–29 1 113,919 0 61,254

30–34 10 92,212 7 53,289

35–39 24 90,395 21 55,604

40–44 101 108,709 56 70,832

45–49 198 110,436 148 74,781

50–54 343 98,756 249 72,247

55–59 461 82,758 368 64,114

60–64 532 63,642 470 50,592

65–69 572 47,713 414 36,087

70–74 473 35,248 330 26,840

75–79 365 25,094 259 19,492

80–84 133 12,577 105 10,987

>85 51 6,425 52 6,353

Total 3271 1,673,124 2480 1,066,036
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(a) Carry out the analyses of Section 15.2 for these SMSAs.

(b) Calculate the direct and indirect standardized rates for lung cancer for white

males adjusted for age. Let the Detroit SMSA be the study population and the

Pittsburgh SMSA be the reference population.

(c) Compare the rates obtained in part (b) with those obtained in part (a).

15.2 (a) Calculate crude rates and standardized cancer rates for the white males of

Table 15.5 using black males of Table 15.3 as the reference population.

(b) Calculate the standard error of the indirect standardized mortality rate and test

whether it is different from 1.

(c) Compare the standardized mortality rates for blacks and whites.

15.3 The data in Table 15.6 represent the mortality experience for farmers in England and

Wales 1949–1953 as compared with national mortality statistics.

Table 15.6 Mortality Experience Data for Problem 15.3

National Population

Mortality (1949–1953) of Farmers Deaths

Age Rate per 100,000/Year (1951 Census) in 1949–1953

20–24 129.8 8,481 87

25–34 152.5 39,729 289

35–44 280.4 65,700 733

45–54 816.2 73,376 1,998

55–64 2,312.4 58,226 4,571

(a) Calculate the crude mortality rates.

(b) Calculate the standardized mortality rates.

(c) Test the significance of the standardized mortality rates.

(d) Construct a 95% confidence interval for the standardized mortality rates.

(e) What are the units for the ratios calculated in parts (a) and (b)?

15.4 Problems for discussion and thought:

(a) Direct and indirect standardization permit comparison of rates in two populations.

Describe in what way this can also be accomplished by multiway contingency

tables.

(b) For calculating standard errors of rates, we assumed that events were binomially

(or Poisson) distributed. State the assumption of the binomial distribution in terms

of, say, the event “death from cancer” for a specified population. Which of the

assumptions is likely to be valid? Which is not likely to be invalid?

(c) Continuing from part (b), we calculate standard errors of rates that are population

based; hence the rates are not samples. Why calculate standard errors anyway,

and do significance testing?

15.5 This problem deals with a study reported in Bunker et al. [1969]. Halothane, an anes-

thetic agent, was introduced in 1956. Its early safety record was good, but reports

of massive hepatic damage and death began to appear. In 1963, a Subcommittee

on the National Halothane Study was appointed. Two prominent statisticians, Fred-

erick Mosteller and Lincoln Moses, were members of the committee. The committee

designed a large cooperative retrospective study, ultimately involving 34 institutions
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Table 15.7 Mortality Data for Problem 15.5

Number of Operations Number of Deaths

Physical Status Total Halothane Cyclopropane Total Halothane Cyclopropane

Unknown 69,239 23,684 10,147 1,378 419 297

1 185,919 65,936 27,444 445 125 91

2 104,286 36,842 14,097 1,856 560 361

3 29,491 8,918 3,814 2,135 617 403

4 3,419 1,170 681 590 182 127

5 21,797 6,579 7,423 314 74 101

6 11,112 2,632 3,814 1,392 287 476

7 2,137 439 749 673 111 253

Total 427,400 146,200 68,169 8,783 2,375 2,109

that completed the study. “The primary objective of the study was to compare halothane

with other general anesthetics as to incidence of fatal massive hepatic necrosis within

six weeks of anesthesia.” A four-year period, 1959–1962, was chosen for the study.

One categorization of the patients was by physical status at the time of the operation.

Physical status varies from good (category 1) to moribund (category 7). Another cat-

egorization was by mortality level of the surgical procedure, having values of low,

middle, high. The data in Table 15.7 deal with middle-level mortality surgery and

two of the five anesthetic agents studied, the total number of administrations, and the

number of patients dying within six weeks of the operation.

(a) Calculate the crude death rates per 100,000 per year for total, halothane, and

cyclopropane. Are the crude rates for halothane and cyclopropane significantly

different?

(b) By direct standardization (relative to the total), calculate standardized death

rates for halothane and cyclopropane. Are the standardized rates significantly

different?

(c) Calculate the standardized mortality rates for halothane and cyclopropane and

test the significance of the difference.

(d) The calculations of the standard errors of the standardized rates depend on certain

assumptions. Which assumptions are likely not to be valid in this example?

15.6 In 1980, 45 SIDS (sudden infant death syndrome) deaths were observed in King

County. There were 15,000 births.

(a) Calculate the SIDS rate per 100,000 births.

(b) Construct a 95% confidence interval on the SIDS rate per 100,000 using the

Poisson approximation to the binomial.

(c) Using the normal approximation to the Poisson, set up the 95% limits.

(d) Use the square root transformation for a Poisson random variable to generate a

third set of 95% confidence intervals. Are the intervals comparable?

(e) The SIDS rate in 1970 in King County is stated to be 250 per 100,000. Some-

one wants to compare this 1970 rate with the 1980 rate and carries out a test

of two proportions, p1 = 300 per 100,000 and p2 = 250 per 100,000, using

the binomial distributions with N1 = N2 = 100,000. The large-sample nor-

mal approximation is used. What part of the Z-statistic: (p1 − p2)/standard

error(p1 − p2) will be right? What part will be wrong? Why?
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Table 15.8 Heart Disease Data for Problem 15.7

Epileptics: New and Incidence in

Person-Years Nonfatal General Population

Gender Age at Risk IHD Cases per 100,000/year

Male 30–39 354 2 76

40–49 303 2 430

50–59 209 3 1291

60–69 143 4 2166

70+ 136 4 1857

Female 30–39 534 0 9

40–49 363 1 77

50–59 218 3 319

60–69 192 4 930

70+ 210 2 1087

15.7 Annegers et al. [1976] investigated ischemic heart disease (IHD) in patients with

epilepsy. The hypothesis of interest was whether patients with epilepsy, particularly

those on long-term anticonvulsant medication, were at less than expected risk of

ischemic heart disease. The study dealt with 516 cases of epilepsy; exposure time was

measured from time of diagnosis of epilepsy to time of death or time last seen alive.

(a) For males aged 60 to 69, the number of years at risk was 161 person-years. In

this time interval, four IHD deaths were observed. Calculate the hazard rate for

this age group in units of 100,000 persons/year.

(b) Construct a 95% confidence interval.

(c) The expected hazard rate in the general population is 1464 per 100,000 per-

sons/year. How many deaths would you have expected in the age group 60 to 69

on the basis of the 161 person-years experience?

(d) Do the number of observed and expected deaths differ significantly?

(e) The raw data for the incidence of ischemic heart disease are given in Table 15.8.

Calculate the expected number of deaths for males and the expected number of

deaths for females by summing the expected numbers in the age categories (for

each gender separately). Treat the total observed as a Poisson random variable

and set up 95% confidence intervals. Do these include the expected number of

deaths? State your conclusion.

(f) Derive a formula for an indirect standardization of these data (see Note 15.2)

and apply it to these data.

15.8 A random sample of 100 subjects from a population is divided into two age groups,

and for each age group the number of cases of a certain disease is determined. A

reference population of 2000 persons has the following age distribution:

Sample
Reference Population

Age Total Number Number of Cases Total Number

1 80 8 1000

2 20 8 1000

(a) What is the crude case rate per 1000 population for the sample?

(b) What is the standard error of the crude case rate?
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(c) What is the age-adjusted case rate per 1000 population using direct standardiza-

tion and the reference population above?

(d) How would you test the hypothesis that the case rate at age 1 is not significantly

different from the case rate at age 2?

15.9 The data in Table 15.9 come from a paper by Friis et al. [1981]. The mortality among

male Hispanics and non-Hispanics was as shown.

Table 15.9 Mortality Data for Problem 15.9

Hispanic Males Non-Hispanic Males

Number Number

Age Number of Deaths Number of Deaths

0–4 11,089 0 51,250 0

5–14 18,634 0 120,301 0

15–24 10,409 0 144,363 2

25–34 16,269 2 136,808 9

35–44 11,050 0 106,492 46

45–54 6,368 7 91,513 214

55–64 3,228 8 70,950 357

65–74 1,302 12 34,834 478

75+ 1,104 27 16,223 814

Total 79,453 56 772,734 1,920

(a) Calculate the crude death rate among Hispanic males.

(b) Calculate the crude death rate among non-Hispanic males.

(c) Compare parts (a) and (b) using an appropriate test.

(d) Calculate the SMR using non-Hispanic males as the reference population.

(e) Test the significance of the SMR as compared with a ratio of 1. Interpret your

results.

15.10 The data in Table 15.10, abstracted from National Center for Health Statistics [1976],

deal with the mortality experience in poverty and nonpoverty areas of New York and

Seattle.

(a) Using New York City as the “standard population,” calculate the standardized

mortality rates for Seattle taking into account race and poverty area.

(b) Estimate the variance of this quantity and calculate 99% confidence limits.

(c) Calculate the standardized death rate per 100,000 population.

Table 15.10 Mortality Data for Problem 15.10

New York City Seattle

Death Rate Death Rate

Area Race Population per 1000 Population per 1000

Poverty White 974,462 9.9 29,016 22.9

All others 1,057,125 8.5 14,972 12.5

Nonpoverty White 5,074,379 11.6 434,854 11.7

All other 788,897 6.4 51,989 6.5
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(d) Interpret your results.

(e) Why would you caution a reviewer of your analysis about the interpretation?

15.11 In a paper by Foy et al. [1983] the risk of getting Mycoplasma pneumonia in a two-

year interval was determined on the basis of an extended survey of schoolchildren. Of

interest was whether children previously exposed to Mycoplasma pneumoniae had a

smaller risk of recurrence. In the five- to nine-year age group, the following data were

obtained:

Exposed Not Exposed

Previously Previously

Person-years at risk 680 134

Number with Mycoplasma pneumonia 7 8

(a) Calculate 95% confidence intervals for the infection rate per 100 person-years

for each of the two groups.

(b) Test the significance of the difference between the infection rates.

*(c) A statistician is asked to calculate the study size needed for a new prospective

study between the two groups. He assumes that α = 0.05, β = 0.20, and a

two-tailed, two-sample test. He derives the formula

λ2 =

√

λ1 −

2.8
√

n

where λ

i

is the two-year infection rate for group i and n is the number of

persons per group. He used the fact that the square root transformation of a

Poisson random variable stabilizes the variance (see Section 10.6). Derive the

formula and calculate the infection rate in group 2, λ2 for λ1 = 10 or 6, and

sample sizes of 20, 40, 60, 80, and 100.

15.12 In a classic paper dealing with mortality among women first employed before 1930 in

the U.S. radium dial–painting industry, Polednak et al. [1978] investigated 21 malig-

nant neoplasms among a cohort of 634 women employed between 1915 and 1929.

The five highest mortality rates (observed divided by expected deaths) are listed in

Table 15.11.

(a) Test which ratios are significantly different from 1.

(b) Assuming that the causes of death were selected without a particular reason, adjust

the observed p-values using an appropriate multiple-comparison procedure.

(c) The painters had contact with the radium through the licking of the radium-coated

paintbrush to make a fine point with which to paint the dial. On the basis of this

Table 15.11 Mortality Data for Problem 15.12

Ranked Cause Observed Expected

of Death Number Number Ratio

Bone cancer 22 0.27 81.79

Larynx 1 0.09 11.13

Other sites 18 2.51 7.16

Brain and CNS 3 0.97 3.09

Buccal cavity, pharynx 1 0.47 2.15
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information, would you have “preselected” certain malignant neoplasms? If so,

how would you “adjust” the observed p-value?

15.13 Consider the data in Table 15.12 (from Janerich et al. [1974]) listing the frequency of

infants with Simian creases by gender and maternal smoking status.

Table 15.12 Influence of Smoking on Development of Simian Creases

Birthweight Interval (lb)
Maternal

Gender of Infant Smoking <6 6–6.99 7–7.99 ≥8

Female No 2/45 5/156 9/242 11/216

Yes 4/48 8/107 6/110 3/44

Male No 5/40 5/109 23/265 18/278

Yes 10/55 6/84 10/106 6/74

(a) These data can be analyzed by the multidimensional contingency table approach

of Chapter 7. However, we can also treat it as a problem in standardization.

Describe how indirect standardization can be carried out using the total sample

as the reference population, to compare “risk” of Simian creases in smokers and

nonsmokers adjusted for birthweight and gender of the infants.

(b) Carry out the indirect standardization procedure and compare the standardized

rates for smokers and nonsmokers. State your conclusions.

(c) Carry out the logistic model analysis of Chapter 7.

*15.14 Show that the variance of the standardized mortality ratio, equation (3), is approxi-

mately equal to equation (4).
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C H A P T E R 16

Analysis of the Time to an Event:
Survival Analysis

16.1 INTRODUCTION

Many biomedical analyses study the time to an event. A cancer study of combination therapy

using surgery, radiation, and chemotherapy may examine the time from the onset of therapy until

death. A study of coronary artery bypass surgery may analyze the time from surgery until death.

In each of these two cases, the event being used is death. Other events are also analyzed. In some

cancer studies, the time from successful therapy (i.e., a patient goes into remission) until remission

ends is studied. In cardiovascular studies, one may analyze the time to a heart attack or death,

whichever event occurs first. A health services project may consider the time from enrollment in

a health plan until the first use of the facilities. An analysis of children and their need for dental

care may use the time from birth until the first cavity is filled. An assessment of an ointment for

contact skin allergies may consider the time from treatment until the rash has cleared up.

In each of the foregoing situations, the data consisted of the time from a fixed or designated

initial point until an event occurs. In this chapter we show how to analyze such event data.

When the event of interest is death, the subject is called survival analysis. In medicine and

public health this name is often used generically, even when the endpoint or event being studied

is not death but something else. In industrial settings the study of the lifetime of a component

(until failure) is called reliability theory, and social scientists use the term event history analysis.

For concreteness, we often speak of the event as death and the time as survival time. However,

it should always be kept in mind that there are other uses.

In this chapter we consider the presentation of time to event data, estimation of the time to an

event, and its statistical variability. We also consider potential predictor or explanatory variables. A

third topic is to compare the time to event in several different groups. For example, a study of two

alternative modes of cancer therapy may examine which group has the best survival experience.

When the event is not death, there may be multiple occurrences for a given person or multiple

types of event. It is usually possible to restrict the analysis to the first event as we did in the

situations described above. This restriction trades a considerable gain statistical simplicity for

an often modest loss in power. We discuss the analysis of multiple events only briefly.

16.2 SURVIVORSHIP FUNCTION OR SURVIVAL CURVE

In previous chapters we examined means of characterizing the distribution of a variable using,

for example, the cumulative distribution function and histograms. One might take survival data

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Figure 16.1 Cumulative probability of death, United States, 1974. (From U.S. Department of Health,

Education, and Welfare [1976].)

and present the cumulative distribution function. Figure 16.1 shows an estimate for the U.S.

population in 1974 of the probability of dying before a fixed age. This is an estimate of the

cumulative distribution of survival in the United States in 1974. Note that there is an increase

in deaths during the first year; after this the rate levels off but then climbs progressively in the

later years. This cumulative probability of death is then an estimate of the probability that a

person dies at or before the given time. That is,

F(t) = P [person dies at a time ≤ t]

If we had observed the entire survival experience of the 1974 population, we would estimate

this quantity as we estimated the cumulative distribution function previously. We would esti-

mate it as

F(t) =

number of people who die at or before time t

total number observed
(1)

Note, however, that we cannot estimate the survival experience of the 1974 population this

way because we have not observed all of its members until death. This is a most fortunate

circumstance since the population includes all of the authors of this book as well as many of

its readers. In the next section, we discuss some methods of estimating survival when one does

not observe the true survival of the entire population.

It is depressing to speak of death; it is more pleasant to speak of life. In analyzing survival

data, the custom has grown not of using the cumulative probability of death but of using an

equivalent function called the survivorship function or survival curve. This function is merely

the percent of people who live to a fixed time or beyond.
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Definition 16.1. The survival curve, or survivorship function, is the proportion or percent

of people living to a fixed time t or beyond. The curve is then a function of t :

S(t) =



















percent of people surviving to time t or beyond if

expressed as a percent

proportion of people surviving to time t or beyond

if expressed as a proportion

(2)

If we have a sample from a population, there is a distinction between the population survival

curve and the sample or estimated population survival curve. In practice, there is no distinct

notation unless it is necessary to emphasize the difference. The context will usually show which

of the two is meant.

The cumulative distribution function of the survival and the survival curve are closely related.

If the two curves are continuous, they are related by

S(t) = 100[1 − F(t)] or S(t) = 1 − F(t)

(When we look at the sample curves, the curves are equal at all points except for the points

where the curves jump. At these points there is a slight technical problem because we have used

≤ in one instance and ≥ in the other instance. But for all practical purposes, the two curves are

related by the equation above.)

Figure 16.2 shows the survival curve for the U.S. population as given in Figure 16.1. As you

can see, the survival curve results by “flipping over” the cumulative probability of death and

using percentages. As mentioned above, the estimate of the curve in Figure 16.2 is complicated

by the fact that many people in the 1974 U.S. population are happily alive. Thus, their true

Figure 16.2 Survival curve of the U.S. population, 1974. Same data as used in Figure 16.1.
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survival is not yet observed. The survival in the overall population is not yet observed. The

survival in the overall population is estimated by the method discussed in the next section.

Sometimes the proportion surviving to time t or beyond is used. We will use them inter-

changeably. The two are simply related; to find the percent, merely multiply the proportion

by 100.

If we observe the survival of all persons, it is easy to estimate the survival curve. In analogy

with the estimate of the cumulative distribution function, the estimate of the survival curve at

a fixed t is merely the percent of people whose survival was equal to the value t or greater.

That is,

S(t) = 100

(

number of people who survive to or beyond t

total number observed

)

(3)

In many instances, we are not able to observe everyone until they reach the event of interest.

This makes the estimation problem more challenging. We discuss the estimates in the next

section.

16.3 ESTIMATION OF THE SURVIVAL CURVE: ACTUARIAL OR LIFE

TABLE METHOD

Consider a clinical study of a procedure with a high initial mortality rate: for example, very

delicate high-risk surgery during its development period. Suppose that we design a study to

follow a group of such people for two years. Because most of the mortality is expected during

the first year, it is decided to concentrate the effort on the first year. Two thousand people are

to be entered in the study; half of them will be followed for two years, while one-half will be

followed only for the critical first year. The people are randomized into two groups, group 1 to

be followed for one year and group 2 to be followed for both years. Suppose that the data are

as follows:

Group 1 Group 2

Number Number Number Number

Year Observed Who Died Observed Who Died

1 1000 240 1000 200

2 — — 800 16

We wish to estimate one- and two-year survival. We consider three methods of estimation.

The first two methods will not be appropriate but are used to motivate the correct life table

method to follow.

One way of estimating survival might be to estimate separately the one- and two-year survival.

Since it is wasteful to “throw away” data and the reason that 2000 people were observed for one

year was because that year was considered crucial, it is natural to estimate the percent surviving

for one year by the total population. This percentage is as follows:

percent of one-year survival = 100

(

2000 − 240 − 200

2000

)

= 78.0%

To estimate two-year survival, we did not observe what happened to the subjects in group 1

during the second year. Thus, we might estimate the survival using only those in group 2. This
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estimate is

percent of two-year survival = 100

(

1000 − 200 − 16

1000

)

= 78.4%

There are two problems with this estimation method. The first is that we need to know the

potential follow-up time (one year or two years) for everyone. In a clinical trial this is reasonable,

but in a cohort study we may not know whether someone who in fact died after six months

would have been followed up for one year or two years if he or she had not died. Nor is

it reasonable that our estimate of the survival should depend on this unobservable potential

follow-up.

More importantly, we have a problem in that the estimated percent surviving one year is

less than the percent surviving two years! Clearly, as time increases, the percent surviving must

decrease, but the sampling variability in the estimate has led to the second-year estimate being

larger than the first-year estimate. Although this method is approximately unbiased and uses all

the available data, it is not a desirable way to estimate our survival curve.

One way to get around this problem is to use only the subjects from group 2 who are observed

for two years. Then we have a straightforward estimate of survival at each time period. The

percent surviving one year or more is 80%, while the percent surviving two or more years

is, as before, 78.4%. This gives a consistent pattern of survival but seems quite wasteful; we

deliberately designed the study to allow us to observe more subjects in the first year, when

the mortality was expected to be high. It does not seem appropriate to throw away the 1000

subjects who were only observed for one year. If we need to do this, we had an extremely poor

experimental design.

The solution to our problem is to note that we can efficiently estimate the probability of

one-year survival using both groups of people. Further, using the second group, we can estimate

the probability of surviving the second year conditionally upon having survived the first year.

The two estimates as percentages are

percent of one-year survival = 78.0%

percent surviving year 2 = 100

(

800 − 16

800

)

= 98.0%

We can then combine these to get an estimate of the probability of surviving in the first year and

the second year by using the concept of conditional probability. We see that the probability of

two-year survival is the probability of one-year survival times the probability of two-year survival

given one-year survival, and so cannot be larger than the probability of one-year survival. The

probability of two-year survival is as follows:

P [A and B] = P [A]P [B|A]

Let A be the survival of one year and B the survival of two years. Then

P [one-year survival] = P [one-year survival]

×P [two-year survival|one-year survival]

= 0.78 × 0.98 = 0.7644

For these probability calculations, note that it is more convenient to have probabilities than

percents because the probabilities multiply. If we had percents, the formula would have an

extra factor of 100. For this reason the calculations on the survival curves are usually done as

probabilities and then switched to percentages for graphical presentation. We will adhere to this.
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Figure 16.3 Three methods of estimating survival.

Figure 16.3 presents the three estimates; for these data they are all close. The third estimate

gives a self-consistent estimate of the curve (i.e., the curve will never increase) and the estimate

is efficient (because it uses all the data); it is the correct method for estimating survival. This

idea can easily be generalized to more than two intervals.

When the data are grouped into time intervals, we can estimate the survival in each interval.

Let x denote the lower endpoint of each interval. [x rather than t is used here to conform to

standard notation in the actuarial field. When it is necessary to index the intervals, we will use

i(x) to denote the inverse relationship.] Let
∏

i

denote the probability of surviving to x(i), where

x(i) is the lower endpoint of the ith interval; that is,

∏

i

= S(x(i))

where S is the survival curve (expressed here as the proportion surviving). Further, let π

i

be the

probability of living through the interval, with lower endpoint x(i), conditionally upon the event



ESTIMATION OF THE SURVIVAL CURVE: ACTUARIAL OR LIFE TABLE METHOD 667

of being alive at the beginning of the interval. Using the definition of a conditional probability,

π

i

=

∏

i+1
∏

i

=

P [survive to the end of the ith interval]

P [survive to the end of the (i − 1)st interval]
(4)

From this,
∏

i+1

= π

i

∏

i

and
∏

i+1

= π1π2 · · ·π
i

where
∏

1

= 1 (5)

In presenting group data graphically, one plots points corresponding to the time of the lower

endpoint of the interval and the corresponding
∏

i

value. The plotted points are then joined by

straight-line segments, as in Figure 16.4.

There is one further complication before we present the life table estimates. If we are follow-

ing people periodically (e.g., every six months or every year), it will occasionally happen that

people cannot be located. Such subjects are called lost to follow-up in the study. Further, subjects

may be withdrawn from the study for a variety of reasons. In clinical studies in the United States,

all subjects have the right to withdraw from participation at any time. Or we might be trying to

examine a medical survival in patients who could potentially be treated with surgery. Some of

them may subsequently receive surgery; we could withdraw such patients from the analysis at

the time they received surgery. The rationale for this would be that after they received surgery,

their survival experience is potentially altered. Whatever the reason for a person being lost to

follow-up or withdrawn, this fact must be considered in the life table analysis.

To estimate the survival curve from data, the method is to estimate the π

i

and
∏

i

by the

product of the estimates of the π

i

according to equation (5). The data are usually presented in

the form of Table 16.1. How might one estimate the probability of dying in the interval whose

Figure 16.4 Form of the presentation of the survival curve for grouped survival data.

Table 16.1 Presentation of Life Table Data

Number of Subjects

Observed Alive Lost to

at Beginning Died during Follow-up during Withdrawn Alive

Interval of Interval Interval Interval during Interval

x to x + �x l

x

d

x

u

x

w

x

x(1) − x(2) l

x(1)

d

x(1)

u

x(1)

w

x(1)

x(2) − x(3) l

x(2)

d

x(2)

u

x(2)

w

x(2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x(I ) − x(I + 1) l

x(I)

d

x(I)

u

x(I)

w

x(I)
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lower endpoint is x conditionally upon being alive at the beginning of the interval? At first

glance one might reason that there were l

x

subjects, of whom (a binomial) d

x

died, so that the

estimate should be d

x

/l

x

. The problem is that those who were lost to follow-up or withdrew

during the interval might have died during the interval after withdrawing, and this would not

be counted. If such persons were equally likely to withdraw at any time during the interval, on

the average they would be observed only one-half of the time. Thus, they really represent only

one-half a person at risk. Thus the effective number of persons at risk, l

′

x

, is

l

′

x

=

l

x

− (u

x

+ w

x

)

︸ ︷︷ ︸

+
1
2

(u

x

+ w

x

)

︸ ︷︷ ︸

number observed number observed

over entire interval over 1
2

interval

(6)

= l

x

−
1
2
(u

x

+ w

x

)

where the u

x

is the number lost to follow-up and w

x

is the number withdrawing. The estimate

of the proportion dying, q

x

, is thus

q

x

=

d

x

l

′

x

The estimate of π

i

, the probability of surviving the interval x(i) to x(i + 1), is

p

x(i)

= 1 − q

x(i)

Finally, the estimate of
∏

i

= π1π2 · · ·π
i−1,

∏

1 = 1 is

P

x(i)

= p

x(1)

p

x(2)

· · · p
x(i−1)

, P

x(0)

= 1 (7)

Note that those who are lost to follow-up and those who are withdrawn alive are treated together;

that is, in the estimates, only the sum of the two is used. In many presentations such people are

lumped together as withdrawn or censored.

Before presenting the estimates, it is also clear that an estimate of the survival curve will be

more useful if some idea of its variability is given.

An estimate of the standard error of the P

x

is given by Greenwood’s formula [Greenwood,

1926]:

SE(P

x(i)

) = P

x(i)

√

√

√

√

√

i−1
∑

j=1

q

x(j)

l

′

x(j)

− d

x(j)

= P

x(i)

√

√

√

√

√

i−1
∑

j=1

q

x(j)

l

′

x(j)

p

x(j)

(8)

Confidence intervals constructed using ±1.96 times this standard error are valid only in relatively

large samples. For example, it is easy to see that these confidence intervals could extend outside

the interval [0, 1], where the probability must lie. Better confidence intervals in small samples

can be obtained by transforming P(t); they are discussed in the Notes to this chapter.

Example 16.1. The method is illustrated by data of Parker et al. [1946], as discussed in

Gehan [1969]. Those data are from 2418 males with a diagnosis of angina pectoris (chest pain

thought to be of cardiac origin) at the Mayo Clinic between January 1, 1927 and December 31,

1936. The life table of survival time from diagnosis (in yearly intervals) is shown in Table 16.2.
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Table 16.2 Life Table Analysis of 2418 Males with Angina Pectoris

x to

x + �x

(yr) l

x

d

x

u

x

w

x

l

′

x

q

x

p

x

P

x

SE(P

x

)

0–1 2418 456 0 0 2418 0.1886 0.8114 1.0000 —

1–2 1962 226 39 0 1942.5 0.1163 0.8837 0.8114 0.0080

2–3 1697 152 22 0 1686.0 0.0902 0.9098 0.7170 0.0092

3–4 1523 171 23 0 1511.5 0.1131 0.8869 0.6524 0.0097

4–5 1329 135 24 0 1317.0 0.1025 0.8975 0.5786 0.0101

5–6 1170 125 107 0 1116.5 0.1120 0.8880 0.5139 0.0103

6–7 938 83 133 0 871.5 0.0952 0.9048 0.4611 0.0104

7–8 722 74 102 0 671.0 0.1103 0.8897 0.4172 0.0105

8–9 546 51 68 0 512.0 0.0996 0.9004 0.3712 0.0106

9–10 427 42 64 0 395.0 0.1063 0.8937 0.3342 0.0107

10–11 321 43 45 0 298.5 0.1441 0.8559 0.2987 0.0109

11–12 233 34 53 0 206.5 0.1646 0.8354 0.2557 0.0111

12–13 146 18 33 0 129.5 0.1390 0.8610 0.2136 0.0114

13–14 95 9 27 0 81.5 0.1104 0.8896 0.1839 0.0118

14–15 59 6 23 0 47.5 0.1263 0.8737 0.1636 0.0123

Source: Data from Gehan [1969].

Figure 16.5 Survivorship function. (Data from Gehan [1969]; see Table 16.2.)

The survival data are given graphically in Figure 16.5. Note that in this case the proportion

rather than the percent is presented.

As a second example, we consider patients with the same diagnosis, angina pectoris; these

data are more recent.

Example 16.2. Passamani et al. [1982] studied patients with chest pain who were studied

for possible coronary artery disease. Chest pain upon exertion is often associated with coronary

artery disease. The chest pain was evaluated by a physician as definitely angina, probably angina,

probably not angina, and definitely not angina. The definitions of these four classes were:

• Definitely angina: a substantial discomfort that is precipitated by exertion, relieved by

rest and/or nitroglycerin in less than 10 minutes, and has a typical radiation to either

shoulder, jaw, or the inner aspect of the arm. At times, definite angina may be isolated to

the shoulder, jaw, arm, or upper abdomen.
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• Probably angina: has most of the features of definite angina but may not be entirely typical

in some aspects.

• Probably not angina: an atypical overall pattern of chest pain symptoms which does not

fit the description of definite angina.

• Definitely not angina: a pattern of chest pain symptoms that are unrelated to activity,

unrelieved by nitroglycerin and/or rest, and appear clearly noncardiac in origin.

The data are plotted in Figure 16.6. Note how much improved the survival of the angina

patients (definite and probable) is compared with the Mayo data of Figure 16.5. Those data had

a 52% five-year survival. These data have 91% and 85% five-year survival! This indicates the

great difficulty of using historical control data. A statistic and p-value for testing differences

among the four groups is discussed in Section 16.6.

Table 16.3 gives the calculation using 91-day intervals and four intervals to approximate a

year for one of the four groups, the definite angina patients. As a sample calculation, consider

the interval from 637 to 728 days. We see that

l

x

= 2704, u

x

+ d

x

= 281

l

′

x

= 2704 −

281

2
= 2563.5

q

x

=

12

2563.5
= 0.0047

p

x

= 1 − 0.0047 = 0.9953

P

x

= 0.9350 × 0.9953 = 0.9306

Note that the definite angina cases have the worst survival, followed by the probable angina

cases (91%). The other two categories are almost indistinguishable.

As we have seen, in the life table method we have some data for which the event in question

is not observed, often because at the time of the end of data collection and analysis, patients

are still alive. One term used for such data is censoring, a term that brings to mind a powerful,

possibly sinister figure throwing away data to mislead one in the data analysis. In this context
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Figure 16.6 Survival by classification of chest pain. (Data from Passamani et al. [1982].)
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Table 16.3 Life Table for Definite Angina Patients. Time in Days

Cumulative

Withdrawn Proportion Survival of the Effective

t (i) Enter At Risk Dead Alive Dead End of Interval SE Sample Size

0.0–90.9 2894 2894.0 44 0 0.0152 0.9848 0.002 2893.99

91.0–181.9 2850 2850.0 28 0 0.0098 0.9751 0.003 2893.99

182.0–272.9 2822 2822.0 22 0 0.0078 0.9675 0.003 2894.00

273.0–363.9 2800 2799.0 25 2 0.0089 0.9589 0.004 2893.77

364.0–454.9 2773 2773.0 23 0 0.0083 0.9509 0.004 2893.46

455.0–545.9 2750 2750.0 23 0 0.0084 0.9430 0.004 2893.23

546.0–636.9 2727 2727.0 23 0 0.0084 0.9350 0.005 2893.06

637.0–727.9 2704 2563.5 12 281 0.0047 0.9306 0.005 2882.32

728.0–818.9 2411 2394.0 17 34 0.0071 0.9240 0.005 2850.22

819.0–909.9 2360 2359.0 19 2 0.0081 0.9166 0.005 2818.52

910.0–1000.9 2339 2336.5 19 5 0.0081 0.9091 0.005 2792.12

1001.0–1091.9 2315 2035.5 11 559 0.0054 0.9042 0.006 2753.73

1092.0–1182.9 1745 1722.5 15 45 0.0087 0.8963 0.006 2654.36

1183.0–1273.9 1685 1685.0 19 0 0.0059 0.8910 0.006 2596.11

1274.0–1364.9 1675 1670.5 6 9 0.0036 0.8878 0.006 2564.52

1365.0–1455.9 1660 1274.5 9 771 0.0071 0.8816 0.007 2449.65

it refers to the fact that although one is interested in survival times, the actual survival times

are not observed for all the subjects. We have seen several sources of censored data. Subjects

may be alive at the time of analysis; (subjects) may be lost to follow-up; (subjects) may refuse

to participate further in research; or (subjects) may undergo a different therapy which removes

them from estimates of the survival in a particular therapeutic group.

The life table or actuarial method that we have used above has the strength of allowing

censored data and also uses the data with maximum efficiency. There is an important underlying

assumption if we are to get unbiased estimates of the survival in a population from which

such subjects may be considered to come. It is necessary that the withdrawal or censoring not

be associated with the endpoint. Obviously, if everyone is withdrawn because their situation

deteriorates, one would expect a bias in the estimation of death. Let us emphasize this again.

The life table estimate gives biased estimates if subjects who are censored at a given time have

higher or lower chance of failure than those not censored at that time. The assumption we need

is technically called noninformative censoring ; the term independent censoring is also used.

We return later in the chapter to the related but distinct problem of competing causes of

death, for example, examining the differences in death from cardiovascular causes in an elderly

population where many people die of cancer or infectious disease during the study.

16.4 HAZARD FUNCTION OR FORCE OF MORTALITY

In the analysis of survival data, one is often interested in examining which periods have the

highest or lowest risk of death. By risk of death, one has in mind the risk or probability among

those alive at that time. For example, in very old age there is a high risk of dying each year

among those reaching that age. The probability of any person dying, say, in the 100th year is

small because so few people live to be 100 years old.

This concept is made rigorous by the idea of the hazard function or hazard rate. (A very

precise definition of the hazard function requires ideas beyond the scope of this book and is

discussed briefly in the Notes at the end of this chapter.) The hazard function is also called the

force of mortality, age-specific death rate, conditional failure rate, and instantaneous death rate.
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Figure 16.7 Hazard function for Example 16.1. (Data from Parker et al. [1946].)

Definition 16.2. In a life table situation, the (interval or actuarial ) hazard rate is the

expected number dying in the interval, divided by the product of the average number exposed

in the interval and the interval width.

In other words, the hazard rate, λ, is the probability of dying per unit time given survival to

the time point in question. The estimate h of the hazard function is given by

h

x

=

d

x

l

′

x

− d

x

/2

1

�x

(9)

where �x(1) = x(i + 1) − x(i), the interval width. This is an estimate of the form

number dying

total exposure time

l

′

x

is an estimate of the number at risk of death. Note that this estimate is analogous to the

definition in Section 15.4. Those who die will on average have been exposed for approximately

one-half of the time interval, so the number of intervals of observed time is approximately

(l

′

x

− d

x

/2)�x. Thus, the hazard rate is a death rate; its units are proportion per unit time (e.g.,

percent per year). If the hazard rate has a constant value λ over time, the survival is exponential,

that is, S(t) = 100e

−λt , a point returned to later. The estimated hazard rate for Parker’s data of

Example 16.1 is given in Figure 16.7.

A large-sample approximation from Gehan [1969] for the SE of h is

SE(h

x

) =

{

h

3
x

l

x

q

x

[

1 −

(

h

x

�x

2

)2
]}1/2

(10)

For the data of Example 16.1, we compute the hazard function for the second interval. We find

that

h1 =

(

226

1942.5 − 226/2

)(

1

1

)

= 0.124

16.5 PRODUCT LIMIT OR KAPLAN–MEIER ESTIMATE

OF THE SURVIVAL CURVE

If survival data are recorded in great detail, accuracy is preserved by placing the data into

smaller rather than larger intervals. Obviously, if data are grouped, for example, into five-year
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intervals while the time of death is recorded to the nearest day, considerable detail is lost. The

product limit or Kaplan–Meier estimate is based on the idea of taking more and more intervals.

In the limit, the intervals become arbitrarily small.

Suppose in the following that the time at which data are censored (lost to follow-up or

withdrawn from the study) and the time of death (when observed) are measured to a high

degree of accuracy. The product limit or Kaplan–Meier (see Kaplan and Meier [1958]) estimate

(KM estimate) results from the actuarial or life table method of Section 16.4 as the number of

intervals increases in such a way that the maximum interval width approaches zero. In this case

it can be seen that the estimated survival curve is constant except for jumps at the observed

times of death. The values of the survival probability before a time of death(s) is multiplied

by the estimated probability of surviving past the time of death to find the new value of the

survival curve.

To be more precise, suppose that n persons are observed. Further, suppose that the time of

death is observed in l of the subjects at k distinct times t1 < t2 < · · · < t

k

. Let m

i

be the number

of deaths at time t

i

. The other n − l subjects are censored observations. If a censoring time and

a death occur at the same time, it is assumed that the true time of death for the censored subject

is greater than the censoring time observed. Let n

i

be the number of subjects at risk of dying

at time t

i

. That is, n

i

= n minus the number of deaths prior to t

i

and minus the number of

subjects whose observations were censored prior to time t

i

. The product limit estimate of the

survival curve expressed as a proportion is

S(t) =











































1 for t < t1

∏

i

j=1

n

i

− m

i

n

i

, t

i

≤ t < t

i+1(i < k)

0 for t

k

≤ t if m

k

= n

k

(i.e., no one survives past time t

k

)

∏

k

j=1

n

i

− m

i

n

i

for t

k

≤ t ≤ largest observed censored observation

(11)

If m

k

< n

k

, then S(t) is undefined for t > largest observed censored observation. Some software

will report either S(t) = 0 or S(t) = S(t

k

) for times after the last censored observation, but this

should not be encouraged.

We illustrate the method with an example.

Example 16.3. We again use the Stanford heart transplant data discussed in Section 15.4.

Suppose that we wished to estimate the survival of these patients given medical treatment only.

A complication is that when a donor heart becomes available, the patient has a heart transplant;

we can no longer observe what the survival without a transplant would have been. One incorrect

way to analyze such data would be the following. Since we are interested in medical survival,

we should not worry about patients who have had surgery. We should go through the records

and look at the survival curves only for patients who did not have surgery. Since by definition

such people died awaiting the donor heart, their early survival experience would be quite poor.

At the time of the Stanford study, waiting lists were short and a donor heart was transplanted

to the best-matching recipient on the waiting list [Crowley and Hu, 1977]. Thus, we may use

surgery for heart transplantation as a source of censoring for medical survival: The availability of

a heart should not be related to the severity of illness of the recipient. Current practice is quite dif-

ferent; more seriously ill patients are more likely to receive a transplant (http://www.optn.org/ ),

so the censoring by surgery would be informative (biased) in a modern study.

Table 16.4 presents the medical survival data using surgery as the source of censoring for the

Stanford heart transplant patients. The computations as described above are given. The product

limit estimate of the correct survival curve is shown by solid lines in Figure 16.8. Lines with

x’s is the incorrect curve if one ignores the effect of surgery as censoring and totally eliminates
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Table 16.4 Survival Data for Heart Transplant Patients

t (days) Death (*) n

i

(n

i

− m

i

)/n

i

S(t), t

i

≤ t < t

i+1

1 * 34 33/34 0.971

1 33

2 32

5 * 31 30/31 0.939

7 * 30 29/30 0.908

7 29

11 28

11 27

12 * 26 25/26 0.873

15 * 25 24/25 0.838

15 24

16 23

17 * 22 21/22 0.800

17 21

17 20

19 19

22 18

24 17

24 16

26 15

34 * 14 13/14 0.743

34 13

35 * 12 11/12 0.681

36 * 11 10/11 0.619

36 10

40 * 9 8/9 0.550

49 * 8 7/8 0.481

49 7

50 6

69 5

81 4

84 * 3 2/3 0.321

111 * 2 1/2 0.160

480 1

Figure 16.8 Days from acceptance in transplant program. Kaplan–Meier survival curve.
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such subjects from the analysis. Finally, note that there was one patient who spontaneously

improved under medical treatment and was reported alive at 16 months. The data of that subject

are reported in the medical survival data as a 480-day survivor. As before, an asymptotic formula

for the standard error of the estimate may be given. Greenwood’s formula for the approximate

standard error of the estimate also holds in this case. The form it takes is

SE(S(t))

.

= S(t)

√

√

√

√

i

∑

j=1

m

j

n

j

(n

j

− m

j

)

for t

i

≤ t < t

i+1 (12)

16.6 COMPARISON OF DIFFERENT SURVIVAL CURVES: LOG-RANK TEST

In this section we consider a test statistic for comparing two or more survival curves for different

groups of subjects. This statistic is based on the following idea. Take a particular interval in

which deaths occur, or in the case of the product limit curve, a time when one or more deaths

occur. Suppose that the first group considered has one-third of the subjects being observed.

How many deaths would we expect in the first group if, in fact, the survival experience is the

same for all the groups? We expect the number of deaths to be proportional to the fraction of

the people at risk of dying in the group. That is, for the first group the expected number of

deaths would be the observed number of deaths at that time divided by 3. The log-rank test uses

this simple fact. At each interval or time of death we take the observed number of deaths and

calculate the expected number of deaths that would occur in each of the groups if all had the

same risk of dying. For each group, the expected number of deaths is summed over all intervals

and then compared to the observed number of deaths. Using this comparison, we get a statistic,

the log-rank statistic, which has approximately a chi-square distribution with k − 1 degrees of

freedom when k groups are observed. We formalize this.

Suppose that one is interested in comparing the survival experience of k populations. Suppose

that there are M different times at which deaths appear. For the life table method, this will usually

be each interval. In the product limit approach, each death observed will be associated with a

unique time. At the mth time, let d

im

be the number of deaths observed in the ith population

and l

im

be the number at risk of dying. (For the life table approach with withdrawals, l

ij

is the

appropriate l

′

x

.) The data may be presented in M 2 × k contingency tables with totals:

1 2 · · · k

d1m

d2m

· · · d

km

D

m

dying

l1m

− d1m

l2m

− d2m

. . . l

km

− d

km

A

m

alive

l1m

l2m

· · · l

km

T

m

total

m = 1, 2, . . . , M

If all of the k populations are at equal risk of death, the probability of death will be the same

in each population, and conditionally upon the row and column totals,

E(d

im

) =

l

im

D

m

T

m

(13)

as in the chi-square test for contingency tables.

In the ith population, the total number of deaths observed is

O

i

=

M

∑

m=1

d

im

(14)
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Examining all of the times of death, the expected number of deaths in the ith population is

E

i

=

M

∑

m=1

E(d

im

) =

M

∑

m=1

l

im

D

m

T

m

(15)

The test statistic is then computed from the observed minus expected values. A simple approx-

imate statistic suitable for hand calculation is

X

2
=

k

∑

i=1

(O

i

− E

i

)

2

/

E

i

(16)

The statistic is written in the familiar form of the chi-square test for comparing observed and

expected values. [If any E

i

= 0, define (O

i

−E

i

)

2
/E

i

= 0.] Under the null hypothesis of equal

survival curves in the k groups this statistic will have approximately a chi-square distribution

with k−1 degrees of freedom. The approximation is good when the subjects at risk are distributed

over the k groups in roughly the same proportions at all times. The complete formulas for the

log-rank test, which is implemented in most major statistics packages, are given in Note 16.3.

The log-rank test is illustrated by using the data of the Stanford transplant patients (Table 16.4)

and comparing them with the data of Houston heart transplant patients, as reported in Messmer

et al. [1969]. The time of survival for 15 Houston patients is read from Figure 16.9 and therefore

has some inaccuracy.

Ordering both the Stanford and Houston transplant patients by their survival time after trans-

plantation and status (dead or alive) gives Table 16.5. The dashes for the d

im

values indicate

where withdrawals occur, and those lines could have been omitted in the calculation. One stops

when there are no future deaths at a time when members of both populations are present.

Figure 16.9 Survival of 15 patients given a cardiac allograft. Arrows indicate patients still alive on March

1, 1969. (Data from Messmer et al. [1969].)
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Table 16.5 Stanford and Houston Survival Data

Stanford Houston

Day l1m

d1m

l2m

d2m

E(d1m

) E(d2m

)

1 20 1 15 0 0.571 0.429

3 19 1 15 0 0.559 0.441

4 18 0 15 1 0.545 0.455

6 18 0 14 2 1.125 0.875

7 18 0 12 1 0.600 0.400

10 18 1 11 0 0.621 0.379

12 17 0 11 1 0.607 0.393

15 17 1 10 0 0.630 0.370

24 16 1 10 0 0.615 0.385

39 15 1 10 0 0.600 0.400

46 14 1 10 0 0.583 0.417

48 13 0 10 1 0.565 0.435

54 13 0 9 1 0.591 0.409

60 13 1 8 0 0.619 0.381

61 12 1 8 1 1.200 0.800

102 11 0 7 0 — —

104 10 0 6 0 — —

110 10 0 6 1 0.625 0.375

118 10 0 5 0 — —

127 9 1 5 0 0.643 0.357

136 8 1 5 0 0.615 0.385

146 7 0 5 1 0.583 0.417

148 7 0 4 1 0.636 0.364

169 7 0 3 1 0.700 0.300

200 7 0 2 1 0.778 0.222

Summing the appropriate columns, one finds that

O1 =

∑

m

d1m

= 11

E1 =

∑

m

E(d1m

) = 14.611

O2 =

∑

m

d2m

= 13

E2 =

∑

m

E(d2m

) = 9.389

The log-rank statistic is 2.32. The simple, less powerful approximation is X

2
= (11−14.611)

2
/

14.611+(13−9.389)

2
/9.389 = 2.28. Looking at the critical values of the chi-square distribution

with one degree of freedom, there is not a statistically significant difference in the survival

experience of the two populations.

Another approach is to look at the difference between survival curves at a fixed time point.

Using either the life table or Kaplan–Meier product limit estimate at a fixed time T

o

, one can

estimate the probability of survival to T

o

, say, S(T

o

) and the standard error of S(T

o

), SE(S(T

o

)),

as described in the sections above. Suppose that a subscript is used on S to denote estimates

for different populations. To compare the survival experience of two populations with regard to
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surviving to T

o

, the following statistic is N(0, 1), as the sample sizes become large [when the

null hypothesis of S1(To

) = S2(To

) is valid]:

Z =

S1(To

) − S2(To

)

√

SE(S1(To

))

2
+ SE(S2(To

))

2
(17)

A one- or two-sided test may be performed, depending on the alternative hypothesis of interest.

For k groups, to compare the probability of survival to time T

o

, the estimated values may be

compared by constructing multiple comparison confidence intervals.

16.7 ADJUSTMENT FOR CONFOUNDING FACTORS BY STRATIFICATION

In Example 16.2, in the Coronary Artery Surgery Study (Passamani et al., 1982), the degree

of impairment due to chest pain pattern was related to survival. Patients with pain definitely

not angina had a better survival pattern than patients with definite angina. The chest pain

status is predictive of survival. These patients were studied by coronary angiography; the

amount of disease in their coronary arteries as well as their left ventricular performance (the

performance of the pumping part of the heart) were also evaluated. One might argue that

the amount of disease is a more fundamental predictor than type of chest pain. If the pain

results from coronary artery disease that affects the arteries and ventricle, the latter affects

survival more fundamentally. We might ask the question: Is there additional prognostic infor-

mation in the type of chest pain if one takes into account, or adjusts for, the angiographic

findings?

We have used various methods of adjusting for variables. As discussed in Chapter 2, twin

studies adjust for genetic variation by matching people with the same genetic pattern. Analo-

gously, matched-pairs studies match people to be (effectively) twins in the pertinent variables;

this adjusts for covariates. One step up from this is stratified analysis. In this case, the strata

are to be quite homogeneous. People in the same strata are (to a good approximation) the same

with respect to the variable or variables used to define the strata. One example of stratified

analysis occurred with the Mantel–Haenszel procedure for summing 2 × 2 tables. The point of

the stratification was to adjust for the variable or variables defining the strata. In this section we

consider the same approach to the analysis of the life table or actuarial method of comparing

survival curves from different groups.

16.7.1 Stratification of Life Table Analyses: Log-Rank Test

To extend the life table approach to stratification is straightforward. The first step is to per-

form the life table survival analysis within each stratum. If we do this for the four chest pain

classes as discussed in Example 16.2 to adjust for angiographic data, we would use strata

that depend on the angiographic findings. This is done below. Within each of the strata, we

will be comparing persons with the same angiographic findings but different chest pain sta-

tus. The log-rank statistic may be computed separately for each of the strata, giving us an

observed and expected number of deaths for each group being studied. Somehow we want

to combine the information across all the strata. This was done, for example, in the Mantel–

Haenszel approach to 2 × 2 tables. We do this by summing the values for each group of

the observed and expected numbers of deaths for the different strata. These observed and

expected numbers are then combined into a final log-rank statistic. Note 16.3 gives the details

of the computation of the statistic. Because it is based on many more subjects, the final

statistic will be much more powerful then the log-rank statistic for any one stratum, pro-

vided that there is a consistent trend in the same direction within strata. We illustrate this

by example.
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Example 16.2. (continued ) We continue with our study of chest pain groups. We would

like to adjust for angiographic variables. A study of the angiographic variables showed that most

of the prognostic information is contained within these variables:

1. The number of vessels diseased of the three major coronary vessels

2. The number of proximal vessels diseased (i.e., the number of diseased vessels where the

disease is near the point where the blood pumps into the heart)

3. The left ventricular function, measured by a variable called LVSCORE

Various combinations of these three variables were used to define 30 different strata. Table 16.6

gives the values of the variables and the strata. Separate survival curves result in the differing

strata. Figures 16.10 and 16.11 present the survival curves for two of the different strata used.

Note that the overall p-value is 0.69, a result that is not statistically significant. Thus although

the survival patterns differ among chest pain categories, the differences may be explained by

different amounts of underlying coronary artery disease. In other words, adjustment for the

arteriographic and ventriculographic findings removed the group differences.

Note that of 30 strata, one p-value, that of stratum 25, is less than 0.05. Because of the

multiple comparison problem, this is not a worry. Further, in this stratum, the definite angina

cases have one observed and 0.03 expected deaths. As the log-rank statistic has an asymptotic

chi-square distribution, the small expected number of deaths make the asymptotic distribution

inappropriate in this stratum.

16.8 COX PROPORTIONAL HAZARD REGRESSION MODEL

In earlier work on the life table method, we observed various ways of dealing with factors

that were related to survival. One method is to plot data for different groups, where the groups

were defined by different values on the factor(s) being analyzed. When we wanted to adjust for

covariates, we examined stratified life table analyses. These approaches are limited, however, by

the numbers involved. If we want to divide the data into strata on 10 variables simultaneously,

there will be so many strata that most strata will contain no one or at most one person. This

makes comparisons impossible. One way of getting around the number problem is to have an

appropriate mathematical model with covariates. In this section we consider the Cox proportional

hazards regression model. This model is a mathematical model of survival that allows covariate

values to be taken into account. Use of the model in survival analysis is quite similar to the

multiple regression analysis of Chapter 11. We first turn to examination of the model itself.

16.8.1 Cox Proportional Hazard Model

Suppose that we want to examine the survival pattern of two people, one of whom initially is

at higher risk than the other. A natural way to quantify the idea of risk is the hazard function

discussed previously. We may think of the hazard function as the instantaneous probability of

dying given that a person has survived to a particular time. The person with the higher risk will

have a higher value for the hazard function than a person who has lower risk at the particular

time. The Cox proportional hazard model works with covariates; the model expresses the hazard

as a function of the covariate values. The major assumption of the model is that if the first person

has a risk of death at the initial time point that is, say, twice as high as that of a second person,

the risk of death at later times is also twice as large. We now express this mathematically.

Suppose that at the average value of all of our covariates in the population, the hazard at time

t , is denoted by h0(t). Any other person whose values on the variables being considered are not

equal to the mean values will have a hazard function proportional to h0(t). This proportionality

constant varies from person to person depending on the values of the variables. We develop this
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Figure 16.10 Example 16.4: survival curves for stratum 7. Cases have one proximal vessels diseased with

good ventricular function (LVSCORE of 5–11).
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Figure 16.11 Example 16.4: survival curves for stratum 29. Cases have three proximal vessels diseased

with impaired ventricular function (LVSCORE of 12–17).

algebraically. There are variables X1, . . . , X

p

to be considered. Let X denote the values of all

the X

i

, that is, X = (X1, . . . , X

p

).

1. If a person has X = X = (X1, . . . , X

p

), the hazard function is h0(t).

2. If a person has different values for X, the hazard function is h0(t)C, where C is a constant

that depends on the values of X. If we think of the hazard as depending on X, as well as

t , the hazard is

h0(t)C(X)
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3. For any two people with values of X = X(1) and X = X(2), respectively, the ratio of

their two hazard functions is

h0(t)C(X(1))

h0(t)C(X(2))

=

C(X(1))

C(X(2))

(18)

The hazard functions are proportional; the ratio does not depend on t .

Let us reiterate this last point. Given two people, if one has one-half as much risk initially

as a second person, then at all time points, risk is one-half that of the second person. Thus, the

two hazard functions are proportional, and such models are called proportional hazard models.

Note that proportionality of the hazard function is an assumption that does not necessarily

hold. For example, if two people were such that one is to be treated medically and the second

surgically by open heart surgery, the person being treated surgically may be at higher risk initially

because of the possibility of operative mortality; later, however, the risk may be the same or

even less than that of the equivalent person being treated medically. In this case, if one of the

covariate values indicates whether a person is treated medically or surgically, the proportional

hazards model will not hold. In a given situation you need to examine the plausibility of the

assumption. The model has been shown empirically to hold reasonably well for many populations

over moderately long periods, say five to 10 years. Still, proportional hazards is an assumption.

As currently used, one particular parametric form has been chosen for the proportionality con-

stant C(X). Since it multiplies a hazard function, this constant must always be positive because

the resulting hazard function is an instantaneous probability of an endpoint and consequently

must be nonnegative. A convenient functional form that reasonably fits many data sets is

C(X) = e

α+β1X1+···+β

p

X

p

, where α = −β1X1 − · · · − β

p

X

p

(19)

In this parameterization, the unknown population parameters β

i

are to be estimated from a data

set at hand.

With hazard h0(t), let S0,pop(t) be the corresponding survival curve. For a person with

covariate values X = (X1, . . . , X

p

), let the survival be S(t |X). Using the previous equations,

the survival curve is

S(t |X) = (S0,pop(t))
exp(α+β1X1+···+β

p

X

p

) (20)

That is, the survival curve for any person is obtained by raising a standard survival curve

[S0,pop(t)] to an appropriate power. To estimate this quantity, the following steps are performed:

1. Estimate S0,pop and α, β1, . . . , β

p

by S0(t), a, b1, . . . , b

p

. This is done by a computer

program. The estimation is too complex to do by hand.

2. Compute Y = a + b1X1 + · · · + b

p

X

p

[where X = (X1, . . . , X

p

)].

3. Compute k = e

Y .

4. Finally, compute S0(t)
k .

The estimated survival curve is the population curve (the curve for the mean covariate values)

raised to a power. If the power k is equal to 1, corresponding to e

0, the underlying curve for

S0 results. If k is greater than 1, the curve lies below S0, and if k is less than 1, the curve lies

above S0. This is presented graphically in Figure 16.12.

Note several factors about these curves:

1. The curves do not cross each other. This means that a procedure having a high initial

mortality, such as a high dose of radiation in cancer therapy, but better long-term survival,
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Figure 16.12 Proportional hazard survival curves as a function of k = e

a+b1x1+···+b

p

x

p .

Figure 16.13 Two survival curves without proportional hazards.

as in Figure 16.13, could not be modeled by the proportional hazard model with one of

the variables, say X1, equal to 1 if the therapy were radiation and 0 if an alternative

therapy were used.

2. The proportionality constant in the proportional hazard model,

e

α+β1x1+···+β

p

x

p

is parametric. We have not specified the form of the underlying survival S0. This curve

is not estimated by a parametric model but by other means.
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3. Where there is a plateau in one curve, the other curve has a plateau at the same time points.

The proportional hazards assumption implies that covariates do not affect the timing of

plateaus or other distinctive features of the curves, only their height.

16.8.2 Example of the Cox Proportional Hazard Regression Model

The Cox proportional hazard model is also called the Cox proportional regression model or the

Cox regression model. The reason for calling this model a regression model is that the dependent

variable of interest, survival, is modeled upon or “regressed upon” the values of the covariates

or independent variables. The analogies between multiple regression and the Cox regression are

quite good, although there is not a one-to-one correspondence between the techniques. Computer

software for Cox regression typically produces at least the quantities shown in Table 16.7.

The following example illustrates the use of the Cox proportional hazards model.

Example 16.4. The left main coronary artery is a short segment of the arteries delivering

blood to the heart. Two of the three major arterial systems branch off the left main coronary

artery. If this artery should close, death is almost certain. Two randomized clinical trials (Veter-

ans’ Administration Study Group, Takaro et al. [1976] and the European Coronary Surgery Study

Group [1980]) reported superior survival in patients undergoing coronary artery bypass surgery.

Chaitman et al. [1981] examined the observational data of the Coronary Artery Surgery Study

(CASS), registry. Patients were analyzed as being in the medical group until censored at the time

of surgery. They were then entered into the surgical survival experience at the day of surgery.

A Cox model using a therapy indicator variable was used to examine the effect of therapy.

Eight variables were used in this model:

• CHFSCR: a score for congestive heart failure (CHF). The score ranged from 0 to 4; 0

indicated no CHF symptoms. A score of 4 was indicative of severe, treated CHF.

• LMCA: the percent of diameter narrowing of the left main coronary artery due to

atherosclerotic heart disease. By selection, all cases had at least 50% narrowing of the

left main coronary artery (LMCA).

• LVSCR: a measure of ventricular function, the pumping action of the heart. The score

ranged from 5 (normal) to a potential maximum of 30 (not attained). The higher the score,

the worse the ventricular function.

• DOM: the dominance of the heart shows whether the right coronary artery carries the

usual amount of blood; there is great biological variability. Patients are classed as right or

balanced dominance (DOM = 0). A left-dominant subject has a higher proportion of blood

flow through the LMCA, making left main disease even more important (DOM = 1).

• AGE: the patient’s age in years.

• HYPTEN: Is there a history of hypertension? HYPTEN = 1 for yes and HYPTEN = 0

for no.

• THRPY: This is 1 for medical therapy and 2 for surgical therapy.

• RCA: This variable is 1 if the right coronary artery has ≥ 70% stenosis and is zero

otherwise.

The Cox model produces the results shown in Table 16.8. The chi-square value for CHFSCR

is found by the square of β divided by the standard error. For example, (0.2985/0.0667)

2
=

20.03, which is the chi-square value to within the numerical accuracy. The underlying survival

curve (at the mean covariate values) has probabilities 0.944 and 0.910 of one- and two-year

survival, respectively. The first case in the file has values CHFSCR = 3, LMCA = 90, LVSCR =

18, DOM = 0, AGE = 49, HYPTEN = 1, THRPY = 1, and RCA = 1. What is the estimated
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Table 16.7 Computer Output for Cox Regression

Output Description Use of Output

b

i

Estimate of the regression

coefficient β

i

1. The b

i

give an estimate of the increase in

risk (the hazard function) for different val-

ues of X1, . . . , X

p

.

2. The regression coefficients allow

estimation of e

α+β1X1+···+β

p

X

p by

e

a+b1x1+···+b

p

x

p . By using this and the

estimate of S0(t), we can estimate survival

for any person in terms of the values of

X1, . . . , X

p

for each time t .

SE(b

i

) Estimated standard error of

b

i

1. The distribution of b

i

is approximately

N(β

i

, SE(b

i

)

2
) for large sample sizes. We

can obtain 100(1 − α)% confidence inter-

vals for β

i

as (b

i

− z1−α/2SE(b

i

), b

i

+

z1−α/2SE(b

i

)).

2. We test for statistical significance of β

i

(in

a model with the other X

j

’s) by rejecting

β

i

= 0 if b

2
i

/[SE(b

i

)]2
≥ χ

2
1,1−α

. χ

2
1,1−α

is

the 1 − α percentile of the χ

2 distribution

with one degree of freedom. This χ

2 test or

the equivalent z test is also given by most

software.

Model chi-square Chi-square value for the

entire model with p

degrees of freedom

1. For nested models the chi-square values

may be subtracted (as are the degrees of

freedom) to give a chi-square test.

2. For a single model this chi-square statis-

tic tests for any relationships among the

X1, . . . , X

p

and the survival experience.

The null hypothesis tested is β1 = · · · =

β

p

= 0, which is only occasionally an

interesting null hypothesis. This is analo-

gous to testing for zero multiple correlation

between survival and (X1, . . . , X

p

) in a

multiple regression setting.

S0(t) and α, or S0(t)
α Estimate of the survival

function for a person

with covariate values

equal to the mean of each

variable, or for a person

with zero values of the

covariate

1. With S0(t) and a, or S0(t)
α and the b

i

, we

may plot the estimated survival experience

of the population for any fixed value of the

covariates.

2. For a fixed time, say t0, by varying the val-

ues of the covariates X, we may present

the effect of combinations of the covariate

values (see Example 16.5).

probability of one- and two-year survival for this person?

a + b1X1 + · · · + b

n

X

n

= −2.8968 + (0.2985 × 3) + (0.0178 × 90)

+ (0.1126 × 18) + (1.2331 × 0) + (0.0423 × 49)

+ (−0.5428 × 1) + (−1.0777 × 1)

+ (0.5285 × 1)

= 2.6622
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Table 16.8 Results of Cox Model Fitting

Standard

Variable Beta Error Chi-Square Probability

CHFSCR 0.2985 0.0667 20.01 0.0000

LMCA 0.0178 0.0049 13.53 0.0002

LVSCR 0.1126 0.0182 38.41 0.0000

DOM 1.2331 0.3564 11.97 0.0006

AGE 0.0423 0.0098 18.75 0.0000

HYPTEN −0.5428 0.1547 12.31 0.0005

THRPY −1.0777 0.1668 41.77 0.0000

RCA 0.5285 0.2923 3.27 0.0706

Constant −2.8968

estimated probability of one-year survival = 0.944e

2.6622

= 0.94414.328

= 0.438

estimated probability of two-year survival = 0.91014.328

= 0.259

The estimated probability of survival under medical therapy is 44% for one year and 26% for

two years. This bad prognosis is due largely to heart failure (CHFSCR) and very poor ventricular

function (LVSCR).

16.8.3 Interpretation of the Regression Coefficients βi

In the multiple regression setting, the regression coefficients may be interpreted as the average

difference in the response variables between cases where the predictor variable differs by one

unit, with everything else the same. In this section we look at the interpretation of the β

i

for the Cox proportional hazard model. Recall that the hazard function is proportional to the

probability of failure in a short time interval. Suppose that we have two patients whose covariate

values are the same on all the p regression variables for the Cox model with the exception

of the ith variable. If we take the ratio of the hazard functions for the two people at some

time t , we have the ratio of the probability of an event in a short interval after time t . The

ratio of these two probabilities is the relative risk of an event during this time period. This

is also called the instantaneous relative risk. For the Cox proportional hazards model, we find

that

instantaneous relative risk (RR) =

h0(t)e
α+β1X1+···+β

i

X

(1)

i

+···+β

p

X

p

h0(t)e
α+β1X1+···+β

i

X

(2)

i

+···+β

p

X

p

= e

β

i

(X

(1)

i

−X

(2)

i

) (21)

An equivalent formulation is to take the logarithm of the instantaneous relative risk (RR). The

logarithm is given by

ln(RR) = β

i

(X

(1)

i

− X

(2)

i

) (22)
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In words, the regression coefficients β of the Cox proportional hazard model are equal to the

logarithm of the relative risk if the variable X is increased by one unit.

16.8.4 Evaluating the Proportional Hazards Assumption

One graphical assessment of the proportional hazards assumption for binary (or categorical)

variables plots the cumulative hazard in each group on a logarithmic scale. Under the proportional

hazards assumption, the resulting curves should be parallel, that is, separated by a constant

vertical difference (the reason is given in Section 16.8.3). Although popular, these log-log plots

are not particularly useful. Judging whether two curves (as opposed to straight lines) are parallel

is difficult, and the problem is compounded by the fact that the uncertainty in the estimated log

hazard varies substantially along the curves.

An better approach to judging proportional hazards involves smoothed plots of the scaled

Schoenfeld residuals, proposed by Therneau and Grambsch [2000]. These plots, available in

Stata and S, estimate how a coefficient β

i

varies over time. In addition to an easier visual

interpretation, the Schoenfeld residual methods provide a formal test of the proportional hazards

assumption and are valid for continuous as well as categorical variables.

The technical details of the Schoenfeld residual methods are complex, but there is a simple

underlying heuristic. Suppose that the hazard ratio for, say, hypertension is greater than unity.

Hypertensive persons will be overrepresented among the deaths in any given period. If, in

addition, the hazard ratio increases with time, overrepresentation of hypertensives among the

deaths will increase with time. By calculating the proportion of hypertensives among the deaths

and the population at risk in each short interval of time, we should be able to detect the increasing

hazard ratio.

If there is substantial nonproportionality of hazards, it may be desirable to stratify the model

(see Section 16.10.2) on the variable in question, or to define a time-dependent variable as in

Example 16.7 in Section 16.10.2.

Example 16.5. Primary biliary cirrhosis is a rare, autoimmune disease of the liver. Until

the advent of liver transplantation, it was untreatable and eventually fatal. The Mayo Clinic

performed a randomized trial of one proposed treatment, d–penicillamine, in 312 patients. The

treatment was not effective, but the data from the trial have been used to develop a widely used

prognostic model for survival of this disease. The data for this model have been made available

on the Web by Terry Therneau of the Mayo Clinic and are linked in the Web appendix.

The Mayo model includes five covariates:

• BILI: logarithm of serum bilirubin concentration. Bilirubin is excreted in the bile and

accumulates in liver disease.

• PROTIME: logarithm of the prothrombin time, a measure of blood clotting. Prothrombin

time is increased when the liver fails to produce certain clotting factors.

• ALBUMIN: logarithm of serum albumin concentration. The liver produces albumin to

prevent blood plasma from leaking out of capillaries.

• EDTRT: edema (fluid retention), coded as 0 for no edema, 1
2

for untreated edema or edema

resolved by treatment, 1 for edema present despite treatment.

• AGE: in tens of years. Age affects the risk for almost any cause of death.

Figure 16.14 shows scatter plots for two of these covariates against survival time. The cen-

sored observations are indicated by open triangles, the deaths by filled circles. There is clearly

a relationship with both variables. It is also interesting to note that according to Fleming and

Harrington [1991, Chap. 5], the outlying value of 18 for prothrombin time was a data-entry

error; it should be 11.
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Figure 16.14 Scatter plots of survival time vs. PROTIME and BILI in the Mayo PBC data. Triangles

indicate censored times.

The Mayo model has the following coefficients:

Variable b se(b)

BILI 0.88 0.10

EDTRT 0.79 0.30

ALBUMIN −3.06 0.72

PROTIME 3.01 1.02

AGE 0.33 0.08

The survival function for someone with no edema, albumin of 3.5 mg/dL, prothrombin time

of 10 seconds, bilirubin of 1.75 mg/dL, and age 50 is:

t (yr) S(t) (%) t (yr) S(t) (%)

1 98 6 80

2 97 7 74

3 92 8 68

4 88 9 61

5 84 10 51

Figure 16.15 shows a scaled Schoenfeld residual plot for PROTIME. The smooth curve that

estimates β(t) shows that the logarithm of the hazard ratio for elevated prothrombin time is

very high initially and then decreases to near zero over the first three to four years. That is, a

patient with high prothrombin time is at greatly increased risk of death, but a patient who had

a high prothrombin time four years ago and is still alive is not at particularly high risk. The

p-value for nonproportionality for PROTIME is 0.055, so there is moderately strong evidence

that the pattern we see in Figure 16.15 is real.

16.8.5 Use of the Cox Model as a Method of Adjustment

In Section 16.7 we considered stratified life table analyses to adjust for confounding factors

or covariates. The Cox model may be used for the same purpose. As in the multiple linear

regression model, there are two ways in which we may adjust. One is to consider a variable

whose effect we want to study in relationship to survival. Suppose that we want adjust for
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Figure 16.15 Assessing proportional hazards for PROTIME with scaled Schoenfeld residuals.

variables X1, . . . , X

k

. We run the Cox proportional hazards regression model with the variable

of interest and the adjustment covariates in the model. The statistical significance of the variable

of interest may be tested by taking its estimated regression coefficient, dividing by its standard

error and using a normal probability critical value. An equivalent approach, similar to nested

hypotheses in the multiple linear regression model, is to run the Cox proportional hazards model

with only the adjusting covariates. This will result in a chi-square statistic for the entire model.

A second Cox proportional hazards model may be run with the variable of interest in the model

in addition to the adjustment covariates. This will result in a second chi-square statistic for

the model. The chi-square statistic for the second model minus the chi-square statistic for the

first model will have approximately a chi-square distribution with one degree of freedom if the

variable of interest has no effect on the survival after adjustment for the covariates X1, . . . , X

p

.

Example 16.5. (continued ) Of the 418 patients in the Mayo Clinic PBC data set, 312 agreed

to participate in the randomized trial and 106 refused. As the data from the randomized trial were

used to develop a predictive model for survival, it is important to know whether the randomized

and nonrandomized patients differ in important ways.

A simple comparison of survival times in these two groups does not answer quite the right

question. Suppose that patients agreeing to be randomized had longer survival times but also had

lower levels of bilirubin that were sufficient to explain their improved survival. This discrepancy

in survival times does not invalidate the model. Conversely, if the two groups had very similar

survival times despite a difference in average bilirubin levels, this would be evidence against the

model.

We can estimate the adjusted difference between the randomized and nonrandomized patients

by fitting a Cox model that has the five Mayo model predictors and an additional variable

indicating which group the patient is in. The estimated hazard ratio for nonrandomized patients

is 0.97, with a 95% confidence interval from 0.66 to 1.41. We would not typically report

coefficients and confidence intervals for the other adjusting covariates; their associations with

survival are not of direct interest in this analysis.

There is no evidence of any difference in survival between randomized and nonrandomized

patients in this study, but the confidence intervals are quite wide, so these differences have not

been ruled out.

Other examples of estimating adjusted contrasts using the Cox model appear in Section 16.10.
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Figure 16.16 Log plot for exponential survival.

16.9 PARAMETRIC MODELS

16.9.1 Exponential Model; Rates

Suppose that at each instant of time, the instantaneous probability of death is the same. That is,

suppose that the hazard rate or force of mortality is constant. Although in human populations

this is not a useful assumption over a wide time interval, it may be a valid assumption over a

five- or 10-year interval, say.

If the constant hazard rate is λ, the survival curve is S(t) = e

−λt . From this expression

the term exponential survival arises. The expected length of survival is 1/λ. If the exponential

situation holds, the parameter λ is estimated by the number of events divided by total expo-

sure time. The methods and interpretation of rates are then appropriate. If S(t) is exponential,

log S(t) = −λt is a straight line with slope −λ. Plotting an estimate of S(t) on a logarithmic

scale is one way of visually examining the appropriateness of assuming an exponential model.

Figure 16.16 shows some of the patterns that one might observe.

To illustrate this we return to the Mayo primary biliary cirrhosis data set but now consider

an analysis of time until loss to follow-up, that is, a survival analysis where the event is loss to

follow-up. To avoid confusing patients lost to follow-up with those alive and under observation

at the end of the study, we look at just the first eight years of the study. From the plot one

sees that the data do not look exponential (Figure 16.17). Rather, it appears that the hazard of

dropping out is initially very low and increases progressively.

16.9.2 Two Other Parametric Models for Survival Analysis

There are a variety of parametric models for survival distributions. In this section, two are

mentioned. For details of the distributions and parameter estimates, the reader is referred to
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Figure 16.17 Loss to follow-up of 312 randomized and 106 nonrandomized patients with primary biliary

cirrhosis.

texts by Mann et al. [1974] and Gross and Clark [1975]. These books also present a variety of

models not touched on here.

The two-parameter Weibull distribution has a survival curve of the form

S(t) = e

−αt

β

for t > 0 (α > 0, β > 0) (23)

If β = 1, the Weibull distribution is the exponential model with constant hazard rate. The

hazard rate decreases with time if β < 1 and increases with time if β > 1. Often, if the time of

survival is measured from diagnosis of a disease, a Weibull with β > 1 will reasonably model

the situation. Estimates are made by computer.

Another distribution, the lognormal distribution, assumes that the logarithm of the survival

time is normally distributed. If there is no censoring of data, one may work with the logarithm

of the survival times and use methods appropriate for the normal distribution.

Regression versions of the exponential, lognormal, Weibull, and other parametric survival

models are also available in many statistical packages. The exponential and Weibull models are

special cases of the Cox proportional hazards model and have little advantage over the Cox

model. The lognormal model is not related to the Cox model.

16.10 EXTENSIONS

16.10.1 Cox Model with Time-Dependent Covariates

If two groups are defined by some baseline measurement, such as smokers and nonsmokers,

their hazard ratio would be expected to change over time simply because some of the smokers

will stop smoking and lower their risk of death. For this reason it may be desirable to base the

hazard ratio at time t on the most recent available values of covariates rather than on the values

at the start of follow-up. The Cox model is then most naturally written in terms of the hazard

rather than the survival:

hazard at time t = h0(t) exp
[

α + β1X1(t) + β2X2(t) + · · · + β

p

X

p

(t)

]

and we write X1(t) for the value of X1 at time t .
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The hazard ratio between two subjects with covariates X(1) and X(2) is then

h(t; X(1)

)

h(t; X(2)

)

=

h0(t) exp[α + β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

h0(t) exp[α + β1X1(t)
(2)

+ β2X2(t)
(2)

+ · · · + β

p

X

p

(t)

(2)]

=

exp[β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

exp[β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

= exp
{

β1

[

X1(t)
(1)

− (X1(t)
(2)

]

+ β2

[

X2(t)
(1)

− (X2(t)
(2)

]

+ · · · + β

p

[

X

p

(t)

(1)

− (X

p

(t)

(2)

]}

In the constant-covariate situation, the proportional hazards assumption means that the hazard

ratio does not change over time; in the time-dependent situation, it means that the hazard ratio

changes only due to changes in the covariates over time.

Example 16.6. An example of time-dependent covariates comes from a study by Holt and

colleagues [2002] that examined the effects of court protective orders on abuse of women by

their domestic partners. In this study the time-dependent covariates were the presence (1) or

absence (0) of temporary restraining orders and permanent restraining orders. At the start of the

study, after the first police report of abuse, both variables would be zero. Most of the women in

the study (2366) never obtained a protection order, so the variable remained at zero. Of those

who obtained a two-week temporary order (325), about half (185) later obtained a permanent

order. The time-dependent Cox model compares the risk of abuse in women who do and do

not have each type of protective order at the same time after their initial incident. Cox models

thus reduce the potential for confounding by time since the initial incident: Since permanent

protective orders tend to happen later in time, when risks are already lower, they might appear

protective even if they actually had no effect.

Temporary restraining orders were associated with an increase in the hazard of psychological

abuse (hazard ratio 4.9, 95% confidence interval 2.6 to 8.6) and no change in the hazard of

physical abuse (hazard ratio 1.6, 95% CI 0.6 to 4.4). Permanent restraining orders appeared to

reduce physical abuse (hazard ratio 0.2, 95% CI 0.1 to 0.8) and have no effect on psychological

abuse (hazard ratio 0.9, 95% CI 0.5 to 1.7).

In some settings it may be more appropriate to use values of covariates for some short or

long period in the past rather than the instantaneously updated values. These time-dependent

variables reflect the history of exposure rather than just the current status.

Example 16.7. Heckbert et al. [2001] studied how the risk of a recurrent heart attack

changed over time in women who had already had one heart attack and were taking hor-

mone replacement therapy (HRT). Estrogen, the active ingredient of HRT, is known to improve

cholesterol levels but also to increase blood clotting, and so might have positive or negative

effects on heart disease. A recent randomized trial, HERS [Hulley et al., 1998], suggested that

the balance of risk and benefit might change over time.

The researchers hypothesized that having recently started hormone replacement therapy would

increase the risk of heart attack, but that long-term therapy might not increase the risk. They

defined three time-dependent exposure variables:

• STARTING: 1 for women taking HRT who started less than 60 days ago, 0 otherwise

• RECENT: 1 for women taking HRT who started between 60 and 365 days previously, 0

otherwise

• LONGTERM: 1 for women taking HRT who started more than a year ago, 0 otherwise
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The hypothesis was that the coefficients for STARTING would be positive (increased risk),

but that coefficients for RECENT and LONGTERM would be lower, and possibly negative.

They found that the hazard ratio e

b for STARTING was 2.16, with a 95% confidence interval,

0.94 to 4.95, not quite excluding 1. The hazard ratio for LONGTERM was 0.76, a with 95%

confidence interval 0.42 to 1.36.

Time-dependent covariates are not always appropriate. In particular, they do not result in

useful predictive models: In order to estimate the chance of surviving for the next five years, it

is necessary to have covariate values for the next five years to plug into the model.

Even when time-dependent models are appropriate, they involve significantly more complex

computation, however, good facilities for time-dependent Cox models are now available in many

major statistics packages. Computational details vary between packages, and between versions

of the same package, but the basic approach is to break each person’s data into many short time

intervals on which their covariates are constant. These time intervals are treated as if they came

from separate people, which is valid as long as each person can have only one event.

Time-dependent covariates are discussed in many of the recent textbooks on survival analy-

sis, including Therneau and Grambsch [2000], Klein and Moeschberger [1997], and Kleinbaum

[1996] and in older references such as Kalbfleisch and Prentice [1980] and Breslow and

Day [1987].

16.10.2 Stratification in the Cox Model

The Cox model, which assumes that hazards are proportional over time, can be extended to a

stratified model in which hazards need only be proportional within the same stratum and can

differ arbitrarily between strata. Stratification can be useful when a small number of important

variables do not satisfy the proportional hazards assumption. In addition to the usual difficulties

that occur with stratifying on too many variables, the stratified model also suffers from the fact

that it is not possible to test the effects of the stratifying variables.

For example, Lumley et al. [2002] constructed a predictive model for the risk of stroke in

elderly people. The rates of stroke were not proportional between men and women, so a model

stratified by gender was used. Instead of a single underlying survival curve S

o

(t), the model

has curves S

m

(t) for men and S

w

(t) for women. The hazard ratio for other covariates, such

as diabetes or smoking, is assumed to be constant over time within each stratum. The hazard

ratio may be constrained to be the same for women and men or allowed to differ. As Table 16.9

shows, the stroke prediction model used a common hazard ratio for diabetes in men and women,

but the hazard ratio for history of heart disease was allowed to differ between men and women.

A Java applet showing this model is linked from the Web appendix.

Table 16.9 Stratified Cox Model for Risk of Stroke

Mean Coefficient

2495 Men 3393 Women Men Women

Left ventricular hypertrophy

by ECG (%)

5.1 4.9 0.501

Diabetes (%) 14.9 12.5 0.521

Elevated fasting glucose (%) 19.0 14.4 0.347

Creatinine >1.25 mg/dL (%) 39.6 8.1 0.141

Time to walk 15 ft (s) 5.5 6.0 0.099

Systolic blood pressure (mmHg) 143 144 172/10

History of heart disease (%) 26.5 16.1 0.445 0.073

Atrial fibrillation by ECG (%) 3.5 2.1 0.4097 1.346

Age (yr) 73 73 0.382/10 0.613/10
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16.10.3 Left Truncation

In the examples discussed so far, the survival time has been measured from the beginning of

the study, so that all subjects are under observation from time 0 under they die or are censored.

There are situations where this is not feasible. Consider a study of occupational exposure to a

potential carcinogen, where workers at a factory are interviewed about their past exposure and

other risk factors such as cancer, and then followed up.

It would be desirable to set time zero to be when each worker was first employed at the factory

rather than the date when the study was performed. This would more accurately approximate the

ideal study that recruited everyone as they entered employment and followed them for the rest of

their lives. There is a serious complication, however. Workers who died before the study started

will not be included, making the sample biased. This phenomenon is called left truncation.

Truncation is not quite the same as censoring, although both involve incomplete information.

With censoring, we have information on only part of a person’s life. With truncation, we have

no information on some people and complete information on others.

The solution to left truncation is similar to the solution to right censoring. If we break time

up into short intervals, each person contributes information about the probability of surviving

through an interval given that one is alive at the start of the interval. These probabilities can

be multiplied to give an overall survival probability. Most statistical software will allow you to

specify an entry time as well as a survival or censoring time, and will fit Cox regression models

to data specified in this way.

In the occupational exposure example, consider a worker who started at the factory in 1955,

who entered the study in 1985, and who died in 1995. We want to take time to be 0 in 1955, so

the entry time is 1985 − 1955, or 30 years, and the survival time is 1995 − 1955, or 40 years.

Another worker might have started at the factory in 1975, been recruited in 1985, and still be

alive at the end of the study in 2000. This would give an entry time of 1985 − 1975, or 10

years, and a censoring time of 2000 − 1975, or 25 years.

Breslow and Day [1987] discuss an example of this sort in some detail, comparing the

effects of placing time zero at different events in analyzing the cancer risks of workers at a

nickel refinery.

16.10.4 Other References Dealing with Survival Analysis and Heart Transplant Data

The first heart transplant data has been used extensively as an illustration in the development of

survival techniques. Further references are Mantel and Byar [1974], Turnbull et al. [1974], and

Crowley and Hu [1977].

NOTES

16.1 Recurrent Events

Some events can occur more than once for the same person. Although it is usually possible to

study just the time until the first event, it may be useful to incorporate subsequent events to

increase the information available. The hazard formulation of survival analysis extends naturally

to recurrent events. The hazard (now often called the intensity) is still defined in terms of the

probability of having an event in a small interval of time, conditional on being alive and under

observation. The difference is that now a person can still be alive and under observation after an

event occurs. Although computation for recurrent event models is fairly straightforward, there

are a number of important methodologic issues that need to be considered. In particular, there is

no really satisfactory way to handle recurrent events and deaths in the same analysis. Volume 16,

No. 18 of Statistics in Medicine (April 30, 1997) has a number of papers discussing these issues.

The Web appendix to this chapter includes some examples of analyses of recurrent infections

in children with chronic granulomatous disease, a genetic immune deficiency.
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16.2 More on the Hazard Rate and Proportional Hazards

Many of the concepts presented in this chapter are analogs of continuous quantities that are best

defined in terms of calculus. If the survival function is S(t), its probability density function is

f (t) = −

dS(t)

dt

The hazard rate is then

h(t) =

f (t)

S(t)

From this it follows that the survival is found from the hazard rate by the equation

S(t) = e

−

∫

t

0 h(x) dx

The quantity

H(t) =

∫

t

0

h(x) dx = − log S(t)

is called the cumulative hazard. Under the proportional hazards assumption, the cumulative

hazards H1 and H2 for two groups of cases are related by

H1(t) = λ × H2(t)

so

log H1(t) = log λ + log H2(t)

16.3 Log-Rank Statistic and Log-Rank Statistic for Stratified Data

We present the statistic using some matrix ideas. The notation is that of Section 16.6 on the

log-rank test. For the ith group at the mth time of a death (or deaths), there were d

im

deaths and

l

im

persons at risk. Suppose that we have k groups and M times of death. For i, j = 1, . . . , k,

let

V

ij

=























∑

M

m=1

l

im

(T

m

− l

im

)D

m

(T

m

− D

m

)

T

2
m

(T

m

− 1)

, i = j

∑

M

m=1

−l

im

l

jm

D

m

(T

m

− D

m

)

T

2
m

(T

m

− 1)

, i �= j

Define the (k − 1) × (k − 1) matrix V by

V =













V11 V12 · · · V1,k−1

V21
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.
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Define vectors of observed and expected number of deaths in groups 1, 2, . . . , k − 1 by

O =







O1

.

.

.

O

k−1






, E =







E1

.

.

.

E

k−1







The log-rank statistic is

(O − E)

′
V

−1
(O − E)

where ′ denotes a transpose and −1 a matrix inverse. If there are s = 1, . . . , S strata, for each

stratum we have O, E, and V . Let these values be indexed by s to denote the strata. The log-rank

statistic is

[

S

∑

s=1

(O
s

− E
s

)

]′ (
S

∑

s=1

V

s

)−1 [
S

∑

s=1

(O
s

− E
s

)

]

16.4 Estimating the Probability Density Function in Life Table Methods

The density function in the interval from x(i) to x(i + 1) for the life table is estimated by

f

i

=

P

i

− P

i+1

x(i + 1) − x(i)

The standard error of f

i

is estimated by

p

i

q

i

√

x(i + 1) − x(i)





i−1
∑

j=1

q

j

l

′

j

p

j

+

p

i

l

′

i

q

i





1/2

16.5 Other Confidence Intervals for the Survival Function

Direct use of Greenwood’s formula to construct confidence intervals in small samples can

lead to confidence intervals that cross 0% or 100% survival. Even when this does not occur,

the confidence intervals do not perform very well. Better confidence intervals are obtained

by multiplying, rather than adding, the same quantity above and below the estimated survival

function. That is, the confidence interval is given by

[

Ŝ(t) × exp

(

−z

α/2
se(Ŝ(t))

Ŝ(t)

)

, Ŝ(t) × exp

(

z

α/2
se(Ŝ(t))

Ŝ(t)

)]

Bie et al. [1987] studied this interval and a more complicated one based on transforming S(t)

to arcsin{exp[−S(t)/2]} and found that both performed well even with only 25 observations,

half of which were censored.

16.6 Group Expected Survival

The baseline survival curve S0(t) estimates the survival probability at time t for a person whose

covariates equal the average of the population. This is not the same as the survival curve expected

for the population S(t) as estimated by the Kaplan–Meier method. The population curve S(t)
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decreases faster than S0(t) initially, as those with worse-than-average covariates die and then

flattens out relative to S0(t), as the remaining sample has better-than-average covariates. The

difference between S(t) and S0(t) is more pronounced when covariate effects are strong and

when there is little censoring.

The relationship between the curves is that the population curve is the average of all the

predicted individual survival curves:

S(t) =

∑

i

S0(t)
e

α+β1X1+β2X2+···+β

p

X

p

This relationship can be used to predict the population curve for a new population and compare it

to the expected population, an extension of the direct standardization of rates in Chapter 15. For

example, the predictions of a Cox model can be validated in a new population by dividing the

new population into groups and comparing the expected S(t) for each group with the observed

survival curve calculated by the Kaplan–Meier method.

Example 16.5. (continued ) Figure 16.18 compares the expected and observed survival rates

for the 106 nonrandomized patients from the Mayo Clinic PBC data. These patients were divided

into three equal groups based on the risk predicted by the Mayo model. The Kaplan–Meier

survival curve and the group expected survival curve were calculated for each of the three groups.

The relatively smooth lines are the expected survival; the stepped lines are the Kaplan–Meier

estimates. There is no suggestion that the expected and observed curves differ importantly.
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Figure 16.18 Expected and observed survival curves for three groups of nonrandomized patients.
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For a stratified life table analysis, the same calculation of expected survival can be done

more easily. In this context it is called the method of direct adjustment. Suppose that we want

to compare survival in treatment groups j = 1, 2 and we have strata i = 1, 2, . . . , m. We

calculate the survival curve for each treatment group in each stratum S

ij

(t) and then add up

over strata

S

j

(t) =

m

∑

i=1

S

ij

(t)r

i

where r

i

is the proportion of subjects in stratum i.

16.7 Competing Risks

In certain situations one is only interested in certain causes of death that may be linked to the

disease in question. For example, in a study of heart disease a death in a plane crash might

be considered an unreasonable endpoint to attribute to the disease. It is tempting to censor

people who die of genuinely unrelated causes. This cannot be true noninformative censoring, as

someone who dies in a plane crash certainly has a reduced (zero) risk of heart disease in the

future. On the other hand, there seems to be no way that these deaths would bias the remaining

sample. It turns out that conclusions from Cox regression in this case are basically valid but

that estimated survival curves need to be rethought. Such endpoints are called competing risks.

In a more complicated version of the problem, there is often interest in the effects of a

treatment on more than one type of event. Lowering blood pressure reduces the risk of death

from stroke, heart attack, cardiac arrest, and congestive heart failure, but different drugs may

affect these events differently. Inference for these dependent competing risks is much more

difficult and is complicated further by the fact that it is theoretically impossible to determine

whether competing risks are dependent or independent. When all the events are rare, as in

primary prevention of cardiovascular disease, ignoring the competing-risks problem may be a

satisfactory practical approach. With more common events, this is not possible.

In some cases it is appropriate to treat deaths from other causes as indicating indefinitely long

“survival” for the cause of interest. For example, consider a study of time to stroke in elderly

people (e.g., Section 16.10.2). If a subject dies from breast cancer at 3.5 years follow-up, her

chance of ever having a stroke is known exactly: She never will. This can be represented by

censoring her observation time not at the time of death but at a time after the end of the study. The

resulting survival curve will estimate the proportion of people who have not had strokes, which

will not decrease to zero as follow-up time increases. In other cases this approach is undesirable

because decreases in stroke risk and increases in other risks have the same impact—in a clinical

trial of stroke prevention one would not want to declare the treatment successful just because it

made people die of other causes.

Kalbfleisch and Prentice [2003], Gross and Clark [1975], and Prentice et al. [1978] discuss

such issues. Pepe and Mori [1993] discuss alternatives to estimating the cause-specific survival

function. Misuse of the cause-specific survival function has been an important issue in radiation

oncology and is discussed by Gelman et al. [1990]. The impossibility of testing for dependent

competing risks was shown by Tsiatis [1978]. The proof is highly technical but the result should

be intuitively plausible: No data are available after censoring, so there should be no way to tell

if survival is the same as for noncensored people.

A related issue is multivariate failure time, where events of different types can be observed for

the same person. These could be ordered events, such as cancer recurrence and death; multiple

versions of the same event, such as time to vision impairment in left and right eyes; or separate

events, such as time to marriage and time to having children. Therneau and Grambsch [2000]

discuss multivariate failure times, as does Lin [1994]. Somewhat surprisingly, this is a more

tractable problem than competing risks.
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16.8 Counting Process Notation

Many modern books on survival analysis and most recent statistical papers on the subject use

a different mathematical notation from ours, the counting process notation. We have described

each person’s data by a covariate vector X
i

, an observation time T

i

, and a censoring indicator

�

i

. The counting process notation replaces the time and censoring indicator with two functions

of time: N

i

(t), which counts the number of times the person has been observed to “die” by time

t , and Y

i

(t), which is 1 when the person is under observation and 0 otherwise. The covariate

vector is usually called Z
i

(t) rather than X
i

.

For ordinary survival data this means N

i

(t) = 0 and Y

i

(t) = 1 for t < T

i

, N

i

(t) = �

i

and

Y

i

(t) = 1 for t = T

i

, and N

i

(t) = �

i

and Y

i

(t) = 0 for t > T

i

. The notation dN

i

(t) means the

jump in N

i

at time t . This is zero except at the time of a death, when it is 1.

As a final complication, integral notation is used to indicate sums over a time point. For

example, the notation
∫

Z

i

(t) dNi(t) means the sum of Z

i

(t) × dN

i

(t) over all time points. As

dNi(t) = 0 except at the time of death, this is 0 if the person is censored and is Z

i

(T

i

) if the

person dies at time T

i

.

This apparently cumbersome notation was introduced initially for purely mathematical reasons.

It becomes more obviously useful when handling recurrent events [when N

i

(t) counts the number

of events that have occurred], or left-truncation, when Y

i

(t) = 0 before entry into the study to

indicate that a death at that time would not have been observed. Klein and Moeschberger [1997]

provide a reasonably accessible treatment of survival analysis using counting process notation.

PROBLEMS

The first four problems deal with the life table or actuarial method of estimating the survival

curve. In each case, fill in the question marks from the other numbers given in the table.

16.1 Example 16.2 deals with chest pain in groups in the Coronary Artery Surgery Study;

all times are in days. The life table for the individuals with chest pain thought probably

not to be angina is given in Table 16.10.

16.2 From Example 16.2 for patients with chest pain thought definitely to be angina the life

table is as given in Table 16.11.

16.3 Patients from Example 16.4 on a beta-blocking drug are used here and those not on

a beta-blocking drug in Problem 16.4. The life table for those using such drugs at

enrollment is given in Table 16.12.

16.4 Those not using beta-blocking drugs have the survival experience shown in Table 16.13.

16.5 Take the Stanford heart transplant data of Example 16.3. Place the data in a life table

analysis using 50-day intervals. Plot the data over the interval from zero to 300 days.

(Do not compute the Greenwood standard errors.)

16.6 For Problem 16.1, compute the hazard function (in probability of dying/day) for inter-

vals:

(a) 546–637

(b) 1092–1183

(c) 1456–1547

16.7 For the data of Problem 16.2, compute the hazard rate for the patients:

(a) 0–91

(b) 91–182

(c) 819–910
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Table 16.10 Life Table for Patients with Chest Pain Probably Not Angina

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 2404 2404.0 2 0 0.0008 0.9992 ?

91.0–181.9 2402 ? 2 0 0.0008 0.9983 ?

182.0–272.9 2400 2400.0 ? 0 0.0021 0.9963 0.001

273.0–363.9 2395 2395.0 6 0 ? 0.9938 0.002

364.0–454.9 ? 2388.0 4 2 0.0017 0.9921 0.002

455.0–545.9 2383 2383.0 3 0 0.0013 ? 0.002

546.0–636.9 2380 2380.0 7 0 0.0029 0.9879 0.002

637.0–727.9 2373 ? 12 300 ? ? 0.003

728.0–818.9 2061 2051.5 ? 19 0.0015 0.9812 0.003

819.0–909.9 ? 2039.0 1 0 0.0005 0.9807 0.003

910.0–1000.9 2038 2037.0 2 ? 0.0010 0.9797 0.003

1001.0–1091.9 2034 ? 3 517 0.0017 0.9781 0.003

1092.0–1182.9 1514 1494.0 3 40 0.0020 0.9761 0.003

1183.0–1273.9 1471 1471.0 4 0 ? 0.9734 0.004

1274.0–1364.9 1467 1466.5 1 1 0.0007 0.9728 0.004

1365.0–1455.9 ? 1144.0 1 642 0.0009 0.9719 0.004

1456.0–1546.9 822 777.5 1 ? 0.0013 0.9707 0.004

1547.0–1637.9 732 732.0 1 0 0.0014 ? 0.004

1638.0–1728.9 731 730.0 2 2 0.0027 0.9667 0.004

1729.0–1819.9 727 449.0 1 ? 0.0022 0.9645 0.005

Table 16.11 Life Table for Patients with Definite Angina

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 426 426.0 2 ? 0.0047 0.9953 0.003

91.0–181.9 ? 424.0 2 0 0.0047 0.9906 ?

182.0–272.9 422 ? 3 0 ? ? 0.006

273.0–363.9 419 419.0 0 0 0.0000 0.9836 0.006

364.0–454.9 419 419.0 1 0 0.0024 0.9812 0.007

455.0–545.9 418 417.5 ? 1 0.0024 0.9789 0.007

546.0–636.9 416 416.0 1 0 0.0024 0.9765 0.007

637.0–727.9 415 382.0 0 ? 0.0000 0.9765 0.007

728.0–818.9 349 343.0 0 11 0.0000 0.9765 0.007

819.0–909.9 338 338.0 1 0 0.0030 0.9736 0.008

910.0–1000.9 337 336.5 0 1 0.0000 0.9736 0.008

1001.0–1091.9 336 ? 1 97 ? ? 0.009

1092.0–1182.9 238 232.5 0 11 0.0000 0.9702 0.009

1183.0–1273.9 227 ? 1 1 0.0044 0.9660 0.010

1274.0–1364.9 ? 224.5 1 1 0.0045 0.9617 0.010

1365.0–1455.9 ? 170.0 0 106 0.0000 0.9617 0.010

1456.0–1446.9 117 114.0 ? 6 0.0000 0.9617 0.010

1547.0–1637.9 ? ? 0 1 0.0000 0.9617 0.010

1638.0–1728.9 110 109.5 0 1 0.0000 0.9617 0.010

1729.0–1819.9 109 65.5 0 87 0.0000 0.9617 0.010
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Table 16.12 Life Table for Patients Taking a β-Blocker

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 4942 4942.0 ? 0 0.0097 0.9903 0.001

91.0–181.9 4894 4894.0 33 0 0.0067 0.9836 0.002

182.0–272.9 4861 4861.0 ? ? 0.0058 0.9779 ?

273.0–363.9 4833 4832.5 28 1 0.0058 0.9723 0.002

364.0–454.9 4804 4804.0 17 0 0.0035 ? 0.002

455.0–545.9 4787 4786.5 29 1 ? ? 0.003

546.0–636.9 4757 4757.0 22 0 0.0046 0.9585 0.003

637.0–727.9 4735 4376.0 25 718 0.0057 0.9530 0.003

728.0–818.9 ? ? ? 62 0.0043 0.9489 0.003

819.0–909.9 3913 3912.0 23 2 ? 0.9434 0.003

910.0–1000.9 3888 3884.5 19 7 0.0049 0.9388 0.004

1001.0–1091.9 ? ? ? 1191 0.0040 0.9350 0.004

1092.0–1182.9 2658 2624.5 14 67 0.0053 0.9300 0.004

1183.0–1273.9 2577 2576.5 11 1 0.0043 0.9261 0.004

1274.0–1364.9 2565 2561.0 15 8 ? 0.9206 0.004

1365.0–1455.9 2542 1849.5 12 1385 0.0065 0.9147 0.005

1456.0–1446.9 1145 1075.0 5 ? 0.0047 ? 0.005

1547.0–1637.9 1000 999.0 4 2 0.0040 0.9068 0.005

1638.0–1728.9 994 989.0 4 10 0.0040 0.9031 0.006

1729.0–1819.9 980 580.0 5 800 0.0086 0.8953 0.006

Table 16.13 Life Table for Patients Not Taking a β-Blocker

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 6453 ? 45 0 ? ? ?

91.0–181.9 6408 ? 28 0 ? ? ?

182.0–272.9 6380 ? 42 0 ? ? ?

273.0–363.9 6338 ? 25 2 ? ? ?

364.0–454.9 6311 6310.0 24 2 0.0038 0.9746 0.002

455.0–545.9 6285 6285.0 32 0 0.0051 0.9696 0.002

546.0–636.9 6253 6253.0 ? 0 0.0048 0.9650 0.002

637.0–727.9 6223 5889.0 23 668 0.0039 0.9612 0.002

728.0–818.9 ? ? 23 40 0.0042 0.9572 0.003

819.0–909.9 ? 5467.0 17 4 ? 0.9542 0.003

910.0–1000.9 5448 5444.5 23 7 0.0042 0.9502 0.003

1001.0–1091.9 5418 4787.4 25 1261 0.0052 0.9452 0.003

1092.0–1182.9 4132 4082.0 ? 100 0.0054 0.9401 0.003

1183.0–1273.9 4010 4010.0 23 0 0.0057 0.9347 0.003

1274.0–1364.9 3987 3981.0 18 ? 0.0020 0.9329 0.003

1365.0–1455.9 3967 3100.0 13 1734 0.0042 0.9289 0.003

1456.0–1446.9 2220 2104.0 13 ? 0.0062 0.9232 0.004

1547.0–1637.9 1975 1974.0 ? 2 0.0020 0.9213 0.004

1638.0–1728.9 1969 1961.5 11 15 0.0056 0.9162 0.004

1729.0–1819.9 1943 1212.0 17 7 0.0058 0.9109 0.005
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16.8 Data used by Pike [1966] are quoted in Kalbfleisch and Prentice [2003]. Two groups of

rats with different pretreatment regimes were exposed to the carcinogen DBMA. The

time to mortality from vaginal cancer in the two groups was: (∗ indicates a censored

observation):

• Group 1: 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 216∗, 220, 227, 230,

234, 244∗, 246, 265, 304

• Group 2: 142, 156, 163, 198, 204∗, 205, 232, 232, 233, 233, 233, 233, 239, 240,

261, 280, 280, 296, 296, 323, 344∗

(a) Compute and graph the two product limit curves of the groups.

(b) Compute the expected number of deaths in each group and the value of the

approximation [
∑

(O − E)

2
/E] to the log-rank test. Are the survival times dif-

ferent in the two groups at the 5% significance level?

(c) How close is the approximate log-rank statistic to the exact value reported by

your favorite statistics software?

16.9 The data of Problems 16.3 and 16.4, where stratified into the 30 strata discussed in the

text, give the results shown in Table 16.14.

(a) What are the observed and expected numbers in the two groups? (Why do you

have to add only three columns?)

(b) Two strata (12 and 17) are significant with p = 0.02. If the true survival patterns

(in the conceptual underlying populations) are the same, does this surprise you?

(c) What is
∑

(O−E)

2
/E? How does this compare to the more complicated log-rank

statistic which can be shown to be 6.510?

16.10 The paper by Chaitman et al. [1981] studied patients with left main coronary artery

disease, as discussed in Example 16.4. Separate Cox survival runs were performed for

the medical and surgical groups. The data are presented in Table 16.15. The survival,

at the mean covariate values, for one, two, and three years are given by S0(1), S0(2),

and S0(3), respectively. The zero–one variables are 0 for no and 1 for yes. Consider

five patients with the variable values given in Table 16.16.

(a) What is the estimate of the two-year medical survival for patients 1, 2,

and 3?

(b) What is the estimate of the three-year surgical survival for patients 4 and 5?

(c) What are the estimated one-year medical and one-year surgical survival rates for

patient 1? For patient 3?

(d) What is the logarithm of the instantaneous relative risk for two individuals treated

medically who differ by 20 years, but otherwise have the same values for the

variables? What is the instantaneous relative risk?

(e) What is the instantaneous relative risk due to diabetes (yes vs. no) for surgical

cases?

*(f) What is the standard error for the LV score coefficient for the surgical group? For

the age coefficient for the medical group? Form an approximate 95% confidence

interval for the age coefficient in the medical group.

16.11 Alderman et al. [1983] studied the medical and surgical survival of patients with poor

left ventricular function; that is, they studied patients whose hearts pumped poorly.

Their model (in one analysis) included the following variables:
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Table 16.14 Drug Use Data for Problem 16.9

Drug Use No Drug Use

Stratum Obs. Exp. Obs. Exp. p-Value

1 45 43.30 71 72.70 0.74

2 2 2.23 4 3.77 0.84

3 0 0.20 1 0.80 0.54

4 27 28.54 37 35.46 0.69

5 6 4.84 5 6.16 0.48

6 2 0.76 1 2.24 0.08

7 20 16.87 20 23.13 0.31

8 4 5.25 10 8.75 0.49

9 3 3.17 5 4.83 0.90

10 18 16.55 21 22.45 0.63

11 5 6.68 9 7.32 0.35

12 8 4.58 1 4.42 0.02

13 21 16.04 13 17.96 0.08

14 6 8.95 16 13.05 0.19

15 2 2.63 5 4.37 0.61

16 16 16.82 20 19.81 0.78

17 5 9.86 15 10.14 0.02

18 4 4.40 5 4.60 0.78

19 7 11.48 16 11.52 0.06

20 10 8.98 8 9.02 0.62

21 4 2.89 2 3.11 0.34

22 21 19.67 24 25.33 0.68

23 13 14.59 20 18.41 0.56

24 5 6.86 11 9.14 0.32

25 35 29.64 21 26.36 0.14

26 18 14.82 13 16.18 0.24

27 7 8.89 8 6.11 0.29

28 22 17.08 18 22.92 0.10

29 11 11.24 15 14.76 0.92

30 8 9.11 8 6.89 0.52

• Impairment: impairment due to congestive heart failure (CHF); 0 = never had CHF;

1 = had CHF but have no impairment; 2 = mild CHF impairment; 3 = moderate

CHF impairment; and 4 = severe CHF impairment

• Age: in years

• LMCA: percent of diameter narrowing of the left main coronary artery

• EF: ejection fraction, the percent of the blood in the pumping chamber (left ventricle)

of the heart pumped out during heartbeat

• Digitalis: Does the patient use digitalis? 1 = yes, 2 = no

• Therapy: 1 = medical; 2 = surgical

• Vessel: number (0 to 3) of vessels diseased with 70% or more stenosis

The β values and their standard errors are given in Table 16.17.

(a) Fill in the chi-square value column where missing.

(b) For which variables is p < 0.10? 0.05? 0.01? 0.001?
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Table 16.15 Significant Independent Predictors of Mortality in Patients with Greater Than 50%

Stenosis of the Left Main Coronary Artery

Medical Group Surgical Group

Variable X

2a

β

i

X

2a

β

i

LV score (5–30) 19.12 0.1231 18.54 0.1176

CHF score (0–4) 9.39 0.2815 8.16 0.2964

Age 14.42 0.0526 6.98 0.0402

% LMCA stenosis (50–100) 19.81 0.0293 — —

Hypertension (0–1) 9.41 0.7067 5.74 0.5455

Left dominance (0–1) — — 10.23 1.0101

Smoking (1 = never, 2 = ever, 3 = present) 7.26 0.4389 — —

MI status (0 = none, 1 = single, 2 = multiple) 4.41 −0.2842 — —

Diabetes (0–1) — — 4.67 0.5934

Total chi-square 90.97 — 67.11 —

Degrees of freedom 7 — 6 —

p <0.0001 — <0.0001 —

Constant c −7.2956 −3.7807

Estimated survival

S0(1) 0.90 0.97

S0(2) 0.83 0.95

S0(3) 0.76 0.93

aAdjusted chi-square (X2) statistics were computed with all variables considered together. Chi-square >6.63 corresponds
to p < 0.01, and chi-square >10.83, to p < 0.001. β, beta coefficient; CHF, congestive heart failure; LMCA, left main
coronary artery; LV, left ventricular; MI, myocardial infarction. Dashes indicate a variable not in the particular model.

Table 16.16 Variable Data for Problem 16.10

Patient Number

Variable 1 2 3 4 5

LV score 13 5 7 8 12

CHF score 2 0 1 0 3

Age 71 62 42 55 46

Percent LMCA stenosis 75 90 50 70 95

Hypertension No Yes Yes No No

Left dominance No No No Yes No

Smoking Ever Present Ever Ever Present

MI status Multiple None Single None Single

Diabetes No No No Yes No

Table 16.17 Data for Problem 16.11

Variable Beta Standard Error Chi-Square

Impairment 0.2677 0.0505 ?

Age 0.0430 0.0084 26.02

LMCA 0.0090 0.0024 ?

EF −0.0362 0.0098 ?

Digitalis −0.3802 0.1625 ?

Therapy −0.3418 0.1458 5.49

Vessel 0.2081 0.1012 4.23

Constant −1.2873
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Table 16.18 Variable Data for Problem 16.11

Patient Number

Variable 1 2 3

Impairment Severe Mild Moderate

Age 64 51 59

LMCA 50% 0% 0%
EF 15 32 23

Digitalis Yes Yes Yes

Therapy Medical Surgical Medical

Vessel 3 2 3

(c) What is the instantaneous relative risk of 70% LMCA compared to 0% LMCA?

(d) Consider three patients with the covariate values given in Table 16.18.

At the mean values of the data, the one- and two-year survival were 88.0%

and 80.16%, respectively. Find the probability of one- and two-year survival for

these three patients.

(e) With this model: (i) Can surgery be better for one person and medical treat-

ment for another? Why? What does this say about unthinking application of the

model? (ii) Under surgical therapy, can the curve cross over the estimated medi-

cal survival for some patients? For heavy surgical mortality, would a proportional

hazard model always seem appropriate?

16.12 The Clark et al. [1971] heart transplant data were collected as follows. People with

failing hearts waited for a donor heart to become available; this usually occurred

within 90 days. However, some patients died before a donor heart became available.

Figure 16.19 plots the survival curves of (1) those not transplanted (indicated by circles)

and (2) the transplant patients from time of surgery (indicated by the triangles).

Figure 16.19 Survival calculated by the life table method. Survival for transplanted patients is calculated

from the time of operation; survival of nontransplanted patients is calculated from the time of selection for

transplantation.
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(a) Is the survival of the nontransplanted patients a reasonable estimate of the non-

operative survival of candidates for heart transplant? Why or why not?

(b) Would you be willing to conclude from the figure (assuming a statistically signif-

icant result) that 1960s heart transplant surgery prolonged life? Why or why not?

(c) Consider a Cox model fitted with transplantation as a time-dependent covariate:

h

i

(t) = h0(t)e
exp(α+β×TRANSPLANT(t))

The estimate of β is 0.13, with a 95% confidence interval (−0.46, 0.72). (Verify

this if you have access to suitable software.) What is the interpretation of this

estimate? What would you conclude about whether 1960s-style heart transplant

surgery prolongs life?

(d) A later, expanded version of the Stanford heart transplant data includes the age

of the participant and the year of the transplant (from 1967 to 1973). Adding

these variables gives the following coefficients:

Variable β se(β) p-value

Transplant −0.030 0.318 0.92

Age 0.027 0.014 0.06

Year −0.179 0.070 0.01

What would you conclude from these results, and why?

16.13 Simes et al. [2002] analyzed results from the LIPID trial that compared the cholesterol-

lowering drug pravastatin to placebo in preventing coronary heart disease events. The

outcome defined by the trial was time until fatal coronary heart disease or nonfatal

myocardial infarction.

(a) The authors report that Cox model with one variable coded 1 for pravastatin and

0 for placebo gives a reduction in the risk of 24% (95% confidence interval,

15 to 32%). What is the hazard ratio? What is the coefficient for the treatment

variable?

(b) A second model had three variables: treatment, HDL (good) cholesterol level after

treatment, and total cholesterol level after treatment. The estimated risk reduction

for the treatment variable in this model is 9% (95% confidence interval, −7 to

22%). What is the interpretation of the coefficient for treatment in this model?

16.14 In an elderly cohort, the death rate from heart disease was approximately constant at

2% per year, and from other causes was approximately constant at 3% per year.

(a) Suppose that a researcher computed a survival curve for time to heart dis-

ease death, treating deaths from other causes as censored. As described in

Section 16.9.1, the survival function would be approximately S(t) = e

−0.02t .

Compute this function at 1, 2, 3, . . . ,10 years.

(b) Another researcher computed a survival curve for time to non-heart-disease death,

censoring deaths from heart disease. What would the survival function be? Com-

pute it at 1, 2, 3, . . . ,10 years.

(c) What is the true survival function for deaths from all causes? Compare it to the

two cause-specific functions and discuss why they appear inconsistent.
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Sample Sizes for Observational Studies

17.1 INTRODUCTION

In this chapter we deal with the problem of calculating sample sizes in various observational set-

tings. There is a very diverse literature on sample size calculations, dealing with many interesting

areas. We can only give you a feeling for some approaches and some pointers for further study.

We start the chapter by considering the topic of screening in the context of adverse effects

attributable to drug usage, trying to accommodate both the “rare disease” assumption and the

multiple comparison problem. Section 17.3 discusses sample-size considerations when costs of

observations are not equal, or the variability is unequal; some very simple but elegant relationships

are derived. Section 17.4 considers sample size consideration in the context of discriminant

analysis. Three questions are considered: (1) how to select variables to be used in discriminating

between two populations in the face of multiple comparisons; (2) given that m variables have been

selected, what sample size is needed to discriminate between two populations with satisfactory

power; and (3) how large a sample size is needed to estimate the probability of correct classification

with adequate precision and power. Notes, problems, and references complete the chapter.

17.2 SCREENING STUDIES

A screening study is a scientific fishing expedition: for example, attempting to relate exposure

to one of several drugs to the presence or absence of one or more side effects (disease). In such

screening studies the number of drug categories is usually very large—500 is not uncommon—

and the number of diseases is very large—50 or more is not unusual. Thus, the number of

combinations of disease and drug exposure can be very large—25,000 in the example above. In

this section we want to consider the determination of sample size in screening studies in terms

of the following considerations: many variables are tested and side effects are rare. A cohort

of exposed and unexposed subjects is either followed or observed. We have looked at many

diseases or exposures, want to “protect” ourselves against a large Type I error, and want to know

how many observations are to be taken. We proceed in two steps: First, we derive the formula

for the sample size without consideration of the multiple testing aspect, then we incorporate the

multiple testing aspect. Let

X1 = number of occurrences of a disease of interest (per 100,000

person-years, say) in the unexposed population

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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X2 = number of occurrences (per 100,000 person-years) in the

exposed population

If X1 and X2 are rare events, X1 ∼ Poisson(θ1) and X2 ∼ Poisson(θ2). Let θ2 = Rθ1; that

is, the risk in the exposed population is R times that in the unexposed population (0 < R < ∞).

We can approximate the distributions by using the variance stabilizing transformation (discussed

in Chapter 10):

Y1 =

√

X1 ∼ N(

√

θ1, σ

2
= 0.25)

Y2 =

√

X2 ∼ N(

√

θ2, σ

2
= 0.25)

Assuming independence,

Y2 − Y1 ∼ N

(

√

θ1(

√

R − 1), σ

2
= 0.5

)

(1)

For specified Type I and Type II errors α and β, the number of events n1 and n2 in the unexposed

and exposed groups required to detect a relative risk of R with power 1 − β are given by the

equation

n1 =

(Z1−α/2 + Z1−β

)

2

2(

√

R − 1)

2
, n2 = Rn1 (2)

Equation (2) assumes a two-sided, two-sample test with an equal number of subjects observed

in each group. It is an approximation, based on the normality of the square root of a Poisson

random variable. If the prevalence, π1, in the unexposed population is known, the number of

subjects per group, N , can be calculated by using the relationship

Nπ1 = n1 or N = n1/π1 (3)

Example 17.1. In Section 15.4, mortality was compared in active participants in an exercise

program and in dropouts. Among the active participants, there were 16 deaths in 593 person-

years of active participation; in dropouts there were 34 deaths in 723 person-years. Using an α of

0.05, the results were not significantly different. The relative risk, R, for dropouts is estimated by

R =

34/723

16/593
= 1.74

Assuming equal exposure time in the active participants and dropouts, how large should the

sample sizes n1 and n2 be to declare the relative risk, R = 1.74, significant at the 0.05 level with

probability 0.95? In this case we use a two-tailed test and Z1−α/2 = 1.960 and Z1−β

= 1.645,

so that

n1 =

(1.960 + 1.645)

2

2(

√

1.74 − 1)

2
= 63.4

.

= 64 and n2 = (1.74)n1 = 111

for a total number of observed events = n1 + n1 = 64 + 111 = 175 deaths. We would need

approximately (111/34) × 723 = 2360 person-years exposure in the dropouts and the same

number of years of exposure among the controls. The exposure years in the observed data are

not split equally between the two groups. We discuss this aspect further in Note 17.1.

If there is only one observational group, the group’s experience perhaps being compared

with that of a known population, the sample size required is n1/2, again illustrating the fact that

comparing two groups requires four times more exposure time than comparing one group with

a known population.



SAMPLE SIZE AS A FUNCTION OF COST AND AVAILABILITY 711

Table 17.1 Relationship between Overall Significance Level α, Significance Level per Test, Number

of Tests, and Associated Z-Values, Using the Bonferroni Inequality

Z-Values
Number of Overall Required Level

Tests (K) α Level per Test (α) One-Tailed Two-Tailed

1 0.05 0.05 1.645 1.960

2 0.05 0.025 1.960 2.241

3 0.05 0.01667 2.128 2.394

4 0.05 0.0125 2.241 2.498

5 0.05 0.01 2.326 2.576

10 0.05 0.005 2.576 2.807

100 0.05 0.0005 3.291 3.481

1000 0.05 0.00005 3.891 4.056

10000 0.05 0.000005 4.417 4.565

We now turn to the second aspect of our question. Suppose that the comparison above is

one of a multitude of comparisons? To maintain a per experiment significance level of α, we

use the Bonferroni inequality to calculate the per comparison error rate. Table 17.1 relates the

per comparison critical values to the number of tests performed and the per experiment error

rate. It is remarkable that the critical values do not increase too rapidly with the number of

tests.

Example 17.2. Suppose that the FDA is screening a large number of drugs, relating 10 kinds

of congenital malformations to 100 drugs that could be taken during pregnancy. A particular drug

and a particular malformation is now being examined. Equal numbers of exposed and unexposed

women are to be selected and a relative risk of R = 2 is to be detected with power 0.80 and

per experiment one-sided error rate of α = 0.05. In this situation α

∗
= α/1000 and Z1−α

∗ =

Z1−α/1000 = Z0.99995 = 3.891. The required number of events in the unexposed group is

n1 =

(3.891 + 0.842)

2

2(

√

2 − 1)

2
=

22.4013

0.343146
= 65.3

.

= 66

n2 = 2n1 = 132

In total, 66 + 132 = 198 malformations must be observed. For a particular malformation,

if the congenital malformation rate is on the order of 3/1000 live births, approximately 22,000

unexposed women and 22,000 women exposed to the drug must be examined. This large sample

size is not only a result of the multiple testing but also the rarity of the disease. [The comparable

number testing only once, α

∗
= α = 0.05, is n1 =

1
2
(1.645 + 0.842)

2
/(

√

2 − 1)

2
= 18, or 3000

women per group.]

17.3 SAMPLE SIZE AS A FUNCTION OF COST AND AVAILABILITY

17.3.1 Equal-Variance Case

Consider the comparison of means from two independent groups with the same variance σ ; the

standard error of the difference is

σ

√

1

n1
+

1

n2
(4)
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where n1 and n2 are the sample sizes in the two groups. As is well known, for fixed N the

standard error of the difference is minimized (maximum precision) when

n1 = n2 = N

That is, the sample sizes are equal. Suppose now that there is a differential cost in obtaining

the observations in the two groups; then it may pay to choose n1 and n2 unequal, subject to the

constraint that the standard error of the difference remains the same. For example,

1

10
+

1

10
=

1

6
+

1

30

Two groups of equal sample size, n1 = n2 = 10, give the same precision as two groups with

n1 = 6 and n2 = 30. Of course, the total number of observations N is larger, 20 vs. 36.

In many instances, sample size calculations are based on additional considerations, such as:

1. Relative cost of the observations in the two groups

2. Unequal hazard or potential hazard of treatment in the two groups

3. The limited number of observations available for one group

In the last category are case–control studies where the number of cases is limited. For

example, in studying sudden infant death syndrome (SIDS) by means of a case–control study,

the number of cases in a defined population is fairly well fixed, whereas an arbitrary number of

(matching) controls can be obtained.

We now formalize the argument. Suppose that there are two groups, G1 and G2, with costs

per observations c1 and c2, respectively. The total cost, C, of the experiment is

C = c1n1 + c2n2 (5)

where n1 and n2 are the number of observations in G1 and G2, respectively. The values of n1

and n2 are to be chosen to minimize (maximum precision),

1

n1
+

1

n2

subject to the constraint that the total cost is to be C. It can be shown that under these conditions

the required sample sizes are

n1 =

C

c1 +

√

c1c2
(6)

and

n2 =

C

c2 +

√

c1c2
(7)

The ratio of the two sample sizes is

n2

n1

=

√

c1

c2

= h, say (8)

That is, if costs per observation in groups G1 and G2, are c1 and c2, respectively, then choose

n1 and n2 on the basis of the ratio of the square root of the costs. This rule has been termed

the square root rule by Gail et al. [1976]; the derivation can also be found in Nam [1973] and

Cochran [1977].
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If the costs are equal, n1 = n2, as before. Application of this rule can decrease the cost of an

experiment, although it will increase the total number of observations. Note that the population

means and standard deviation need not be known to determine the ratio of the sample sizes, only

the costs. If the desired precision is specified—perhaps on the basis of sample size calculations

assuming equal costs—the values of n1 and n2 can be determined. Compared with an experiment

with equal sample sizes, the ratio ρ of the costs of the two experiments can be shown to be

ρ =

1

2
+

h

1 + h

2
(9)

If h = 1, then ρ = 1, as expected; if h is very close to zero or very large, ρ =
1
2

; thus, no

matter what the relative costs of the observations, the savings can be no larger than 50%.

Example 17.3. (After Gail et al. [1976]) A new therapy, G1, for hypertension is intro-

duced and costs $400 per subject. The standard therapy, G2, costs $16 per subject. On the basis

of power calculations, the precision of the experiment is to be equivalent to an experiment using

22 subjects per treatment, so that

1

22
+

1

22
= 0.09091

The square root rule specifies the ratio of the number of subjects in G1 and G2 by

n2 =

√

400

16
n1

= 5n1

To obtain the same precision, we need to solve

1

n1
+

1

5n1
= 0.09091

or

n1 = 13.2 and n2 = 66.0

(i.e., 1/13.2+1/66.0 = 0.09091, the same precision). Rounding up, we require 14 observations

in G1 and 66 observations in G2. The costs can also be compared as in Table 17.2.

A savings of $3896 has been obtained, yet the precision is the same. The total number of

observations is now 80, compared to 44 in the equal-sample-size experiment. The ratio of the

savings is

ρ =

6656

9152
= 0.73

Table 17.2 Costs Comparisons for Example 17.3

Sample Size

Equal Sample Size Determined by Cost

n Cost n Cost

G1 22 8800 14 5600

G2 22 352 66 1056

Total 44 9152 80 6656



714 SAMPLE SIZES FOR OBSERVATIONAL STUDIES

The value for ρ calculated from equation (9) is

ρ =

1

2
+

5

26
= 0.69

The reason for the discrepancy is the rounding of sample sizes to integers.

17.3.2 Unequal-Variance Case

Suppose that we want to compare the means from groups with unequal variance. Again, suppose

that there are n1 and n2 observations in the two groups. Then the standard error of the difference

between the two means is
√

σ

2
1

n1
+

σ

2
2

n2

Let the ratio of the variances be η

2
= σ

2
2 /σ

2
1 . Gail et al. [1976] show that the sample size

should now be allocated in the ratio

n2

n1
=

√

σ

2
2

σ

2
1

c1

c2
= ηh

The calculations can then be carried out as before. In this case, the cost relative to the experiment

with equal sample size is

ρ

∗
=

(h + η)

2

(1 + h

2
)(1 + η

2
)

(10)

These calculations also apply when the costs are equal but the variances unequal, as is the case

in binomial sampling.

17.3.3 Rule of Diminishing Precision Gain

One of the reasons advanced at the beginning of Section 17.3 for distinguishing between the

sample sizes of two groups is that a limited number of observations may be available for one

group and a virtually unlimited number in the second group. Case–control studies were cited

where the number of cases per population is relatively fixed. Analogous to Gail et al. [1976], we

define a rule of diminishing precision gain. Suppose that there are n cases and that an unlimited

number of controls are available. Assume that costs and variances are equal. The precision of

the difference is then proportional to

σ

√

1

n

+

1

hn

where hn is the number of controls selected for the n cases.

We calculate the ratio P

h

:

P

h

=

√

1/n + 1/hn

√

1/n + 1/n

=

√

1

2

(

1 +

1

h

)

This ratio P

h

is a measure of the precision of a case–control study with n and hn cases and

controls, respectively, relative to the precision of a study with an equal number, n, of cases

and controls. Table 17.3 presents the values of P

h

and 100(P

h

− P∞)/P∞ as a function of h.
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Table 17.3 Comparison of Precision

of Case Control Study with n and hn

Cases and Controls, Respectively

h P

h

100[(P
h

− P∞)/P∞]%

1 1.00 41

2 0.87 22

3 0.82 15

4 0.79 12

5 0.77 10

10 0.74 5

∞ 0.71 0

This table indicates that in the context above, the gain in precision with, say, more than four

controls per case is minimal. At h = 4, one obtains all but 12% of the precision associated with

a study using an infinite number of controls. Hence, in the situation above, there is little merit

in obtaining more than four or five times as many controls as cases. Lubin [1980] approaches

this from the point of view of the logarithm of the odds ratio and comes to a similar conclusion.

17.4 SAMPLE-SIZE CALCULATIONS IN SELECTING CONTINUOUS VARIABLES

TO DISCRIMINATE BETWEEN POPULATIONS

In certain situations, there is interest in examining a large number of continuous variables to

explain the difference between two populations. For example, an investigator might be “fishing”

for clues explaining the presence (one population) or absence (the other population) of a disease

of unknown etiology. Or in a disease where a variety of factors are known to affect prognosis,

the investigator may desire to find a good set of variables for predicting which subjects will

survive for a fixed number of years. In this section, the determination of sample size for such

studies is discussed.

There are a variety of approaches to the data analysis in this situation. With a large, say

50 or more, number of variables, we would hesitate to run stepwise discriminant analysis to

select a few important variables, since (1) in typical data sets there are often many dependencies

that make the method numerically unstable (i.e., the results coming forth from some computers

cannot be relied on); (2) the more complex the mathematical model used, the less faith we have

that it is useful in other situations (i.e., the more parameters that are used and estimated, the less

confidence we can have that the result is transportable to another population in time or space;

here we might be envisioning a discriminant function with a large number of variables); and

(3) the multiple-comparison problems inherent in considering the large number of variables at

each step in the stepwise procedure make the result of doubtful value.

One approach to the analysis is first to perform a univariate screen. This means that variables

(used singly, that is, univariately) with the most power to discriminate between the two pop-

ulations are selected. Second, use these univariate discriminating variables in the discriminant

analysis. The sample-size calculations below are based on this method of analysis. There is

some danger in this approach, as variables that univariately are not important in discrimination

could be important when used in conjunction with other variables. In many practical situations,

this is not usually the case. Before discussing the sample-size considerations, we will consider

a second approach to the analysis of such data as envisioned here.

Often, the discriminating variables fall naturally in smaller subsets. For example, the subsets

for patients may involve data from (1) the history, (2) a physical exam, and (3) some routine

tests. In many situations the predictive information of the variables within each subset is roughly



716 SAMPLE SIZES FOR OBSERVATIONAL STUDIES

the same. This being the case, a two-step method of selecting the predictive variables is to (1) use

stepwise selection within subsets to select a few variables from each subset, and (2) combine

the selected variables into a group to be used for another stepwise selection procedure to find

the final subset of predictive variables.

After selecting a smaller subset of variables to use in the prediction process, one of two steps

is usually taken. (1) The predictive equation is validated (tested) on a new sample to show that

it has predictive power. That is, an F -test for the discriminant function is performed. Or, (2) a

larger independent sample is used to provide an indication of the accuracy of the prediction.

The second approach requires a larger sample size than merely establishing that there is some

predictive ability, as in the first approach. In the next three sections we make this general

discussion precise.

17.4.1 Univariate Screening of Continuous Variables

To obtain an approximate idea of the sample size needed to screen among k variables, the

following is assumed: The variables are normally distributed with the same variance in each

population and possibly different means. The power to classify into the two populations depends

on δ, the number of standard deviations distance between the two populations means:

δ =

µ1 − µ2

σ

Some idea of the relationship of classificatory power to δ is given in Figure 17.1.

Suppose that we are going to screen k variables and want to be sure, with probability at

least 1 − α, to include all variables with δ ≥ D. In this case we must be willing to accept

some variables with values close to but less than D. Suppose that at the same time we want

probability at least 1 − α of not including any variables with δ ≤ f D, where 0 < f < 1. One

approach is to look at confidence intervals for the difference in the population means. If the

absolute value of the difference is greater than f D+ (1−f )D/2, the variable is included. If the

Figure 17.1 Probability of correct classification between N(0, σ

2
) and N(δσ, σ

2
) populations, assuming

equal priors and δσ/2 as the cutoff values for classifying into the two populations.
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Figure 17.2 Inclusion and exclusion scheme for differences in sample means |d1 − d2| from populations

G1 and G2.

absolute value of the difference is less than this value, the variable is not included. Figure 17.2

presents the situation. To recap, with probability at least 1 − α, we include for use in prediction

all variables with δ ≥ D and do not include those with δ ≤ f D. In between, we are willing for

either action to take place. The dividing line is placed in the middle.

Let us suppose that the number of observations, n, is large enough so that a normal approxi-

mation for confidence intervals will hold. Further, suppose that a fraction p of the data is from

the first population and that 1−p is from the second population. If we choose 1−α

∗ confidence

intervals so that the probability is about 1 − α that all intervals have half-width σ(1 − f )D/2,

the result will hold.

If n is large, the pooled variance is approximately σ and the half-interval has width (in

standard deviation units) of about

√

1

Np

+

1

N(1 − p)

Z1−α

∗

where Z1−α

∗ is the N(0, 1) critical value. To make this approximately (1 − f )D/2, we need

N =

4z

2
1−α

∗

p(1 − p)D

2
(1 − f )

2
(11)

In Chapter 12 it was shown that α

∗
= α/2k was an appropriate choice by Bonferroni’s inequal-

ity. In most practical situations, the observations tend to vary together, and the probability of

all the confidence statements holding is greater than 1 − α. A slight compromise is to use

α

∗
= [1 − (1 − α)

1/k]/2 as if the tests are independent. This α

∗ was used in computing

Table 17.4.

From the table it is very clear that there is a large price to be paid if the smaller population

is a very small fraction of the sample. There is often no way around this if the data need to be

collected prospectively before subjects have the population membership determined (by having

a heart attack or myocardial infarction, for example).
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Table 17.4 Sample Sizes Needed for Univariate Screening When f = 2
3

a

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

D 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

k = 20 2121 527 132 2210 553 136 2525 629 157 3315 829 204 5891 1471 366

2478 616 153 2580 642 157 2950 735 183 3872 965 238 6881 1717 429

3289 825 204 3434 859 213 3923 978 242 5151 1288 319 9159 2287 570

k = 100 2920 721 179 3043 761 187 3477 867 217 4565 1139 285 8118 2028 506

3285 820 204 3421 854 213 3910 978 242 5134 1284 319 9129 2282 570

4118 1029 255 4288 1071 268 4905 1224 306 6435 1607 400 11445 2860 714

k = 300 3477 867 217 3625 905 225 4140 1033 255 5436 1356 336 9665 2414 604

3846 961 238 4008 999 247 4577 1143 285 6010 1500 374 10685 2669 667

4684 1169 289 4879 1220 302 5576 1394 349 7323 1828 455 13018 3251 812

aFor each entry the top, middle, and bottom numbers are for α = 0.10, 0.05, and 0.01, respectively.

17.4.2 Sample Size to Determine That a Set of Variables Has Discriminating Power

In this section we find the answer to the following question. Assume that a discriminant analysis

is being performed at significance level α with m variables. Assume that one population has

a fraction p of the observations and that the other population has a fraction 1 − p of the

observations. What sample size, n, is needed so that with probability 1 − β, we reject the null

hypothesis of no predictive power (i.e., Mahalanobis distance equal to zero) when in fact the

Mahalanobis distance is 	 > 0 (where 	 is fixed and known)? (See Chapter 13 for a definition

of the Mahalanobis distance.)

The procedure is to use tables for the power functions of the analysis of variance tests as

given in the CRC tables [Beyer, 1968 pp. 311–319]. To enter the charts, first find the chart for

v1 = m, the number of predictive variables.

The charts are for α = 0.05 or 0.01. It is necessary to iterate to find the correct sample size

n. The method is as follows:

1. Select an estimate of n.

2. Compute

φ

n

= 	

√

p(1 − p)

m + 1
×

√

n (12)

This quantity indexes the power curves and is a measure of the difference between the

two populations, adjusting for p and m.

3. Compute v2 = n − 2.

4. On the horizontal axis, find φ and go vertically to the v2 curve. Follow the intersection

horizontally to find 1 − ˜

β.

5. a. If 1 − ˜

β is greater than 1 − β, decrease the estimate of n and go back to step 2.

b. If 1 − ˜

β is less than 1 − β, increase the estimate of n and go back to step 2.

c. If 1 − ˜

β is approximately equal to 1 − β, stop and use the given value of n as your

estimate.

Example 17.4. Working at a significance level 0.05 with five predictive variables, find the

total sample size needed to be 90% certain of establishing predictive power when ·	 = 1 and

p = 0.34. Figure 17.3 is used in the calculation.

We use

φ

n

= 1 ×

√

0.3 × 0.7

5 + 1

√

n = 0.187
√

n
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The method proceeds as follows:

1. Try n = 30, φ = 1.024, v2 = 28, 1 − β

.

= 0.284.

2. Try n = 100, φ = 1.870, v2 = 98, 1 − β

.

= 0.958.

3. Try n = 80, φ = 1.672, v2 = 78, 1 − β

.

= 0.893.

4. Try n = 85, φ = 1.724, v2 = 83, 1 − β

.

= 0.92.

Use n = 83. Note that the method is somewhat approximate, due to the amount of interpo-

lation (rough visual interpretation) needed.

17.4.3 Quantifying the Precision of a Discrimination Method

After developing a method of classification, it is useful to validate the method on a new

independent sample from the data used to find the classification algorithm. The approach of

Section 17.4.2 is designed to show that there is some classification power. Of more interest is to

be able to make a statement on the amount of correct and incorrect classification. Suppose that

one is hoping to develop a classification method that classifies correctly 100π% of the time.

To estimate with 100(1 − α)% confidence the correct classification percentage to within

100ε%, what number of additional observations are required? The confidence interval (we’ll

assume n large enough for the normal approximation) will be, letting c equal the number of n

trials correctly classified,

c

n

±

√

1

n

c

n

(

1 −

c

n

)

z1−α/2

where z1−α/2 is the N(0, 1) critical value. We expect c/n

.

= π , so it is reasonable to choose n

to satisfy z1−α/2 = ε

√

π(1 − π)/n. This implies that

n = z

2
1−α/2π(1 − π)/ε

2 (13)

where ε = (predicted - actual) probability of misclassification.

Example 17.5. If one plans for π = 90% correct classification and wishes to be 99%

confident of estimating the correct classification to within 2%, how many new experimental

units must be allowed? From Equation (13) and z0.995 = 2.576, the answer is

n = (2.576)

2
×

0.9(1 − 0.9)

(0.02)

2

.

= 1493

17.4.4 Total Sample Size for an Observational Study to Select Classification Variables

In planning an observational study to discriminate between two populations, if the predictive

variables are few in number and known, the sample size will be selected in the manner of

Section 17.4.2 or 17.4.3. The size depends on whether the desire is to show some predictive

power or to have desired accuracy of estimation of the probability of correct classification. In

addition, a different sample is needed to estimate the discriminant function. Usually, this is of

approximately the same size.

If the predictive variables are to be culled from a large number of choices, an additional
number of observations must be added for the selection of the predictive variables (e.g., in

the manner of Section 17.4.1). Note that the method cannot be validated by application to the

observations used to select the variables and to construct the discriminant function: This would

lead to an exaggerated idea of the accuracy of the method. As the coefficients and variables

were chosen specifically for these data, the method will work better (often considerably better)

on these data than on an independent sample chosen as in Section 17.4.2 or 17.4.3.
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NOTES

17.1 Sample Sizes for Cohort Studies

Five major journals are sources for papers dealing with sample sizes in cohort and case–control

studies: Statistics in Medicine, Biometrics, Controlled Clinical Trials, Journal of Clinical Epi-
demiology, and the American Journal of Epidemiology. In addition, there are books by Fleiss

[1981], Schlesselman [1982], and Schuster [1993].

A cohort study can be thought of as a cross-sectional study; there is no selection on case

status or exposure status. The table generated is then the usual 2 × 2 table. Let the sample

proportions be as follows:

Exposure No Exposure

Case p11 p12 p1·

Control p21 p22 p2·

p·1 p·2 1

If p11, p1·, p2·, p·1, and p·2 estimate π11, π1·, π2·, π·1, and π·2, respectively, then the required

total sample size for significance level α, and power 1 − β is approximately

n =

(

Z1−α/2 + Z1−β

)2
π11π1·π2·π·1π·2

(π11 − π1·π·1)
2

(14)

Given values of π1·, π·1, and R = (π11/π·1)/(π12/π·2) = the relative risk, the value of π11 is

determined by

π11 =

Rπ·1π1·

Rπ·1 + π·2
(15)

The formula for the required sample size then becomes

n =

(

Z1−α/2 + Z1−β

)2 π·1

1 − π·1

1 − π·1

π·1

[

1 +

1

π·1(R − 1)

]2

(16)

If the events are rare, the Poisson approximation derived in the text can be used. For a discussion

of sample sizes in r × c contingency tables, see Lachin [1977] and Cohen [1988].

17.2 Sample-Size Formulas for Case–Control Studies

There are a variety of sample-size formulas for case–control studies. Let the data be arranged

in a table as follows:

Exposed Not Exposed

Case X11 X12 n

Control X21 X22 n

and

P [exposure|case] = π1, P [exposure|control] = π2

estimated by P1 = X11/n and P2 = X21/n (we assume that n1 = n2 = n). For a two-sample,

two-tailed test with

P [Type I error] = α and P [Type II error] = β
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the approximate sample size per group is

n =

[Z1−α/2

√

2π(1 − π) + Z1−β

√

π1(1 − π1) + π2(1 − π2)]
2

(π1 − π2)
2

(17)

where π =
1
2
(π1 + π2). The total number of subjects is 2n, of which n are cases and n are

controls. Another formula is

n =

[π1(1 − π) + π2(1 − π2)](Z1−α/2 + Z1−β

)

2

(π1 − π2)
2

(18)

All of these formulas tend to give the same answers, and underestimate the sample sizes required.

The choice of formula is primarily a matter of aesthetics.

The formulas for sample sizes for case–control studies are approximations, and several correc-

tions are available to get closer to the exact value. Exact values for equal sample sizes have been

tabulated in Haseman [1978]. Adjustment for the approximate sample size have been presented

by Casagrande et al. [1978], who give a slightly more complicated and accurate formulation.

See also Lachin [1981, 2000] and Ury and Fleiss [1980].

Two other considerations will be mentioned. The first is unequal sample size. Particularly in

case–control studies, it may be difficult to recruit more cases. Suppose that we can select n obser-

vations from the first population and rn from the second (0 < r < ∞). Following Schlesselman

[1982], a very good approximation for the exact sample size for the number of cases is

n1 = n

(

r + 1

2r

)

(19)

and for the number of controls

n2 = n

(

r + 1

2

)

(20)

where n is determined by equation (17) or (18). The total sample size is then n((r + 1)

2
/2r).

Note that the number of cases can never be reduced to more than n/2 no matter what the

number of controls. This is closely related to the discussion in Section 17.3. Following Fleiss

et al. [1980], a slightly improved estimate can be obtained by using

n

∗

1 = n1 +

r + 1

r	

= number of cases

and

n

∗

2 = rn

∗

1 = number of controls

A second consideration is cost. In Section 17.3 we considered sample sizes as a function of cost

and related the sample sizes to precision. Now consider a slight reformulation of the problem in

the case–control context. Suppose that enrollment of a case costs c1 and enrollment of a control

costs c2. Pike and Casagrande [1979] show that a reasonable sample size approximation is

n1 = n

(

1 +

√

c1

c0

)

n2 = n

(

1 +

√

c0

c1

)

where n is defined by equations (17) or (18).
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Finally, frequently case–control study questions are put in terms of odds ratios (or relative

risks). Let the odds ratio be R = π1(1 − π2)/π2(1 − π1), where π1 and π2 are as defined

at the beginning of this section. If the control group has known exposure rate π2, that is,

P [exposure|control] = π2, then

π1 =

Rπ2

1 + π2(R − 1)

To calculate sample sizes, use equation (17) for specified values of π2 and R.

Mantel [1983] gives some clever suggestions for making binomial sample-size tables more

useful by making use of the fact that sample size is “inversely proportional to the square of the

difference being sought, everything else being more or less fixed.”

Newman [2001] is a good reference for sample-size questions involving survival data.

17.3 Power as a Function of Sample Size

Frequently, the question is not “How big should my sample size be” but rather, “I have 60

observations available; what kind of power do I have to detect a specified difference, relative

risk, or odds ratio?” The charts by Feigl illustrated in Chapter 6 provided one answer. Basically,

the question involves inversion of formulas such as given by equations (17) and (18), solving

them for Z1−β

, and calculating the associated area under the normal curve. Besides Feigl, several

authors have studied this problem or variations of it. Walter [1977] derived formulas for the

smallest and largest relative risk, R, that can be detected as a function of sample size, Type I

and Type II errors. Brittain and Schlesselman [1982] present estimates of power as a function

of possibly unequal sample size and cost.

17.4 Sample Size as a Function of Coefficient of Variation

Sometimes, sample-size questions are asked in the context of percent variability and percent

changes in means. With an appropriate, natural interpretation, valid answers can be provided.

Specifically, assume that by percent variability is meant the coefficient of variation, call it V ,

and that the second mean differs from the first mean by a factor f .

Let two normal populations have means µ1 and µ2 and standard deviations σ1 and σ2. The

usual sample-size formula for two independent samples needed to detect a difference µ1 − µ2

in means with Type I error α and power 1 − β is given by

n =

(z1−α/2 + z1−β

)

2
(σ

2
1 + σ

2
2 )

(µ1 − µ2)
2

where z1−γ

is the 100(1 − γ )th percentile of the standard normal distribution. This is the

formula for a two-sided alternative; n is the number of observations per group. Now assume

that µ1 = f µ2 and σ1/µ1 = σ2/µ2 = V . Then the formula transforms to

n = (z1−α/2 + z1−β

)

2
V

2

[

1 +

2f

(f − 1)

2

]

(21)

The quantity V is the usual coefficient of variation and f is the ratio of means. It does not matter

whether the ratio of means is defined in terms of 1/f rather than f .

Sometimes the problem is formulated with the variability V as specified but a percentage

change between means is given. If this is interpreted as the second mean, µ2, being a percent

change from the first mean, this percentage change is simply 100(f − 1)% and the formula

again applies. However, sometimes, the relative status of the means cannot be specified, so an
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interpretation of percent change is needed. If we know only that σ1 = V µ1 and σ2 = V µ2, the

formula for sample size becomes

n =

V

2
(z1−α/2 + z1−β

)

2

(

(µ1 − µ2)/
√

µ1µ2

)2

The quantity
(

(µ1 − µ2)/
√

µ1µ2

)

is the proportional change from µ1 to µ2 as a function

of their geometric mean. If the questioner, therefore, can only specify a percent change, this

interpretation is quite reasonable. Solving equation (21) for z1−β

allows us to calculate values

for power curves:

z1−β

= −z1−α/2 +

√

n|f − 1|

V

√

f

2
+ 1

(22)

A useful set of curves as a function of n and a common coefficient of variation V = 1 can be

constructed by noting that for two coefficients of variation V1 and V2, the sample sizes n(V1)

and n(V2), as functions of V1 and V2, are related by

n(V1)

n(V2)
=

σ

2
1

σ

2
2

for the same power and Type I error. See van Belle and Martin [1993] and van Belle [2001].

PROBLEMS

17.1 (a) Verify that the odds ratio and relative risk are virtually equivalent for

P [exposure] = 0.10, P [disease] = 0.01

in the following two situations:

π11 = P [exposed and disease] = 0.005

and π11 = 0.0025.

(b) Using equation (2), calculate the number of disease occurrences in the exposed

and unexposed groups that would have to be observed to detect the relative risks

calculated above with α = 0.05 (one-tailed) and β = 0.10.

(c) How many exposed persons would have to be observed (and hence, unexposed

persons as well)?

(d) Calculate the sample size needed if this test is one of K tests for K = 10, 100,

and 1000.

(e) In part (d), plot the logarithm of the sample size as a function of log K . What

kind of relationship is suggested? Can you state a general rule?

17.2 (After N. E. Breslow) Workers at all nuclear reactor facilities will be observed for a

period of 10 years to determine whether they are at excess risk for leukemia. The rate

in the general population is 7.5 cases per 100,000 person-years of observation. We want

to be 80% sure that a doubled risk will be detected at the 0.05 level of significance.

(a) Calculate the number of leukemia cases that must be detected among the nuclear

plant workers.
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(b) How many workers must be observed? That is, assuming the null hypothesis

holds, how many workers must be observed to accrue 9.1 leukemia cases?

(c) Consider this as a binomial sampling problem. Let π1 = 9.1/answer in part (b),

and let π2 = 2π1. Now use equation (17) to calculate n/2 as the required sample

size. How close is your answer to part (b)?

17.3 (After N. E. Breslow) The rate of lung cancer for men of working age in a certain

population is known to be on the order of 60 cases per 100,000 person-years of

observation. A cohort study using equal numbers of exposed and unexposed persons is

desired so that an increased risk of R = 1.5 can be detected with power 1 − β = 0.95

and α = 0.01.

(a) How many cases will have to be observed in the unexposed population? The

exposed population?

(b) How many person-years of observation at the normal rates will be required for

either of the two groups?

(c) How many workers will be needed assuming a 20-year follow-up?

17.4 (After N. E. Breslow) A case–control study is to be designed to detect an odds ratio

of 3 for bladder cancer associated with a certain medication that is used by about one

person out of 50 in the general population.

(a) For α = 0.05, and β = 0.05, calculate the number of cases and number of

controls needed to detect the increased odds ratio.

(b) Use the Poisson approximation procedure to calculate the sample sizes required.

(c) Four controls can be provided for each case. Use equations (19) and (20) to cal-

culate the sample sizes. Compare this result with the total sample size in part (a).

17.5 The sudden infant death syndrome (SIDS) occurs at a rate of approximately three

cases per 1000 live births. It is thought that smoking is a risk factor for SIDS, and

a case–control study is initiated to check this assumption. Since the major effort was

in the selection and recruitment of cases and controls, a questionnaire was developed

that contained 99 additional questions.

(a) Calculate the sample size needed for a case–control study using α = 0.05, in which

we want to be 95% certain of picking up an increased relative risk of 2 associated

with smoking. Assume that an equal number of cases and controls are selected.

(b) Considering smoking just one of the 100 risk factors considered, what sample

sizes will be needed to maintain an α = 0.05 per experiment error rate?

(c) Given the increased value of Z in part (b), suppose that the sample size is not

changed. What is the effect on the power? What is the power now?

(d) Suppose in part (c) that the power also remains fixed at 0.95. What is the mini-

mum relative risk that can be detected?

(e) Since smoking was the risk factor that precipitated the study, can an argument

be made for not testing it at a reduced α level? Formulate your answer carefully.

*17.6 Derive the square root rule starting with equations (4) and (5).

*17.7 Derive formula (16) from equation (14).

17.8 It has been shown that coronary bypass surgery does not prolong life in selected patients

with relatively mild angina (but may relieve the pain). A surgeon has invented a new
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bypass procedure that, she claims, will prolong life substantially. A trial is planned

with patients randomized to surgical treatment or standard medical therapy. Currently,

the five-year survival probability of patients with relatively mild symptoms is 80%.

The surgeon claims that the new technique will increase survival to 90%.

(a) Calculate the sample size needed to be 95% certain that this difference will be

detected using an α = 0.05 significance level.

(b) Suppose that the cost of a coronary bypass operation is approximately $50,000;

the cost of general medical care is about $10,000. What is the most economical

experiment under the conditions specified in part (a)? What are the total costs of

the two studies?

(c) The picture is more complicated than described in part (b). Suppose that about

25% of the patients receiving the medical treatment will go on to have a coronary

bypass operation in the next five years. Recalculate the sample sizes under the

conditions specified in part (a).

*17.9 Derive the sample sizes in Table 17.4 for D = 0.5, p = 0.8, α = 0.5, and k =

20,100,300.

*17.10 Consider the situation in Example 17.4.

(a) Calculate the sample size as a function of m, the number of variables, by con-

sidering m = 10 and m = 20.

(b) What is the relationship of sample size to variables?

17.11 Two groups of rats, one young and the other old, are to be compared with respect to

levels of nerve growth factor (NGF) in the cerebrospinal fluid. It is estimated that the

variability in NGF from animal to animal is on the order of 60%. We want to look at

a twofold ratio in means between the two groups.

(a) Using the formula in Note 17.4, calculate the sample size per group using a

two-sided alternative, α = 0.05, and a power of 0.80.

(b) Suppose that the ratio of the means is really 1.6. What is the power of detecting

this difference with the sample sizes calculated in part (a)?
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Longitudinal Data Analysis

18.1 INTRODUCTION

One of the most common medical research designs is a “pre–post” study in which a single

baseline health status measurement is obtained, an intervention is administered, and a single

follow-up measurement is collected. In this experimental design, the change in the outcome

measurement can be associated with the change in the exposure condition. For example, if

some subjects are given placebo while others are given an active drug, the two groups can be

compared to see if the change in the outcome is different for those subjects who are actively

treated as compared to control subjects. This design can be viewed as the simplest form of a

prospective longitudinal study.

Definition 18.1. A longitudinal study refers to an investigation where participant outcomes

and possibly treatments or exposures are collected at multiple follow-up times.

A longitudinal study generally yields multiple or “repeated” measurements on each subject.

For example, HIV patients may be followed over time and monthly measures such as CD4

counts or viral load are collected to characterize immune status and disease burden, respectively.

Such repeated-measures data are correlated within subjects and thus require special statistical

techniques for valid analysis and inference.

A second important outcome that is commonly measured in a longitudinal study is the time

until a key clinical event such as disease recurrence or death. Analysis of event-time endpoints

is the focus of survival analysis, which is covered in Chapter 16.

Longitudinal studies play a key role in epidemiology, clinical research, and therapeutic eval-

uation. Longitudinal studies are used to characterize normal growth and aging, to assess the

effect of risk factors on human health, and to evaluate the effectiveness of treatments.

Longitudinal studies involve a great deal of effort but offer several benefits, which include:

1. Incident events recorded. A prospective longitudinal study measures the new occurrence

of disease. The timing of disease onset can be correlated with recent changes in patient exposure

and/or with chronic exposure.

2. Prospective ascertainment of exposure. In a prospective study, participants can have their

exposure status recorded at multiple follow-up visits. This can alleviate recall bias where sub-

jects who subsequently experience disease are more likely to recall their exposure (a form of

measurement error). In addition, the temporal order of exposures and outcomes is observed.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.

728



INTRODUCTION 729

3. Measurement of individual change in outcomes. A key strength of a longitudinal study is

the ability to measure change in outcomes and/or exposure at the individual level. Longitudinal

studies provide the opportunity to observe individual patterns of change.

4. Separation of time effects: cohort, period, age. When studying change over time, there are

many time scales to consider. The cohort scale is the time of birth, such as 1945 or 1963; period

is the current time, such as 2003; and age is (period − cohort), for example, 58 = 2003 − 1945,

and 40 = 2003 − 1963. A longitudinal study with measurements at times t1, t2, . . . , t

n

can

simultaneously characterize multiple time scales such as age and cohort effects using covariates

derived from the calendar time of visit and the participant’s birth year: the age of subject i at

time t

j

is age
ij

= t

j

− birth
i

; and their cohort is simply cohort
ij

= birth
i

. Lebowitz [1996]

discusses age, period, and cohort effects in the analysis of pulmonary function data.

5. Control for cohort effects. In a cross-sectional study the comparison of subgroups of differ-

ent ages combines the effects of aging and the effects of different cohorts. That is, comparison

of outcomes measured in 2003 among 58-year-old subjects and among 40-year-old subjects

reflects both the fact that the groups differ by 18 years (aging) and the fact that the subjects

were born in different eras. For example, the public health interventions, such as vaccinations

available for a child under 10 years of age, may differ in 1945–1955 compared to the preventive

interventions experienced in 1963–1973. In a longitudinal study, the cohort under study is fixed,

and thus changes in time are not confounded by cohort differences.

An overview of longitudinal data analysis opportunities in respiratory epidemiology is pre-

sented in Weiss and Ware [1996].

The benefits of a longitudinal design are not without cost. There are several challenges posed:

1. Participant follow-up. There is the risk of bias due to incomplete follow-up, or dropout of

study participants. If subjects who are followed to the planned end of a study differ from subjects

who discontinue follow-up, a naive analysis may provide summaries that are not representative

of the original target population.

2. Analysis of correlated data. Statistical analysis of longitudinal data requires methods that

can properly account for the intrasubject correlation of response measurements. If such cor-

relation is ignored, inferences such as statistical tests or confidence intervals can be grossly

invalid.

3. Time-varying covariates. Although longitudinal designs offer the opportunity to associate

changes in exposure with changes in the outcome of interest, the direction of causality can

be complicated by “feedback” between the outcome and the exposure. For example, in an

observational study of the effects of a drug on specific indicators of health, a patient’s current

health status may influence the drug exposure or dosage received in the future. Although scientific

interest lies in the effect of medication on health, this example has reciprocal influence between

exposure and outcome and poses analytical difficulty when trying to separate the effect of

medication on health from the effect of health on drug exposure.

18.1.1 Example studies

In this section we give some examples of longitudinal studies and focus on the primary scientific

motivation in addition to key outcome and covariate measurements.

Child Asthma Management Program

In the Child Asthma Management Program (CAMP) study, children are randomized to different

asthma management regimes. CAMP is a multicenter clinical trial whose primary aim is evalua-

tion of the long-term effects of daily inhaled anti-inflammatory medication use on asthma status

and lung growth in children with mild to moderate asthma [The Childhood Asthma Management
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Program Research group, 2000]. Outcomes include continuous measures of pulmonary function

and categorical indicators of asthma symptoms. Secondary analyses have investigated the asso-

ciation between daily measures of ambient pollution and the prevalence of symptoms. Analysis

of an environmental exposure requires specification of a lag between the day of exposure and

the resulting effect. In the air pollution literature, short lags of 0 to 2 days are commonly used

[Samet et al., 2000; Yu et al., 2000]. For both the evaluation of treatment and exposure to

environmental pollution, the scientific questions focus on the association between an exposure

(treatment, pollution) and health measures. The within-subject correlation of outcomes is of

secondary interest, but must be acknowledged to obtain valid statistical inference.

Cystic Fibrosis Foundation Registry

The Cystic Fibrosis Foundation maintains a registry of longitudinal data for subjects with

cystic fibrosis. Pulmonary function measures, such as the 1-second forced expiratory volume

(FEV1), and patient health indicators, such as infection with Pseudomonas aeruginosa, have

been recorded annually since 1966. One scientific objective is to characterize the natural course

of the disease and to estimate the average rate of decline in pulmonary function. Risk factor anal-

ysis seeks to determine whether measured patient characteristics such as gender and genotype

correlate with disease progression or with an increased rate of decline in FEV1. The registry data

represent a typical observational design where the longitudinal nature of the data are important

for determining individual patterns of change in health outcomes such as lung function.

Multicenter AIDS Cohort Study

The Multicenter AIDS Cohort Study (MACS) enrolled more than 3000 men who were at risk

for acquisition of HIV1 [Kaslow et al., 1987]. This prospective cohort study observed N = 479

incident HIV1 infections and has been used to characterize the biological changes associated with

disease onset. In particular, this study has demonstrated the effect of HIV1 infection on indicators

of immunologic function such as CD4 cell counts. One scientific question is whether baseline

characteristics such as viral load measured immediately after seroconversion are associated with

a poor patient prognosis as indicated by a greater rate of decline in CD4 cell counts. We use

these data to illustrate analysis approaches for continuous longitudinal response data.

HIVNET Informed Consent Substudy

Numerous reports suggest that the process of obtaining informed consent in order to participate

in research studies is often inadequate. Therefore, for preventive HIV vaccine trials a prototype

informed consent process was evaluated among N = 4892 subjects participating in the Vaccine

Preparedness Study (VPS). Approximately 20% of subjects were selected at random and asked

to participate in a mock informed consent process [Coletti et al., 2003]. Participant knowledge of

key vaccine trial concepts was evaluated at baseline prior to the informed consent visit, which

occurred during a special three-month follow-up visit for the intervention subjects. Vaccine

trial knowledge was then assessed for all participants at the scheduled six-, 12-, and 18-month

visits. This study design is a basic longitudinal extension of a pre–post design. The primary

outcomes include individual knowledge items and a total score that calculates the number of

correct responses minus the number of incorrect responses. We use data on a subset of men

and women VPS participants. We focus on subjects who were considered at high risk of HIV

acquisition, due to injection drug use.

18.1.2 Notation

In this chapter we use Y

ij

to denote the outcome measured on subject i at time t

ij

. The index

i = 1, 2, . . . , N is for subject, and the index j = 1, 2, . . . , n is for observations within a

subject. In a designed longitudinal study the measurement times will follow a protocol with
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a common set of follow-up times, t

ij

= t

j

. For example, in the HIVNET Informed Consent

Study, subjects were measured at baseline, t1 = 0, at six months after enrollment, t2 = six

months, and at 12 and 18 months, t3 = 12 months, t4 = 18 months. We let X

ij

denote

covariates associated with observation Y

ij

. Common covariates in a longitudinal study include

the time, t

ij

, and person-level characteristics such as treatment assignment or demographic

characteristics.

Although scientific interest often focuses on the mean response as a function of covariates

such as treatment and time, proper statistical inference must account for the within-person

correlation of observations. Define ρ

jk

= corr(Y
ij

, Y

ik

), the within-subject correlation between

observations at times t

j

and t

k

. In the following section we discuss methods for exploring the

structure of within-subject correlation, and in Section 18.5 we discuss estimation methods that

model correlation patterns.

18.2 EXPLORATORY DATA ANALYSIS

Exploratory analysis of longitudinal data seeks to discover patterns of systematic variation across

groups of patients, as well as aspects of random variation that distinguish individual patients.

18.2.1 Group Means over Time

When scientific interest is in the average response over time, summary statistics such as means

and standard deviations can reveal whether different groups are changing in a similar or different

fashion.

Example 18.1. Figure 18.1 shows the mean knowledge score for the informed consent

subgroups in the HIVNET Informed Consent Substudy. At baseline the intervention and control

groups have very similar mean scores. This is expected since the group assignment is determined

by randomization that occurs after enrollment. At an interim three-month visit the intervention

subjects are given a mock informed consent for participation in a hypothetical phase III vaccine

efficacy trial. The impact of the intervention can be seen by the mean scores at the six-month

visit. In the control group the mean at six months is 1.49(SE = 0.11), up slightly from the

baseline mean of 1.16(SE = 0.11). In contrast, the intervention group has a six-month mean

score of 3.43(SE = 0.24), a large increase from the baseline mean of 1.09(SE = 0.24). The

intervention and control groups are significantly different at six months based on a two-sample

t-test. At later follow-up times, further change is observed. The control group has a mean that

increases to 1.98 at the 12-month visit and to 2.47 at the 18-month visit. The intervention group

fluctuates slightly with means of 3.25(SE = 0.27) at month 12 and 3.76(SE = 0.25) at 18

months. These summaries suggest that the intervention has a significant effect on knowledge,

and that a small improvement is seen over time in the control group.

Example 18.2. In the MACS study we compare different groups of subjects formed on

the basis of their initial viral load measurement. Low viral load is defined by a baseline value

less than 15 × 103, medium as 15 × 103 to 46 × 103, and high viral load is classified for

subjects with a baseline measurement greater than 46 × 103. Table 18.1 gives the average CD4

count for each year of follow-up. The mean CD4 declines over time for each of the viral load

groups. The subjects with the lowest baseline viral load have a mean of 744.8 for the first year

after seroconversion and then decline to a mean count of 604.8 during the fourth year. The

744.8 − 604.8 = 140.0-unit reduction is smaller than the decline observed for the medium-

viral-load group, 638.9 − 470.0 = 168.9, and the high-viral-load group, 600.3 − 353.9 = 246.4.

Therefore, these summaries suggest that higher baseline viral-load measurements are associated

with greater subsequent reduction in mean CD4 counts.
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Figure 18.1 Mean knowledge scores over time by treatment group, HIVNET informed consent substudy.

Table 18.1 Mean CD4 Count and Standard Error

over Timea

Baseline Viral Load

Low Medium High

Year Mean SE Mean SE Mean SE

0–1 744.8 35.8 638.9 27.3 600.3 30.4

1–2 721.2 36.4 588.1 25.7 511.8 22.5

2–3 645.5 37.7 512.8 28.5 474.6 34.2

3–4 604.8 46.8 470.0 28.7 353.9 28.1

aSeparate summaries are given for groups defined by baseline
viral load level.

Example 18.1. (continued ) In the HIVNET informed consent substudy we saw a substantial

improvement in the knowledge score. It is also relevant to consider key individual items that

comprise the total score, such as the “safety item” or “nurse item.” Regarding safety, participants

were asked whether it was true or false that “Once a large-scale HIV vaccine study begins, we

can be sure the vaccine is completely safe.” Table 18.2 shows the number of responding subjects

at each visit and the percent of subjects who correctly answered that the safety statement is false.

These data show that the control and intervention groups have a comparable understanding of the

safety item at baseline with 40.9% answering correctly among controls, and 39.2% answering

correctly among the intervention subjects. A mock informed consent was administered at a

three-month visit for the intervention subjects only. The impact of the intervention appears

modest, with only 50.3% of intervention subjects correctly responding at six months. This

represents a 10.9% increase in the proportion answering correctly, but a two-sample comparison

of intervention and control proportions at six months (e.g., 50.3% vs. 42.7%) is not significant
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Table 18.2 Number of Subjects and Percent

Answering Correctly for the Safety Item from the

HIVNET Informed Consent Substudy

Control Group Intervention Group

Visit N % Correct N % Correct

Baseline 946 40.9 176 39.2

six-month 838 42.7 171 50.3

12-month 809 41.5 163 43.6

18-month 782 43.5 153 43.1

Table 18.3 Number of Subjects and Percent

Answering Correctly for the Nurse Item from the

HIVNET Informed Consent Substudy

Control Group Intervention Group

Visit n % Correct n % Correct

Baseline 945 54.1 176 50.3

six-month 838 44.7 171 72.1

12-month 808 46.3 163 60.1

18-month 782 48.2 153 66.0

statistically. Finally, the modest intervention impact does not appear to be retained, as the

fraction correctly answering this item declines to 43.6% at 12 months and 43.1% at 18 months.

Therefore, these data suggest a small but fleeting improvement in participant understanding that

a vaccine studied in a phase III trial cannot be guaranteed to be safe.

Other items show different longitudinal trends. Subjects were also asked whether it was true

or false that “The study nurse will decide who gets the real vaccine and who gets the placebo.”

Table 18.3 shows that the groups are again comparable at baseline, but for the nurse item we see

a large increase in the fraction answering correctly among intervention subjects at six months

with 72.1% answering correctly that the statement is false. A cross-sectional analysis indicates

a statistically significant difference in the proportion answering correctly at six months with a

confidence interval for the difference in proportions of (0.199, 0.349). Although the magnitude

of the separation between groups decreases from 27.4% at six months to 17.8% at 18 months,

the confidence interval for the difference in proportions at 18 months is (0.096, 0.260) and

excludes the null comparison, p1 − p0 = 0. Therefore, these data suggest that the intervention

has a substantial and lasting impact on understanding that research nurses do not determine

allocation to real vaccine or placebo.

18.2.2 Variation among Subjects

With independent observations we can summarize the uncertainty or variability in a response

measurement using a single variance parameter. One interpretation of the variance is given

as one-half the expected squared distance between any two randomly selected measurements,

σ

2
=

1
2
E[(Y

i

− Y

j

)

2]. However, with longitudinal data the “distance” between measurements

on different subjects is usually expected to be greater than the distance between repeated mea-

surements taken on the same subject. Thus, although the total variance may be obtained with

outcomes from subjects i and i

′ observed at time t

j

, σ

2
=

1
2
E[(Y

ij

− Y

i

′
j

)

2] [assuming that

E(Y

ij

) = E(Y

i

′
j

) = µ], the expected variation for two measurements taken on the same person



734 LONGITUDINAL DATA ANALYSIS

(subject i) but at times t

j

and t

k

may not equal the total variation σ

2 since the measurements

are correlated: σ

2
(1 − ρ

jk

) =
1
2
E[(Y

ij

− Y

ik

)

2] [assuming that E(Y

ij

) = E(Y

ik

) = µ]. When

ρ

jk

> 0, this shows that between-subject variation is greater than within-subject variation. In

the extreme, ρ

jk

= 1 and Y

ij

= Y

ik

, implying no variation for repeated observations taken on

the same subject.

Graphical methods can be used to explore the magnitude of person-to-person variability in

outcomes over time. One approach is to create a panel of individual line plots for each study

participant. These plots can then be inspected for both the amount of variation from subject to

subject in the overall “level” of the response and the magnitude of variation in the “trend” over

time in the response. Such exploratory data analysis can be useful for determining the types of

correlated data regression models that would be appropriate. In Section 18.5 we discuss random

effects regression models for longitudinal data. In addition to plotting individual series, it is also

useful to plot multiple series on a single plot, stratifying on the value of key covariates. Such a

plot allows determination of whether the type and magnitude of intersubject variation appears

to differ across the covariate subgroups.

Example 18.2. (continued ) In Figure 18.2 we plot an array of individual series from the

MACS data. In each panel the observed CD4 count for a single subject is plotted against the

times that measurements were obtained. Such plots allow inspection of the individual response

patterns and whether there is strong heterogeneity in the trajectories. Figure 18.2 shows that

there can be large variation in the “level” of CD4 for subjects. Subject ID = 1120 in the upper

right corner has CD4 counts greater than 1000 for all times, while ID = 1235 in the lower left

corner has all measurements below 500. In addition, individuals plots can be evaluated for the

change over time. Figure 18.2 indicates that most subjects are either relatively stable in their

measurements over time, or tend to be decreasing.

In the common situation where we are interested in correlating the outcome to measured

factors such as treatment group or exposure, it will also be useful to plot individual series

stratified by covariate group. Figure 18.3 takes a sample of the MACS data and plots lines for

each subject stratified by the level of baseline viral load. This figure suggests that the highest viral

load group has the lowest mean CD4 count and suggests that variation among measurements

may also be lower for the high baseline viral-load group compared to the medium- and low-

viral-load groups. Figure 18.3 can also be used to identify those who exhibit time trends that

differ markedly from the profiles of others. In the high-viral-load group there is a person who

appears to improve dramatically over time, and there is a single unusual measurement where

the CD4 count exceeds 2000. Plotting individual series is a useful exploratory prelude to more

careful confirmatory statistical analysis.

18.2.3 Characterizing Correlation and Covariance

With correlated outcomes it is useful to understand the strength of correlation and the pattern

of correlations across time. Characterizing correlation is useful for understanding components

of variation and for identifying a variance or correlation model for regression methods such as

mixed-effects models or generalized estimating equations (GEEs), discussed in Section 18.5.2.

One summary that is used is an estimate of the covariance matrix, which is defined as
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Figure 18.2 A sample of individual CD4 trajectories from the MACS data.
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Figure 18.3 Individual CD4 trajectories from the MACS data by tertile of viral load.
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The covariance can also be written in terms of the variances σ

2
j

and the correlations ρ

jk

:

cov(Y

i

) =
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Finally, the correlation matrix is given as

corr(Y
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) =
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which is useful for comparing the strength of association between pairs of outcomes, particularly

when the variances σ

2
j

are not constant. Sample estimates of the correlations can be obtained

using

ρ̂

jk

=

1

N − 1

∑

i

(Y

ij

− Y ·j )

σ̂

j

(Y

ik

− Y ·k)

σ̂

k

where σ̂

2
j

and σ̂

2
k

are the sample variances of Y

ij

and Y

ik

, respectively (i.e., across subjects for

times t

j

and t

k

).

Graphically, the correlation can be viewed using plots of Y

ij

vs. Y

ik

for all possible pairs

of times t

j

and t

k

. These plots can be arranged in an array that corresponds to the covariance

matrix and patterns of association across rows or columns can reveal changes in the correlation

as a function of increasing time separation between measurements.

Example 18.1. (continued ) For the HIVNET informed consent data, we focus on correla-

tion analysis of outcomes from the control group. Parallel summaries would usefully characterize

the similarity or difference in correlation structures for the control and intervention groups. The

correlation matrix is estimated as follows:

Month 0 Month 6 Month 12 Month 18

Month 0 1.00 0.471 0.394 0.313

Month 6 0.471 1.00 0.444 0.407

Month 12 0.394 0.444 1.00 0.508

Month 18 0.313 0.407 0.508 1.00

The matrix suggests that the correlation in outcomes from the same person is slightly decreasing

as the time between the measurements increases. For example, the correlation between knowl-

edge scores from baseline and month 6 is 0.471, while the correlation between baseline and

month 12 decreases to 0.394, and decreases further to 0.313 for baseline and month 18. Correla-

tion that decreases as a function of time separation is common among biomedical measurements

and often reflects slowly varying underlying processes.

Example 18.2. (continued ) For the MACS data the timing of measurement is only approx-

imately regular. The following displays both the correlation matrix and the covariance matrix:
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Year 1 Year 2 Year 3 Year 4

Year 1 92,280.4 [ 0.734] [ 0.585] [ 0.574]

Year 2 63,589.4 81,370.0 [ 0.733] [ 0.695]

Year 3 48,798.2 57,457.5 75,454.5 [ 0.806]

Year 4 55,501.2 63,149.9 70,510.1 101,418.2

The correlations are shown in brackets above. The variances are shown on a diagonal

below the correlations. For example, the standard deviation among year 1 CD4 counts is
√

92,280.4 = 303.8, while the standard deviations for years 2 through 4 are
√

81,370.0 =

285.3,
√

75,454.5 = 274.7, and
√

101,418.2 = 318.5, respectively. Below the diagonal are

the covariances, which together with the standard deviations determine the correlations. These

data have a correlation for measurements that are one year apart of 0.734, 0.733, and 0.806.

For measurements two years apart, the correlation decreases slightly to 0.585 and 0.695.

Finally, measurements that are three years apart have a correlation of 0.574. Thus, the CD4

counts have a within-person correlation that is high for observations close together in time,

but the correlation tends to decrease with increasing time separation between the measurement

times.

An alternative method for exploring the correlation structure is through an array of scatter

plots showing CD4 measured at year j versus CD4 measured at year k. Figure 18.4 displays

these scatter plots. It appears that the correlation in the plot of year 1 vs. year 2 is stronger than

for year 1 vs. year 3, or for year 1 vs. year 4. The sample correlations ρ̂12 = 0.734, ρ̂13 = 0.585,

and ρ̂14 = 0.574 summarize the linear association presented in these plots.

18.3 DERIVED VARIABLE ANALYSIS

Formal statistical inference with longitudinal data requires either that a univariate summary be

created for each subject or that methods for correlated data are used. In this section we review

and critique common analytic approaches based on creation of summary measures.

A derived variable analysis is a method that takes a collection of measurements and collapses

them into a single meaningful summary feature. In classical multivariate methods principal com-

ponent analysis is one approach for creating a single major factor. With longitudinal data the

most common summaries are the average response and the time slope. A second approach is

a pre–post analysis which analyzes a single follow-up response in conjunction with a base-

line measurement. In Section 18.3.1 we first review average or slope analyses, and then in

Section 18.3.2 we discuss general approaches to pre–post analysis.

18.3.1 Average or Slope Analysis

In any longitudinal analysis the substantive aims determine which aspects of the response tra-

jectory are most important. For some applications the repeated measures over time may be

averaged, or if the timing of measurement is irregular, an area under the curve (AUC) sum-

mary can be the primary feature of interest. In these situations statistical analysis will focus on

Y

i

= 1/n

∑

n

j=1 Y

ij

. A key motivation for computing an individual average and then focusing

analysis on the derived averages is that standard methods can be used for inference such as a

two-sample t-test. However, if there are any incomplete data, the advantage is lost since either

subjects with partial data will need to be excluded, or alternative methods need to be invoked

to handle the missingness. Attrition in longitudinal studies is unfortunately quite common, and

thus derived variable methods are often more difficult to apply validly than they may first

appear.
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Figure 18.4 Scatter plots of CD4 measurements (counts/mL) taken at years 1 to 4 after seroconversion.

Example 18.1. (continued ) In the HIVNET informed consent study, the goal is to improve

participant knowledge. A derived variable analysis to evaluate evidence for an effect due to

the mock informed consent process can be conducted using Y

i

= (Y

i1 + Y

i2 + Y

i3)/3 for the

post-baseline times t1 = six months, t2 = 12 months, and t3 = 18 months. The following table

summarizes the data for subjects who have all three post-baseline measurements:
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Baseline Final

Group N N Mean SE 95% CI

Control 947 714 2.038 0.095

Intervention 177 147 3.444 0.223

Difference 1.406 0.243 [0.928, 1.885]

First, notice that only 714/947 = 75.4% of control subjects, and 147/177 = 83.1% of interven-

tion subjects have complete data and are therefore included in the analysis. This highlights one

major limitation to derived variable analysis: There may be selection bias due to exclusion of sub-

jects with missing data. We discuss missing data issues in Section 18.6. Based on the data above,

we would conclude that there is a statistically significant difference between the mean knowl-

edge for the intervention and control groups with a two-sample t-test of t = 5.796, p < 0.001.

Analysis of the single summary for each subject allows the repeated outcome variables to be

analyzed using standard independent sample methods.

In other applications, scientific interest centers on the rate of change over time and therefore

an individual’s slope may be considered as the primary outcome. Typically, each subject in a

longitudinal study has only a small number of outcomes collected at the discrete times specified

in the protocol. For example, in the MACS data, each subject was to complete a study visit

every 6 months and with complete data would have nine measurements between baseline and

48 months. If each subject has complete data, an individual summary statistic can be computed

as the regression of outcomes Y

ij

on times t

j

: Y

ij

= β

i,0 + β

i,1tj + ǫ

ij

; and ̂

β

i

is the ordinary

least squares estimate based on data from subject i only. In the case where all subjects have the

same collection of measurement times and have complete data, the variation in the estimated

slope, ̂

β

i,1, will be equal across subjects provided that the variance of ǫ

ij

is also constant across

subjects. Therefore, if

1. The measurement times are common to all subjects: t1, t2, . . . , t

n

,

2. Each subject has a complete collection of measurements: Y

i1, Y

i2, . . . , Y

in

,

3. The within-subject variation σ

2
i

= var(ǫ
ij

) is constant across subjects: σ

2
i

≡ σ

2,

then the summaries ̂

β

i,1 will have equal variances attributable to using simple linear regression

to estimate individual slopes. If any of points 1 to 3 above do not hold, the variance of individual

summaries may vary across subjects. This will be the case when each subject has a variable

number of outcomes, due to missing data.

When points 1 to 3 are satisfied, simple inference on the derived outcomes ̂

β

i,1 can be

performed using standard two-sample methods or regression methods. This allows inference

regarding factors that are associated with the rate of change over time. If any of points 1 to 3 do

not hold, mixed model regression methods (Section 18.5) may be preferable to simple derived

variable methods. See Frison and Pocock [1992, 1997] for further discussion of derived variable

methods.

Example 18.2. (continued ) For the MACS data, we are interested in determining whether

the rate of decline in CD4 is correlated with the baseline viral load measurement. In Section 18.2

we looked at descriptive statistics comparing the mean CD4 count over time for categories of

viral load. We now explore the association between the rate of decline and baseline viral load

by obtaining a summary statistic, using the individual time slope ̂

β

i

obtained from a regression

of the CD4 count Y

ij

on measurement time t

ij

. Figure 18.5 shows a scatter plot of the individual

slope estimates plotted against the log of baseline viral load. First notice that plotting symbols

of different sizes are used to reflect the fact that the number of measurements per subject, n

i

,
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Figure 18.5 Individual CD4 slopes (count/month) vs. log of baseline viral load, MACS data.

is not constant. The plotting symbol size is proportional to n

i

. For the MACS data we have the

following distribution for the number of observations per subjects over the first four years:

Number of Observations, n
i

1 2 3 4 5 6 7 8 9

Number of 5 13 8 10 25 44 82 117 3

subjects

For Figure 18.5 the (5 + 13) = 18 subjects with either one or two measurements were excluded

as a summary slope is either unestimable (n
i

= 1) or highly variable (n
i

= 2). Figure 18.5

suggests that there is a pattern of decreasing slope with increasing log baseline viral load.

However, there is also a great deal of subject-to-subject variation in the slopes, with some

subjects having ̂

β

i,1 > 0 count/month, indicating a stable or increasing trend, and some subjects

having ̂

β

i,1 < 15 count/month, suggesting a steep decline in their CD4. A linear regression

using the individual slope as the response and log baseline viral load as the predictor yields

a p-value of 0.124, implying a nonsignificant linear association between the summary statistic
̂

β

i,1 and log baseline viral load.

A categorical analysis using tertiles of baseline viral load parallels the descriptive statistics

presented in Table 18.1. The average rate of decline in CD4 can be estimated as the mean of

the individual slope estimates:

N Subjects Average Slope SE

Low viral load 66 −5.715 1.103

Medium viral load 69 −4.697 0.802

High viral load 65 −7.627 0.789
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We find similar average rates of decline for the medium- and low-viral-load groups and find a

greater rate of decline for the high-viral-load group. Using anova, we obtain an F -statistic of

2.68 on 2 and 197 degrees of freedom, with a p-value of 0.071, indicating that we would not

reject equality of average rates of decline using the nominal 5% significance level.

Note that neither simple linear regression nor anova accounts for the fact that response

variables ̂

β

i,1 may have unequal variance due to differing n

i

. In addition, a small number of

subjects were excluded from the analysis since a slope summary was unavailable. In Section

18.5 we discuss regression methods for correlated data that can efficiently use all of the available

data to make inferences with longitudinal data.

18.3.2 Pre–Post Analysis

In this section we discuss analytic methods appropriate when a single baseline and a single

follow-up measurement are available. We focus on the situation where interest is in the com-

parison of two groups: X

i

= 0 denotes membership in a reference or control group; and X

i

= 1

denotes membership in an exposure or intervention group. Assume for each subject i that we

have a baseline measurement denoted as Y

i0 and a follow-up measurement denoted as Y

i1. The

following table summarizes three main analysis options using regression methods to characterize

the two-group comparison:

Follow-up only: Y

i1 = β0 + β1Xi

+ ǫ

i

Change analysis: Y

i1 − Y

i0 = β

∗

0 + β

∗

1 X

i

+ ǫ

∗

i

ancova: Y

i1 = β

∗∗

0 + β

∗∗

1 X

i

+ β

∗∗

2 Y

i0 + ǫ

∗∗

i

Since X

i

is a binary response variable we can interpret the coefficients β1, β
∗

1 , and β

∗∗

1 as

differences in means comparing X

i

= 1 to X

i

= 0. Specifically, for the follow-up only analysis

the coefficient β1 represents the difference in the mean response at follow-up comparing X

i

= 1

to X

i

= 0. If the assignment to X

i

= 0/1 was randomized, the simple follow-up comparison is

a valid causal analysis of the effect of the treatment. For change analysis the coefficient β

∗

1 is

interpreted as the difference between the average change for X

i

= 1 as compared to the average

change for X

i

= 0. Finally, using ancova estimates β

∗∗

1 , which represents the difference in

the mean follow-up outcome comparing exposed (X
i

= 1) to unexposed (X
i

= 0) subjects who

are equal in their baseline response. Equivalently, we interpret β

∗∗

1 as the comparison of treated

versus control subjects after adjusting for baseline.

It is important to recognize that each of these regression models provides parameters with

different interpretations. In situations where the selection of treatment or exposure is not ran-

domized, the ancova analysis can control for “confounding due to indication,” or where the

baseline value Y

i0 is associated with a greater or lesser likelihood of receiving the treatment

X

i

= 1. When treatment is randomized, Frison and Pocock [1992] show that β1 = β

∗

1 = β

∗∗

1 .

This result implies that for a randomized exposure each approach can provide a valid estimate

of the average causal effect of treatment. However, Frison and Pocock [1992] also show that

the most precise estimate of β1 is obtained using ancova, and that final measurement analysis

is more precise than the change analysis when the correlation between baseline and follow-up

measurements is less than 0.50. This results from var(Y
i1 − Y

i0) = 2σ

2
(1 − ρ), which is less

than σ

2 only when ρ >

1
2

.

Example 18.1. (continued ) To evaluate the effect of the HIVNET mock informed consent,

we focus analysis on the baseline and six-month knowledge scores. The following tables give
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inference for the follow-up, Y

i1:

6-month

Group N Mean SE 95% CI

Control 834 1.494 0.111

Intervention 169 3.391 0.240

Difference 1.900 0.264 [1.375, 2.418]

and for the change in knowledge score, Y

i1 − Y

i0, for the 834/947 control subjects and 169/177

intervention subjects who have both baseline and six-month outcomes:

Mean

Group N Change SE 95% CI

Control 834 0.243 0.118

Intervention 169 2.373 0.263

Difference 2.130 0.288 [1.562, 2.697]

The correlation between baseline and month 6 knowledge score is 0.462 among controls and

0.411 among intervention subjects. Since ρ < 0.5, we expect an analysis of the change in

knowledge score to lead to a larger standard error for the treatment effect than a simple cross-

sectional analysis of scores at the six-month visit.

Alternatively, we can regress the follow-up on baseline and treatment:

Coefficients Estimate SE Z-value

(Intercept) 0.946 0.105 9.05

Treatment 1.999 0.241 8.30

Baseline (Y
i0) 0.438 0.027 16.10

In this analysis the estimate of the treatment effect is 1.999, with a standard error of 0.241.

The estimate of β1 is similar to that obtained from a cross-sectional analysis using six-month

data only, and to the analysis of the change in knowledge score. However, as predicted, the

standard error is smaller that the standard error for each alternative analysis approach. Finally,

in Figure 18.6, the six-month knowledge score is plotted against the baseline knowledge score.

Separate regression lines are fit and plotted for the intervention and control groups. We see

that the fitted lines are nearly parallel, indicating that the ancova assumption is satisfied for

these data.

For discrete outcomes, different pre–post analysis options can be considered. For example,

with a binary baseline, Y

i0 = 0/1, and a binary follow-up, Y

i1 = 0/1, the difference, Y

i1 − Y

i0,

takes the values −1, 0,+1. A value of −1 means that a subject has changed from Y

i0 = 1 to

Y

i1 = 0, while +1 means that a subject has changed from Y

i0 = 0 to Y

i1 = 1. A difference of 0

means that a subject had the same response at baseline and follow-up and does not distinguish

between Y

i0 = Y

i1 = 0 and Y

i0 = Y

i1 = 1. Rather than focus on the difference, it is useful to

consider an analysis of change by subsetting on the baseline value. For example, in a comparative

study we can subset on subjects with baseline value Y

i0 = 1 and then assess the difference

between intervention and control groups with respect to the percent that respond Y

i1 = 1 at

follow-up. This analysis allows inference regarding differential change from 0 to 1 comparing
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Figure 18.6 Month 6 knowledge score vs. baseline knowledge score (jittered), HIVNET informed consent

substudy. Open points and dashed line represent intervention; solid points and line represent control.

the two groups. When a response value of 1 indicates a positive outcome, this analysis provides

information about the “corrective” potential for intervention and control groups. An analysis that

restricts to subjects with baseline Y

i0 = 1 and then comparing treatment and control subjects

at follow-up will focus on a second aspect of change. In this case we are summarizing the

fraction of subjects that start with Y

i0 = 1 and then remain with Y

i1 = 1 and thus do not

change their outcome but rather, maintain the outcome. When the outcome Y

ij

= 1 indicates a

favorable status, this analysis summarizes the relative ability of intervention and control groups

to “maintain” the favorable status. Statistical inference can be based on standard two-sample

methods for binary data (see Chapter 6). An analysis that summarizes current status at follow-

up stratifying on the baseline, or previous outcome, is a special case of a transition model (see

Diggle et al. [2002, Chap. 10]).

Example 18.1. (continued ) The HIVNET informed consent substudy was designed to eval-

uate whether an informed consent procedure could correct misunderstanding regarding vaccine

trial conduct and to reinforce understanding that may be tentative. In Section 18.2 we saw

that for the safety item assessment at six months the intervention group had 50% of subjects

answer correctly as compared to only 43% of control subjects. For the nurse item the frac-

tions answering correctly at six months were 72% and 45% for intervention and control groups,

respectively. By analyzing the six-month outcome separately for subjects that answered incor-

rectly at baseline, Y

i0 = 0, and for subjects that answered correctly at baseline, Y

i0 = 1, we

can assess the mechanisms that lead to the group differences at six months: Does the inter-

vention experience lead to greater rates of “correction” where answers go from 0 → 1 for

baseline and six-month assessments; and does intervention appear to help “maintain” or rein-

force correct knowledge by leading to increased rates of 1 → 1 for baseline and six-month

responses?
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The following table stratifies the month 6 safety knowledge item by the baseline response:

Safety Item

“Correction” : Y
i0 = 0 “Maintain” : Y

i0 = 1

Percent Correct Percent Correct

N Y
i1 = 1 N Y

i1 = 1

Control 488 160/488 = 33% Control 349 198/349 = 57%

Intervention 105 43/105 = 41% Intervention 65 42/65 = 65%

This table shows that of the 105 intervention subjects that answered the safety item at baseline

incorrectly, a total of 43, or 41%, subsequently answered the item correctly at the 6-month

follow-up visit. In the control group only 160/488 = 33% answered this item correctly at six

months after they had answered incorrectly at baseline. A two-sample test of proportions yields

a p-value of 0.118, indicating a nonsignificant difference between the intervention and control

groups in their rates of correcting knowledge of this item. For subjects that answered this item

correctly at baseline, 42/65 = 65% of intervention subjects and 198/349 = 57% of control sub-

jects continued to respond correctly. A two-sample test of proportions yields a p-value of 0.230,

indicating a nonsignificant difference between the intervention and control groups in their rates

of maintaining correct knowledge of the safety item. Therefore, although the intervention group

has slightly higher proportions of subjects that switch from incorrect to correct, and that stay

correct, these differences are not statistically significant.

For the nurse item we saw that the informed consent led to a large fraction of subjects who

answered the item correctly. At six months the intervention group had 72% of subjects answer

correctly, while the control group had 45% answer correctly. Focusing on the mechanisms for

this difference we find:

Nurse Item

“Correction” : Y
i0 = 0 “Maintain” : Y

i0 = 1

Percent Correct Percent Correct

N Y
i1 = 1 N Y

i1 = 1

Control 382 122/382 = 32% Control 455 252/455 = 55%

Intervention 87 59/87 = 68% Intervention 85 65/85 = 76%

Thus intervention led to a correction for 68% of subjects with an incorrect baseline response

compared to 32% among controls. A two-sample test of proportions yields a p-value of <0.001,

and a confidence interval for the difference in proportions of (0.250, 0.468). Therefore, the inter-

vention has led to a significantly different rate of correction for the nurse item. Among subjects

who correctly answered the nurse item at baseline, only 55% of control subjects answered cor-

rectly again at month 6, while 76% of intervention subjects maintained a correct answer at six

months. Comparison of the proportion that maintain correct answers yields a p-value of <0.001

and a 95% confidence interval for the difference in probability of a repeat correct answer of

(0.113, 0.339). Therefore, the informed consent intervention led to significantly different rates

of both correction and maintenance for the safety item.

These categorical longitudinal data could also be considered as multiway contingency tables

and analyzed by the methods discussed in Chapter 7.
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18.4 IMPACT OF CORRELATION ON INFERENCE

For proper analysis of longitudinal data the within-subject correlation needs to be addressed.

In Section 18.3.1 we discussed one method that avoids considering correlation among repeated

measures by reducing the multiple measurements to a single summary statistic. In situations

where there are variable numbers of observations per subject, alternative approaches are prefer-

able. However, to analyze longitudinal outcomes, either a model for the correlation needs to

be adopted or the standard error for statistical summaries needs to be adjusted. In this section

we discuss some common correlation models and discuss the impact of the correlation on the

standard errors and sample size.

18.4.1 Common Types of Within-Subject Correlation

The simplest correlation structure is the exchangeable or compound symmetric model, where

corr(Y
i

) =















1 ρ ρ · · · ρ
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ρ ρ 1 · · · ρ

.

.

.

.

.

.

.

.

.

ρ ρ ρ · · · 1















In this case the correlation between any two measurements on a given subject is assumed to be

equal, corr(Y
ij

, Y

ik

) = ρ

jk

≡ ρ. The longitudinal outcomes form a simple “cluster” of responses,

and the time ordering is not considered when characterizing correlation.

In other models the measurement time or measurement order is used to model correlation.

For example, a banded correlation is

corr(Y
i

) =
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and an autoregressive structure is

corr(Y
i

) =
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Each of these models is a special case of a serial correlation model where the distance between

observations determines the correlation. In a banded model correlation between observations is

determined by their order. All observations that are adjacent in time are assumed to have an equal

correlation: corr(Y
i1, Y

i2) = corr(Y
i2, Y

i3) = · · · = corr(Y
in−1, Yin

) = ρ1. Similarly, all observa-

tions that are two visits apart have correlation ρ2, and in general all pairs of observations that are

k visits apart have correlation ρ

k

. A banded correlation matrix will have a total of n−1 correlation

parameters. The autoregressive correlation model uses a single correlation parameter and assumes

that the time separation between measurements determines their correlation through the model
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corr(Y
ij

, Y

ik

) = ρ

|t
j

−t

k

|. Thus, if ρ = 0.8 and observations are 1 unit apart in time, their correla-

tion will be 0.81
= 0.8, while if they are 2 units apart, their correlation will be 0.82

= 0.64. In an

autoregressive model the correlation will decay as the distance between observations increases.

There are a large number of correlation models beyond the simple exchangeable and serial

models given above. See Verbeke and Molenberghs [2000] and Diggle et al. [2002] for further

examples.

18.4.2 Variance Inflation Factor

The impact of correlated observations on summaries such as the mean of all observations

taken over time and across all subjects will depend on the specific form of the within-subject

correlation. For example,

Y =

1
∑

i

n

i

N

∑

i=1

n

i

∑

j=1

Y

ij

var(Y ) =

1

(

∑

i

n

i

)

2

N

∑

i=1





n

i

∑

j=1

var(Y
ij

) +

n

i

−1
∑

j=1

n

i

∑

k=(j+1)

2 × cov(Y

ij

, Y

ik

)





If the variance is constant, var(Y
ij

) = σ

2, we obtain

var(Y ) =

σ
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i

+

n

i
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∑
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2 × corr(Y
ij
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ik
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Finally, if all subjects have the same number of observations, n

i

≡ n, and the correlation is

exchangeable, ρ

jk

≡ ρ, the variance of the mean is

var(Y ) =

σ

2

Nn

[1 + (n − 1)ρ]

The factor [1 + (n− 1) ·ρ] is referred to as the variance inflation factor, since this measures the

increase (when ρ > 0) in the variance of the mean (calculated using N · n observations) that is

due to the within-subject correlation of measurements.

To demonstrate the impact of correlation on the variance of the mean, we calculate the vari-

ance inflation factor, 1 + (n − 1)ρ, for various values of cluster size, n, and correlation, ρ, in

Table 18.4. This shows that even very small within-cluster correlations can have an important

impact on standard errors if clusters are large. For example, a variance inflation factor of 2.0

arises with (ρ = 0.001, n = 1001), (ρ = 0.01, n = 101), or (ρ = 0.10, n = 11). The variance

Table 18.4 Variance Inflation Factors

n ρ

Cluster

Size 0.001 0.01 0.02 0.05 0.1

2 1.001 1.01 1.02 1.05 1.10

5 1.004 1.04 1.08 1.20 1.40

10 1.009 1.09 1.18 1.45 1.90

100 1.099 1.99 2.98 5.95 10.90

1000 1.999 10.99 20.98 50.95 100.90



REGRESSION METHODS 747

inflation factor becomes important when planning a study. In particular, when treatment is given

to groups of subjects (e.g., a cluster randomized study), the variance inflation factor needs to

be estimated to power the study properly. See Koepsell et al. [1991] or Donner and Klar [1994,

1997] for a discussion of design and analysis issues in cluster randomized studies. For longitu-

dinal data each subject is a “cluster,” with individual measurements taken within each subject.

18.5 REGRESSION METHODS

Regression methods permit inference regarding the average response trajectory over time and

how this evolution varies with patient characteristics such as treatment assignment or other

demographic factors. However, standard regression methods assume that all observations are

independent and if applied to longitudinal outcomes may produce invalid standard errors. There

are two main approaches to obtaining valid inference: A complete model that includes specific

assumptions regarding the correlation of observations within a subject can be adopted and used

to estimate the standard error of regression parameter estimates; general regression methods

can be used and the standard errors can be corrected to account for the correlated outcomes.

In the following section we review a regression method for continuous outcomes that models

longitudinal data by assuming random errors within a subject and random variation in the

trajectory among subjects.

18.5.1 Mixed Models

Figure 18.7 presents hypothetical longitudinal data for two subjects. In the figure monthly obser-

vations are recorded for up to one year, but one person drops out prior to the eight-month visit,

and thus the observations for months 8 through 12 are not recorded. Notice that each subject

Months

R
es

po
ns

e

2

line for subject 1

line for subject 2

subject 1 dropout

4 6 8 10 12

5

10

15

20

25

Two Subjects

Figure 18.7 Hypothetical longitudinal data for two subjects. Each subject has an individual linear trajec-

tory, and one subject has incomplete data due to dropout.
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appears to be tracking his or her own linear trajectory but with small fluctuations about the

line. The deviations from the individual observations to the individual’s line are referred to as

the within-subject variation in the outcomes. If we only had data for a single subject, these

would be the typical error terms in a regression equation. In most situations the subjects in a

study represent a random sample from a well-defined target population. In this case the specific

individual line that a subject happens to follow is not of primary interest, but rather the typical

linear trajectory and perhaps the magnitude of subject-to-subject variation in the longitudinal

process. A dashed line in the center of Figure 18.7 shows the average of individual linear-time

trajectories. This average curve characterizes the average for the population as a function of

time. For example, the value of the dashed line at month 2 denotes the cross-sectional mean

response if the two-month observation for all subjects was averaged. Similarly, the fitted value

for the dashed line at 10 months represents the average in the population for the 10-month

measurement. Therefore, the average line in Figure 18.7 represents both the typical trajectory

and the population average as a function of time.

Linear mixed models make specific assumptions about the variation in observations attributable

to variation within a subject and to variation among subjects. The within-subject variation is

seen in Figure 18.7 as the deviation between individual observations, Y

ij

, and the individual

linear trajectory. Let β

i,0 + β

i,1Xij

denote the line that characterizes the observation path for

subject i. In this example X

ij

denotes the time of measurement j on subject i. Note that each

subject has an individual-specific intercept and slope. Within-subject variation is seen in the

magnitude of variation in the deviation between the observations and the individual trajectory,

Y

ij

− (β

i,0 + β

i,1Xij

). The between-subject variation is represented by the variation among the

intercepts, var(β
i,0), and the variation among subjects in the slopes, var(β

i,1).

If parametric assumptions are made regarding the within- and between-subject components

of variation, maximum likelihood methods can be used to estimate the regression parameters

which characterize the population average, and the variance components which characterize

the magnitude of within- and between-subject heterogeneity. For continuous outcomes it is

convenient to assume that within-subject errors are normally distributed and to assume that

intercepts and slopes are normally distributed among subjects. Formally, these assumptions are

written as:

within-subjects : E(Y

ij

| β

i

) = β

i,0 + β

i,1Xij

Y

ij

= β

i,0 + β

i,1Xij

+ ǫ

ij

ǫ

ij

∼ N(0, σ

2
)

between-subjects :

(

β

i,0

β

i,1

)

∼ N

[(

β0

β1

)

,

(

D00 D01

D10 D11

)]

The model can be rewritten using b

i,0 = (β

i,0 − β0) and b

i,1 = (β

i,1 − β1):

Y

ij

= β0 + β1Xij

︸ ︷︷ ︸

systematic

+ b

i,0 + b

i,1Xij

+ ǫ

ij

︸ ︷︷ ︸

random

(1)

In this representation the terms b

i,0 and b

i,1 represent deviations from the population average

intercept and slope, respectively. These “random effects” now have mean 0 by definition, but

their variance and covariance is still given by the elements of the matrix D. For example,

var(b
i,0) = D00 and var(b

i,0) = D11. In equation (1) the “systematic” variation in outcomes is

given by the regression parameters β0 and β1. These parameters determine how the average for

subpopulations differs across distinct values of the covariates, X

ij

.
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In equation (1) the random components are partitioned into the observation-level and subject-

level fluctuations:

Y

ij

= β0 + β1Xij

+ b

i,0 + b

i,1Xij

︸ ︷︷ ︸

between-subject

+ ǫ

ij

︸ ︷︷ ︸

within-subject

A more general form is

Y

ij

= β0 + β1Xi1 + · · · + β

p

X

ip

︸ ︷︷ ︸

fixed effects

+ b

i,0 + b

i,1Xi1 + · · · + b

i,q

X

iq

︸ ︷︷ ︸

random effects

+ ǫ

ij

Y

ij

= X

′

ij

β + Z

′

ij

b

i

+ ǫ

ij

where X

′

ij

= [X
ij,1, X

ij,2, . . . , X

ij,p

] and Z

′

ij

= [X
ij,1, X

ij,2, . . . , X

ij,q

]. In general, we assume

that the covariates in Z

ij

are a subset of the variables in X

ij

and thus q < p. In this model

the coefficient of covariate k for subject i is given as (β

k

+ b

i,k

) if k ≤ q and is simply β

k

if q < k ≤ p. Therefore, in a linear mixed model there may be some regression parameters

that vary among subjects, while some regression parameters are common to all subjects. For

example, in Figure 18.7 it is apparent that each subject has his or her own intercept, but the

subjects may have a common slope. A random intercept model assumes parallel trajectories for

any two subjects and is given as a special case of the general mixed model:

Y

ij

= β0 + β1Xi1 + b

i,0 + ǫ

ij

In this model the intercept for subject i is given by β0 + b

i,0, while the slope for subject i is

simply β1, since there is no additional random slope, b

i,1, in the random intercept model.

Laird and Ware [1982] discuss the linear mixed model and specific methods to obtain maxi-

mum likelihood estimates. Although linear mixed models can be computationally difficult to fit,

modern software packages contain excellent numerical routines for estimating parameters and

computing standard errors. For example, the SAS package contains the MIXED procedure and

S-PLUS has the lme() function.

Example 18.2. (continued ) In Section 18.3.1 we explored the change over time in CD4

counts for groups of subjects according to their baseline viral load value. Using linear mixed

models we can estimate the average rate of decline for each baseline viral load category, and

test for differences in the rate of decline.

To test for differences in the rate of decline, we use linear regression with

E(Y

ij

| X

ij

) = β0 +

β1 · month +

β2 · I (medium viral load) +

β3 · I (high viral load) +

β4 · month · I (medium viral load) +

β5 · month · I (high viral load) .

Here X

ij,3 = I (medium viral load) = 1 if subject i has a medium value for baseline viral load

and otherwise = 0, and X

ij,4 = I (high viral load) = 1 if subject i has a high baseline viral load

and otherwise = 0. Using this regression model, the average slope for the low baseline viral

category is given by β1, while the average slope for the other viral load categories are given

by (β1 + β4) and (β1 + β5) for the medium- and high-viral-load categories, respectively. If the
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estimate of β4 is not significantly different from 0, we cannot reject equality of the average

rates of decline for the low- and medium-viral-load subjects. Similarly, inference regarding

β5 determines whether there is evidence that the rate of decline for high-viral-load subjects is

different than for low-viral-load subjects.

The linear mixed model is specified by the regression model for E(Y

ij

| X

ij

) = µ

ij

and

assumptions about random effects. We first assume random intercepts, Y

ij

= µ

ij

+b

i,0 +ǫ

ij

, and

then allow random intercepts and slopes, Y

ij

= µ

ij

+b

i,0+b

i,1 ·month+ǫ

ij

. Maximum likelihood

estimates are presented in Tables 18.5 and 18.6. In Table 18.5 the mixed model assumes that

each subject has a random intercept, b

i,0, but assumes a common slope. In this model there are

two estimated variance components: 162.5 = σ̂ =

√

v̂ar(ǫ
ij

) and 219.1 =

√

̂

D00 =

√

v̂ar(b
i,0).

The total variation in CD4 is estimated as 162.52
+ 219.12

= 272.82, and the proportion

of total variation that is attributed to within-person variability is 162.52
/272.82

= 35% with

219.12
/272.82

= 65% of total variation attributable to individual variation in their general level

of CD4 (e.g., attributable to random intercepts).

Estimates from Table 18.5 are interpreted as follows:

• (Intercept) ̂

β0 = 803.4. The intercept is an estimate of the mean CD4 count at serocon-

version (i.e., month = 0) among the low-viral-load subjects.

• month ̂

β1 = −5.398: Among subjects in the low-viral-load group, the mean CD4 declines

-5.398 units per month.

• I[Medium Viral Load] ̂

β2 = −123.72. At seroconversion the average CD4 among subjects

with a medium value for baseline viral load is 123.72 units lower than the average CD4

among the low-viral-load subjects.

• I[High Viral Load] ̂

β3 = −146.40. At seroconversion the average CD4 among subjects

with a high value for baseline viral load is 146.40 units lower than the average CD4 among

the low-viral-load subjects.

• month * I[Medium Viral Load] ̂

β4 = 0.169. The rate of decline for subjects in the medium-

viral-load category is estimated to be 0.169 count/month higher than the rate of decline

among subjects with a low-baseline viral load. The rate of change in mean CD4 is esti-

mated as −5.398 + 0.169 = −5.229 counts/month among subjects with medium-baseline

viral load.

Table 18.5 Linear Mixed Model Results for the CD4 Data Assuming Random Interceptsa

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19838.98 19881.38 −9911.491

Random effects:

Formula: ˜ 1 | id

(Intercept) Residual

StdDev: 219.1106 162.5071

Fixed effects: cd4 ˜ month * vcat

Value Std.Error DF t-value p-value

(Intercept) 803.356 29.712 1250 27.04 <.0001

month −5.398 0.578 1250 −9.34 <.0001

I[Medium Viral Load] −123.724 42.169 223 −2.93 0.0037

I[High Viral Load] −146.401 42.325 223 −3.46 0.0006

month * I[Medium Viral Load] 0.169 0.812 1250 0.21 0.8351

month * I[High Viral Load] −1.968 0.817 1250 −2.41 0.0162

aOutput from S-PLUS.
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Table 18.6 Linear Mixed Model Results for the CD4 Data Assuming Random Intercepts and Slopesa

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19719.85 19772.84 −9849.927

Random effects:

Formula: ˜ 1 + month | id

Structure: General positive-definite

StdDev Corr

(Intercept) 244.05874 (Inter

month 5.68101 −0.441

Residual 142.22835

Fixed effects: cd4 ˜ month * vcat
Value Std.Error DF t-value p-value

(Intercept) 803.509 31.373 1250 25.61 <.0001

month −5.322 0.857 1250 −6.21 <.0001

I[Medium Viral Load] −125.548 44.536 223 −2.82 0.0053

I[High Viral Load] −142.177 44.714 223 −3.18 0.0017

month * I[Medium Viral Load] 0.159 1.205 1250 0.13 0.8954

month * I[High Viral Load] −2.240 1.212 1250 −1.85 0.0648

aOutput from S-PLUS.

• month * I[High Viral Load] ̂

β5 = −1.967. The rate of decline for subjects in the high-viral-

load category is estimated to be −1.967 counts/month lower than the rate of decline among

subjects with a low-baseline viral load. The rate of change in mean CD4 is estimated

as −5.398 − 1.967 = −7.365 counts/month among subjects with a high-baseline viral

load.

Although the regression output also includes standard errors for each of the regression esti-

mates, we defer making inference since a model with random intercepts and random slopes

appears more appropriate and affects the resulting confidence intervals or tests for the regression

estimates (see Table 18.6).

In Table 18.6 we present maximum likelihood estimates assuming random intercepts and

random slopes. To assess whether the additional flexibility is warranted, we can evaluate the

improvement in the fit to the data as measured by the maximized log likelihood. The maximized

log likelihood for random intercepts is −9911.49 (see Table 18.5), while the maximized log

likelihood is increased by 61.56 to −9849.93 when also allowing random intercepts. A formal

likelihood ratio test is possible since the random intercepts and random intercepts plus slopes

form nested models, but since the null hypothesis restriction involves D11 = 0, which is on the

boundary of the allowable values for variance components (i.e., D11 ≥ 0), the null reference

distribution is of nonstandard form [Stram and Lee, 1994; Verbeke and Molenberghs, 2000].

However, the increase in maximized log likelihood of 61.56 is quite substantial and statistically

significant with p < 0.001. Although the variance assumptions can be further relaxed to allow

serial correlation in the measurement errors, ǫ

ij

, the improvement in the maximized log likeli-

hood is small and does not substantially affect the conclusions. We refer the reader to Diggle

et al. [2002] and Verbeke and Molenberghs [2000] for further detail regarding linear mixed

models that also include serial correlation in the errors.

Table 18.6 gives estimates of the variance components. For example, the standard devia-

tion in intercepts is estimated as
√

̂

D00 = 244.1 and the standard deviation of slopes is given
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as
√

̂

D11 = 5.681. Under the assumption of normally distributed random effects, these esti-

mates imply that 95% of subjects with a low-baseline viral load would have a mean CD4 at

seroconversion between 803.5 − 1.96 × 244.1 = 325.1 and 803.5 + 1.96 × 244.1 = 1281.9. We

emphasize that this interval is for individual values of the mean CD4 at baseline rather than for

individual measurements at baseline. The interval (325.1, 1281.9) does not include the measure-

ment variation attributable to ǫ

ij

so only describes the variation in the means, β0 + b

i,0, and not

the actual CD4 measurements, Y

ij

= β0 + b

i,0 + ǫ

ij

. Similarly, 95% of low-viral-load subjects

are expected to have a slope of −5.322 ± 1.96 × 5.681 = (−16.456, 5.813) counts/month.

The estimated regression parameters can be used to make inference regarding the average

rate of decline for each of the baseline viral load categories. For example, ̂

β4 = 0.159 estimates

the difference between the rate of decline among medium-viral-load subjects and low-viral-load

subjects and is not significantly different from 0 using the standardized regression coefficient

as test statistic: 0.159/1.205 = 0.13 with p = 0.8954. Although the estimated rate of decline

is lower for the high-viral-load group, ̂

β5 = −2.240, this is also not significantly different from

0 with p-value 0.0648. It is important to point out that inference using linear mixed models

can be quite sensitive to the specific random effects assumptions. If a random intercepts model

were used, the comparison of high- versus low-viral-load group slopes over time becomes

statistically significant, as seen in Table 18.5, where the p-value for testing H0 : β5 = 0 is

p = 0.0162, which would naively lead to rejection of the null hypothesis. This inference is

invalid, as it assumes that slopes do not vary among individuals, and the data clearly suggest

between-subject variation in slopes.

Residual plots can be useful for checking the assumptions made by the linear mixed model.

However, there are two types of residuals that can be used. First, the population residuals are

defined as

R

P

ij

= Y

ij

− (

̂

β0 + ̂

β1Xij,1 + · · · + ̂

β

p

X

ij,p

)

= Y

ij

− X

′

ij

̂

β

The population residuals measure the deviation from the individual measurement to the fitted

population mean value. These residuals contain all components of variation, including between-

and within-subject deviations since

Y

ij

− X

′

ij

β = Z

′

ij

b

i

+ ǫ

ij

The population residuals can be used to evaluate evidence for systematic departures from linear

assumptions. Similar to standard multiple regression, plots of residuals versus predictors can be

inspected for curvature.

Individual random effects b

i

can also be estimated and used to form a second type of residual.

Under the linear mixed model, these random effects are typically not estimated simply by using

subject i data only to estimate b

i

, but rather by using both the individual data Y

i1, Y

i2, . . . , Y

i,n

i

and the assumption that random effects are realizations from a normal distribution among sub-

jects. Empirical Bayes’ estimates of b

i

balance the assumption that b

i

is intrinsic to generating

the data Y

ij

in addition to the assumption that the distribution of b

i

is multivariate normal

with mean 0. Thus, empirical Bayes’ estimates are typically closer to 0 than estimates that

would be obtained solely by using individual i data. See Carlin and Louis [1996] for more

detail on empirical Bayes’ estimation. Using the estimated random effects provides a second

residual:

R

W

ij

= Y

ij

− (

̂

β0 + ̂

β1Xij,1 + · · · + ̂

β

p

X

ij,p

)

− (b̂

i,0 + b̂

i,1Xij,1 + · · · + b̂

i,q

X

ij,q

)

= Y

ij

− X

′

ij

̂

β − Z

′

ij

̂

b

i
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If the regression parameter β and the random effects b were known rather than estimated, the

residual R

W

ij

would equal the within-subject error ǫ

ij

. The within-subject residuals R

W

ij

can be

used to assess the assumptions regarding the within-subject errors.

Example 18.2. (continued ) We use the random intercepts and random slopes model for

the CD4 data to illustrate residual analysis for linear mixed models. The population residuals

are plotted in Figure 18.8, and the within-subject residuals are plotted in Figure 18.9. First, no

violation of the linearity assumption for month is apparent in either of these plots. Second, the

population residuals are weakly suggestive of an increasing variance over time. However, it is

important to note that under the assumption of random intercepts and random slopes, the total

variance, var(b
i,0 +b

i,1 ·month+ ǫ

ij

), may be an increasing or decreasing function of time. The

population residuals suggest right skewness in the cross-sectional distribution of CD4. Since the

within-subject residuals do not appear skewed, the population residuals suggest that the random

effects may not be normally distributed. Figure 18.10 presents histograms of the estimated

intercepts and slopes obtained using ordinary linear regression for subject i data rather than the

empirical Bayes estimates. The histograms for the individual intercepts appear to be right skewed,

while the individual slopes appear symmetrically distributed. Therefore, residual analysis coupled

with exploratory analysis of individual regression estimates suggests that linearity assumptions

appear satisfied, but normality of random effects may be violated. The linear mixed model is

known to be moderately robust to distributional assumptions, so large-sample inference regarding

the average rate of decline for baseline viral load groups can be achieved.

Mixed models can be adopted for use with categorical and count response data. For example,

random effects can be included in logistic regression models for binary outcomes and can be

included in log-linear models for count data. Maximum likelihood estimation for these models

requires specialized software. Extensions of mixed models to alternate regression contexts is

discussed in Chapters 7 and 9 of Diggle et al. [2002].
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Figure 18.8 Population residuals, R

P

ij

, vs. visit month for the MACS CD4 data. The dashed line is a

smooth curve through the residuals.
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Figure 18.9 Within-subject residuals, R
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, vs. visit month for the MACS CD4 data. The dashed line is a

smooth curve through the residuals.

18.5.1.1 Summary

• Linear mixed models permit regression analysis with correlated data.

• Mixed models specify variance components that represent within-subject variance in out-

comes and between-subject variation in trajectories.

• Linear mixed model parameters can be estimated using maximum likelihood.

18.5.2 Generalized Estimating Equations

A second regression approach for inference with longitudinal data is known as generalized

estimating equations (GEE) [Liang and Zeger, 1986]. In this approach two models are specified.

First, a regression model for the mean response is selected. The form of the regression model is

completely flexible and can be a linear model, a logistic regression model, a log-linear model,

or any generalized linear model [McCullagh and Nelder, 1989]. Second, a model for the within-

subject correlation is specified. The correlation model serves two purposes: It is used to obtain

weights (covariance inverse) that are applied to the vectors of observations from each subject to

obtain regression coefficient estimates; and the correlation model is used to provide model-based

standard errors for the estimated coefficients.

A regression model specifies a structure for the mean response, µ

ij

= E(Y

ij

| X

ij

), as a func-

tion of covariates. For longitudinal data the mean µ

ij

has been called the marginal mean since

it does not involve any additional variables, such as random effects, b

i

, or past outcomes, Y

ij−1.

Mixed models consider means conditional on random effects, and transition models include past

outcomes as covariates. Adding additional variables leads to subtle changes in the interpretation

of covariate coefficients, which becomes particularly important for nonlinear models such as

logistic regression. See Diggle et al. [2002, Chaps. 7 and 11] for further discussion.

GEE has two important robustness properties. First, the estimated regression coefficients, ̂

β,

obtained using GEE are broadly valid estimates that approach the correct value with increasing
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sample size regardless of the choice of correlation model. In this respect the correlation model is

used simply to weight observations, and a good correlation model choice can lead to more precise

estimation of regression coefficients than can a poor choice. Based on optimal estimation theory

(e.g., Gauss–Markov theory), the best correlation model choice for efficiency of estimation is the

true correlation structure. Second, the correlation choice is used to obtain model-based standard

errors, and these do require that the correlation model choice is correct in order to use the

standard errors for inference. A standard feature of GEE is the additional reporting of empirical

standard errors, which provide valid estimates of the uncertainty in ̂

β, even if the correlation

model is not correct. Therefore, the correlation model can be any model, including one that

assumes observations are independent, and proper large-sample standard errors obtained using

the empirical estimator. Liang and Zeger [1993] provide an overview of regression methods for

correlated data, and Hanley et al. [2003] give an introduction to GEE for an epidemiological

audience.

Example 18.2. (continued ) We return to the CD4 data and use GEE to investigate whether

the rate of decline in CD4 over the first 48 months postseroconversion seems to depend on

the baseline viral load category. Table 18.7 presents the estimates obtained using GEE and an

independence correlation model. Standard errors using the independence correlation model are

identical to those obtained from linear regression and are labeled as “model-based.” In this

application the key feature provided by GEE are the “empirical” standard errors, which are

generally valid estimates of the uncertainty associated with the regression estimates. Notice that

most of the empirical standard errors are larger than the naive model-based standard errors,

which assume that the data are independent. However, corrected standard errors can be either

larger or smaller than standard errors obtained under an independence assumption, and the nature

of the covariate and the correlation structure interact to determine the proper standard error. It

is an oversimplification to state that correction for correlation will lead to larger standard errors.

Using GEE we obtain conclusions similar to that obtained using linear mixed models: The high-

viral-load group has a steeper estimated rate of decline, but the difference between low and high

groups is not statistically significant.

Example 18.1. (continued ) GEE is particularly useful for binary data and count data. We

now turn to analysis of the nurse item from the HIVNET informed consent study. We need to

choose a regression model and a correlation model. For our first analysis we assume a common

proportion answering correctly after randomization. For this analysis we create the covariate

“post,” which takes the value 1 if the visit occurs at month 6, 12, or 18, and takes the value

0 for the baseline visit. We use the variable “ICgroup” to denote the intervention and control

group, where ICgroup
ij

= 1 for all visits j = 1, 2, 3, 4 if the subject was randomized to the

mock informed consent, and ICgroup
ij

= 0 for all visits, j = 1, 2, 3, 4, if the subject was

randomized to the control group. Since the response is binary, Y

ij

= 1 if the item was correctly

answered by subject i at visit j and 0 otherwise, we use logistic regression to characterize the

Table 18.7 GEE Estimates for the CD4 Data Using an Independence Working Correlation Model

Standard Error Z-statistic

Estimate Model Empirical Model Empirical

(Intercept) 792.897 26.847 36.651 29.534 21.633

Month −4.753 0.950 1.101 −5.001 −4.318

I (Medium viral load) −121.190 37.872 46.886 −3.200 −2.585

I (high viral load) −150.705 37.996 45.389 −3.966 −3.320

Month · I (medium viral load) −0.301 1.341 1.386 −0.224 −0.217

Month · I (high viral load) −1.898 1.346 1.297 −1.410 −1.464
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probability of a correct response as a function of time and treatment group:

logitP(Y

ij

= 1 | X

i

) = β0 +

β1 · post
ij

+

β2 · ICgroup
ij

+

β3 · ICgroup
ij

· post
ij

Since the visits are equally spaced and each subject is scheduled to have a total of four mea-

surements, we choose to use an unstructured correlation matrix. This allows the correlations ρ

jk

to be different for each pair of visit times (j, k).

In Table 18.8 we provide GEE estimates obtained using the SAS procedure GENMOD. The

estimated working correlation is printed and indicates correlation that decreases as the time

separation between visits increases. For example, the estimated correlation for Y

i1 and Y

i2 is

ρ̂12 = 0.204, while for Y

i1 and Y

i3, ρ̂13 = 0.194, and for Y

i1 and Y

i4, ρ̂14 = 0.163. The

correlation between sequential observations also appears to increase over time with ρ̂23 = 0.302

and ρ34 = 0.351.

Regression parameter estimates are reported along with the empirical standard error estimates.

These parameters are interpreted as follows:

• (Intercept) ̂

β0 = 0.1676. The intercept is an estimate of log odds of a correct response to the

nurse item at baseline for the control group. This implies an estimate for the probability of

Table 18.8 GEE Analysis of the Nurse Item from the HIVNET Informed Consent Studya

GEE Model Information

Correlation Structure Unstructured

Subject Effect id (1123 levels)

Number of Clusters 1123

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 1

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2044 0.1936 0.1625

Row2 0.2044 1.0000 0.3022 0.2755

Row3 0.1936 0.3022 1.0000 0.3511

Row4 0.1625 0.2755 0.3511 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1676 0.0652 0.0398 0.2954 2.57 0.0102

Post −0.3238 0.0704 −0.4618 −0.1857 −4.60 <.0001

ICgroup −0.1599 0.1643 −0.4819 0.1622 −0.97 0.3306

ICgroup*Post 1.0073 0.2012 0.6128 1.4017 5.01 <.0001

aOutput from SAS procedure GENMOD.
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a correct response at baseline among controls of exp(0.1676)/[1+exp(0.1676)] = 0.5418,

which agrees closely with the observed proportion presented in Table 18.3.

• Post ̂

β1 = −0.3238. The coefficient of Post is an estimate of the log of the odds ratio com-

paring the odds of a correct response among control subjects after randomization (either

month 6, 12, or 18) relative to the odds of a correct response among the control group

at baseline. Since the odds ratio estimate is exp(−0.3238) = 0.7234 < 1, the odds of a

correct response is lower after baseline. A test for equality of odds comparing postbaseline

to baseline yields a p-value p < 0.001.

• ICgroup ̂

β2 = −0.1599. The coefficient of ICgroup is an estimate of the log of the odds

ratio comparing the odds of a correct response among intervention subjects at baseline

relative to the odds of a correct response among the control subjects at baseline. Since

the assignment to treatment and control was based on randomization, we expect this odds

ratio to be 1.0, and the log odds ratio estimate is not significantly different from 0.0.

• ICgroup * Post ̂

β3 = 1.0073. This interaction coefficient measures the difference between

the comparison of treatment and control after randomization and the comparison of treat-

ment and control at baseline. Specifically, (β3+β2) represents the log odds ratio comparing

the odds of a correct response among intervention subjects postbaseline to the odds of a

correct response among control subjects postbaseline. Since β2 represents the group com-

parison at baseline, β3 = (β3 + β2) − β2, or β3 measures the difference between the

comparison after baseline and the group comparison at baseline. Therefore, the parameter

β3 becomes the primary parameter of interest in this study, as it assesses the change in

the treatment/control comparison that is attributable to the intervention. A test of β3 = 0

is statistically significant with p < 0.001.

GEE is a convenient analysis tool for the informed consent data, as it allows inference

regarding the differences between treatment and control groups over time. A standard logistic

regression model is adopted and valid standard errors are calculated that account for the within-

subject correlation of outcomes.

In Table 18.8 we used a single time variable that was an indicator for the postbaseline visits at

six, 12, and 18 months. However, inspection of crude proportions responding correctly suggest

that the treatment/control comparison may be decreasing over time. For example, in Table 18.3

we see (treatment, control) proportions of (72.1%, 44.7%) at month 6, (60.1%, 46.3%) and

(66.0%, 48.2%) at months 12 and 18. To assess whether the treatment effect appears to be

decreasing over time, we fit a second logistic regression model that uses indicator variables for

months 6, 12, and 18. Table 18.9 presents GEE estimates using an exchangeable working corre-

lation model. In this model the coefficient of month6*ICgroup contrasts the treatment/control log

odds ratio at the six-month visit and at baseline. Similar to our earlier analysis, this difference in

time-specific log odds ratios is the primary treatment effect observed at six months. Similarly,

the coefficients of month12*ICgroup and month18*ICgroup represent treatment effects at 12

and 18 months. Each of the estimated differences in log odds ratios are significant as indicated

by the individual p-values in Table 18.9. In addition, we contrast the observed treatment effect

at six months with the treatment effect observed at 12 and 18 months. The difference between

the estimated coefficient of month6*ICgroup and month12*ICgroup assesses the change in the

treatment effect and is estimated as 1.3232 − 0.7362 = −0.5871. A test of this contrast yields a

p-value of 0.0035, indicating a different treatment effect at 12 months as compared to the treat-

ment effect at 6 months. A similar analysis for the 18-month effect as compared to 6 months is

barely statistically significant with p = 0.041. Therefore, there is evidence that the effect of the

intervention may be changing over time. Once again GEE provides a general tool for evaluating

the evolution of mean outcomes over time for different subgroups of subjects.

There are a number of extensions of the GEE approach introduced by Liang and Zeger [1986].

More flexible and tailored dependence models have been proposed for binary data [Lipsitz et al.,
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Table 18.9 GEE Analysis of the Nurse Item from the HIVNET Informed Consent Studya

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1644 0.0653 0.0364 0.2923 2.52 0.0118

month6 −0.3803 0.0839 −0.5448 −0.2158 −4.53 <.0001

month12 −0.3261 0.0854 −0.4934 −0.1587 −3.82 0.0001

month18 −0.2460 0.0886 −0.4197 −0.0723 −2.78 0.0055

ICgroup −0.1536 0.1639 −0.4748 0.1676 −0.94 0.3487

month6*ICgroup 1.3232 0.2319 0.8687 1.7777 5.71 <.0001

month12*ICgroup 0.7362 0.2358 0.2739 1.1984 3.12 0.0018

month18*ICgroup 0.9101 0.2273 0.4647 1.3556 4.00 <.0001

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square

Effect at 12 versus 6 −0.5871 0.2014 0.05 −0.9817 −0.1924 8.50

Effect at 18 versus 6 −0.4131 0.2023 0.05 −0.8097 −0.0166 4.17

Contrast Estimate Results

Label Pr > ChiSq

Effect at 12 versus 6 0.0035

Effect at 18 versus 6 0.0412

aOutput from SAS procedure GENMOD.

1991; Carey et al., 1993], and extension for multiple survival times has been developed [Wei

et al., 1989; Lee et al., 1992].

Summary

• GEE permits regression analysis with correlated continuous, binary, or count data.

• GEE requires specification of a regression model and a working correlation model.

• Two standard error estimates are provided with GEE: a model-based standard error that

is valid if the correlation model is specified correctly; and empirical standard errors that

are valid even if the correlation model is not correct provided that the data contain a large

number of independent clusters.

• Estimation with GEE does not involve a likelihood function; rather, it is based on the

solution to regression equations that use models only for the mean and covariance.

18.6 MISSING DATA

One of the major issues associated with the analysis of longitudinal data is missing data, or

more specifically, monotone missing data, which arise when subjects drop out of the study. It is

assumed that once a participant drops out, he or she provides no further outcome information.

Missing data can lead to biased estimates of means and/or regression parameters when the prob-

ability of missingness is associated with outcomes. In this section we first review a standard tax-

onomy of missing data mechanisms and then briefly discuss methods that can be used to alleviate

bias due to attrition. We also discuss some simple exploratory methods that can help determine

whether subjects who complete the longitudinal study appear to differ from those who drop out.
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18.6.1 Classification of Missing Data Mechanisms

To discuss factors that are associated with missing data, it is useful to adopt the notation R

ij

= 1

if observation Y

ij

is observed, and R

ij

= 0 if Y

ij

is missing. Let R

i

= (R

i1, Ri2, . . . , R

in

).

Monotone missing data imply that if R

ij

= 0, then R

ij+k

= 0 for all k > 0. Let Y

O

i

denote the

subset of the outcomes Y

i

= (Y

i1, Y

i2, . . . , Y

in

) that are observed, and let Y

M

i

denote the missing

outcomes. For longitudinal data a missing data classification is based on whether observed or

unobserved outcomes are predictive of missing data [Laird, 1988]:

Missing completely at random (MCAR) : P(R

i

| Y

O

i

, Y

M

i

, X

i

) = P(R

i

| X

i

)

Missing at random (MAR): P(R

i

| Y

O

i

, Y

M

i

, X

i

) = P(R

i

| Y

O

i

, X

i

)

Nonignorable (NI): P(R

i

| Y

O

i

, Y

M

i

, X

i

) depends on Y

M

i

In Figure 18.7 an example of monotone missing data is presented. For subject 1, all observations

after the 7-month visit are missing. If the reason that these observations are missing is purely

unrelated to outcomes (observed or not), the missing data are called MCAR. However, if the

observed data are predictive of missingness, the missing data are called MAR, and the mechanism

introduces a form of selection bias. MAR data could occur if an attending physician decides

to disenroll any participant who appears to be failing treatment, particularly when the decision

is based on the value of past measurements or factors associated with the past outcomes, Y

ij

.

Finally, the unobserved outcomes may be associated with missingness if, for example, subjects

who are the most ill refuse to travel to attend their scheduled study visit.

The missing data taxonomy translates directly into implications for potential selection bias.

If data are MCAR, both the missing and the observed outcomes are representative of the

source population. Therefore, when data are MCAR, standard statistical summaries based on the

observed data remain valid. However, if data are MAR or NI, summaries based on the available

cases may be biased. Returning to Figure 18.7, if the dropout for patient 1 is indicative of a

general process by which those subjects who have a high response value do not return for study,

the observed mean for the measured outcomes will not be representative of what would be

observed had the entire population been followed. In this example, the mean among available

subjects would underestimate the population mean for later months.

Formally, we write E(Y

ij

| X

i

, R

ij

= 1) to denote the expected response conditional on

responding, and we write E(Y

ij

| X

i

) for the target of inference. If the data are MCAR,

then E(Y

ij

| X

i

, R

ij

= 1) = E(Y

ij

| X

i

). However, if data are either MAR or NI, then

E(Y

ij

| X

i

, R

ij

= 1) 	= E(Y

ij

| X

i

), implying that the available data, R

ij

= 1, may not provide

valid estimates of population parameters.

In any given application, serious thought needs to be given to the types of processes that

lead to missing data. External information can help determine whether missingness mechanisms

may be classified as MCAR, MAR, or NI. Unfortunately, since NI missingness implies that

unobserved data, Y

M

i

, predicts dropout, we cannot empirically test whether data are NI vs.

MAR or MCAR. Essentially, one would need the unobserved data to check to see if they

are associated with missingness, but these data are missing! The observed data can be used

to assess whether the missingness appears to be MAR or MCAR. First, the dropout time can

be considered a discrete-time “survival” outcome, and methods introduced in Chapter 16 can

be used to assess whether past outcomes Y

ij−1, Y

ij−2, . . . are predictive of dropout, R

ij

= 0.

Second, each subject will have a dropout time, or equivalently, a “last measurement” time, with

those completing the study having the final assessment time as their time of last measurement.

The longitudinal data can be stratified according to the dropout time. For example, the mean

at baseline can be calculated separately for those subjects that dropout at the first visit, second

visit, through those that complete the study. Similarly, the mean response at the first follow-up

visit can be computed for all subjects who have data for that visit. Such analyses can be used

to determine whether the outcomes for the dropout subjects appear to be different from those
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of the “completers.” Naturally, subjects who are lost can only be compared to others at the visit

times prior to their dropout. These exploratory analyses are complementary: The first approach

assesses whether outcomes predict dropout, and the second approach evaluates whether the

dropout time predicts the outcomes. An example of such modeling can be found in Zhou and

Castelluccio [2004].

18.6.2 Approaches to Analysis with Missing Data

There are several statistical approaches that attempt to alleviate bias due to missing data. General

methods include:

1. Data imputation. See Little and Rubin [1987], Schafer [1997], or Koepsell and Weiss

[2003] for more information on imputation methods. Imputation refers to “filling in” missing

data. Proper methods of imputation use multiple imputation to account for uncertainty in the

missing data. Imputation methods require that a model be adopted that links the missing data

to the observed data.

2. Data modeling. In this method the missing data process and the longitudinal data are

both modeled using maximum likelihood for estimation. Use of a linear mixed model estimated

with maximum likelihood is one example of this approach. However, to correct validly for

MAR missingness, the mean and the covariance must be specified correctly. See Verbeke and

Molenberghs [2000] for more details.

3. Data weighting. Nonresponse methods with available data are used to weight the observed

data to account for the missing data. Use of inverse probability weighting or nonresponse

weighting can be applied to general statistical summaries and has been proposed to allow for

use of GEE in MAR situations. See Robins et al. [1995] for the statistical theory and Preisser

et al. [2002] for a simulation study of the performance of weighted GEE methods.

However, it is important to note that these methods are designed to address data that are

assumed to be MAR rather than the more serious nonignorable (NI) missing data. Nonignorable

missing data can lead to bias, which cannot be corrected simply through modeling and estimation

of the dropout model and/or the response model since unidentifiable parameters that link the

probability of missingness to the unobserved data are needed. Therefore, reliance on statistical

methods to correct for bias due to attrition either requires an untestable assumption that the

data are MAR or requires some form of sensitivity analysis to characterize plausible estimates

based on various missingness assumptions. See Diggle et al. [2002, Chap. 13] for discussion

and illustration.

Example 18.1. (continued ) In the HIVNET Informed Consent Study, there was substantial

missing data due to attrition. In Tables 18.2 and 18.3 we see a decreasing number of subjects

over time. In the control group there are 946 subjects with baseline data and only 782 with 18-

month data. Is the knowledge score for subjects who complete the study different from the score

for those who dropout? Figure 18.11 shows the mean response over time stratified by dropout

time. For example, among subjects that dropout at the 12-month visit, their mean knowledge

score at baseline and 6 months is plotted. This plot suggests that subjects who complete only the

baseline interview have a lower mean baseline knowledge score than that of all other subjects.

In addition, for subjects who complete the study, the average knowledge score at six and 12

months appears greater than the mean knowledge score among subjects who do not complete

the 18-month visit. Thus, Figure 18.11 suggests that the completers and the dropout subjects

differ with respect to their knowledge scores. Any analysis that does not account for differential

dropout is susceptible to selection bias.
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Figure 18.11 Patterns of mean knowledge score by dropout time for the control group. HIVNET informed

consent substudy.

18.7 SUMMARY

Longitudinal data provide unique opportunities for inference regarding the effect of an inter-

vention or an exposure. Changes in exposure conditions can be correlated with changes in

outcome conditions. However, analysis of longitudinal data requires methods that account for

the within-subject correlation of repeated measures. Texts by Diggle et al. [2002], Verbeke and

Molenberghs [2000], Brown and Prescott [1999], and Crowder and Hand [1990] provide com-

prehensive discussions of statistical methods for the analysis of longitudinal data. There are a

number of additional issues that warrant attention but are beyond the scope of this book.

NOTES

18.1 Nonlinear Mixed Models

We have introduced linear mixed models and GEE. However, mixed models have also been

extended to logistic regression and other nonlinear model settings. See Diggle et al. [2002,

Chap. 8 and 11] for illustrations.

18.2 Models for Survival and Repeated Measurements

In many longitudinal studies information on both repeated measurements and on ultimate time

until death or key clinical endpoint is collected. Methods have been developed to analyze such

data jointly. See Hogan and Laird [1997a, b] for an overview of approaches for the joint analysis

of survival and repeated measures.

18.3 Models for Time-Dependent Covariates

In designed experiments the exposures X

ij

may be controlled by the investigator. However, in

many observational studies, exposures or treatments that are selected over time may be related to
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past health outcomes. For example, subjects with low values of CD4 may be more likely to be

exposed to a therapeutic agent. Analysis of such serial data to assess the effect of the intervention

is complicated by the feedback between outcome and exposure. Robins [1986] and Robins et al.

[1999] have identified proper causal targets of inference and methods for estimation in settings

where time-varying covariates are both causes and effects. See Diggle et al. [2002, Chap. 12].

PROBLEMS

18.1 This exercise considers the interplay between the covariate distribution and the corre-

lation. For each of the following scenarios, assume that there are a total of N pairs of

observations, (Y

i1, Yi2), with covariates (X

i1, X

i2). Assume that the covariate is binary:

X

ij

= 0 or X

ij

= 1, denoting control and treatment exposures. Let Y 1 denote the mean

of all observations where X

ij

= 1, and let Y 0 denote the mean of all observations

where X

ij

= 0. Assume a constant variance σ

2
= var(Y

ij

| X

ij

) and a correlation

ρ = corr(Y
i1, Y

i2).

(a) Assume that half of the subjects are assigned to control for both visits, (X

i1, Xi2) =

(0, 0), and half of the subjects are assigned to intervention for both visits, (X

i1,

X

i2) = (1, 1). What is the variance of the estimated mean difference, ̂� = (Y 1−Y 0)?

(b) Assume that subjects change their treatment over time with half of the subjects are

assigned to control and then treatment, (X

i1, Xi2) = (0, 1), and half of the subjects

assigned to treatment and then control, (X

i1, Xi2) = (1, 0). This design is referred

to as a crossover study. What is the variance of the estimated mean difference
̂

� = (Y 1 − Y 0)?

(c) Comment on the advantages and disadvantages of these two study designs.

18.2 Consider a study with a single prerandomization measurement, Y

i0, and a single postran-

domization measurement, Y

i1. For any constant a we can define the average contrast,

D(a) = mean[d
i

(a)], where d

i

(a) = Y

i1 − aY

i0. Let D0(a) denote the mean for the

control group, and let D1(a) denote the mean for the intervention group. Assume that

σ

2
= var(Y

ij

) for j = 0, 1, and let ρ = corr(Y
i0, Yi1). We assume that the subjects

are randomized to treatment and control after randomization at baseline. Therefore, the

following table illustrates the mean response as a function of treatment and time:

Control Intervention

Baseline µ0 µ0

Follow-up µ1 µ1 + �

(a) Show that the expected value of ̂

�(a) = D1(a) − D0(a) equals � for any choice

of a.

(b) When a = 0, we effectively do not use the baseline value, and ̂

�(0) is the difference

of means at follow-up. What is the variance of ̂

�(0)?

(c) When a = 1, we effectively analyze the change in outcomes since d

i

(1) = Y

i1−Y

i0.

What is the variance of ̂

�(1)?

(d) What value of a leads to the smallest variance for ̂

�(a)?

18.3 Use the data from the Web page to perform GEE analysis of the HIVNET Informed

Consent Substudy “safety” item.
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18.4 For the random intercepts and slopes model given in Table 18.6, the proportion of total

variation that is attributable to within-subject variation is not constant over time. Compute

estimates of the proportion of total variation at 0, 12, 24, and 36 months that is attributable

to within-subject variation, ǫ
ij

, as opposed to between subject variation, b

i,0 +b

i,1 ·month.

18.5 For the HIVNET Informed Consent Substudy data, create pairs of plots:

(a) Plot month 12 vs. month 6 knowledge score. Add a pair of lines that show the

ordinary least squares estimate for the intervention and the control group.

(b) Plot month 18 vs. month 12 knowledge score. Add a pair of lines that shows the

ordinary least squares estimate for the intervention and the control group.

(c) Do these plots suggest that there are additional differences between the intervention

and control groups that is not captured by the difference that manifests at the

six-month visit?

18.6 For the NURSE and SAFETY items from the HIVNET Informed Consent Substudy,

evaluate the transition from incorrect to correct, and from correct to correct again, for

the times (six-month → 12-month visit) and (12-month → 18-month visit). Is there

evidence that the intervention and control groups differ in terms of the “correction” and

“maintenance” of knowledge at the later times?
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C H A P T E R 19

Randomized Clinical Trials

19.1 INTRODUCTION

If Alexander Pope is correct that “the proper study of mankind is man” [Pope, 1733], then

the development of new therapeutic and prophylactic measures for humans is one of the more

proper uses of biostatistics. In addition, it is one of the most active and highly used areas of

biostatistics. In this chapter we consider primarily randomized clinical trials in humans, although

we mention other uses of the techniques. The use of clinical refers to the evaluation of clinical

measures, for example, drug treatments or surgical treatments. If an experiment is randomized—

that is, treatment assignments given by some random process—it necessarily implies more than

one treatment is being considered or tested. Thus, the trials are comparative. And, of course,

the term trial means that we test, or try, the treatments considered. The acronym RCT has been

used for both a randomized controlled trial and a randomized clinical trial. Randomized clinical

trials are examples of randomized controlled trials, but not necessarily vice versa, as we shall

see below. Here we use the abbreviation RCT for both. For the most part we shall be discussing

clinical trials, although it will be clear from the context which is referred to.

In addition to the statistical methods we have discussed before there are a number of practi-

cal issues in clinical trials that are now accepted as appropriate for the best scientific inference.

The issues of trial design to some extent “fall between the cracks” in clinical research. They

are not an obvious part of a medical education—not being biological per se—and also not an

obvious portion of biostatistics, as they do not explicitly involve the mathematics of proba-

bility and statistics. However, the issues are important to successful implementation of good

scientific clinical studies (and other studies as well) and are a necessary and appropriate part

of biostatistical training. Some of these issues are discussed in less detail in Chapter 2 and in

Chapter 8, in which we discuss permutation and randomization tests in Section *8.9. Here we

give background on why the design features are needed as well as some discussion of how to

implement the design features.

The use of RCTs and new drug development is big business. At the end of 2001, the cost

for evaluating an approved new chemical entity was estimated at approximately $800 million

[Wall Street Journal, 2001], and the time for development is often 10 years or more.

19.2 ETHICS OF EXPERIMENTATION IN HUMANS

The idea of experimenting on humans and other animals is distasteful at first blush. This is espe-

cially so in light of the Nazi experiments during the World War II period (see, e.g., Lifton [1986]).

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Yet it is clear that if new and improved therapies and treatments are to be developed, they must

be tried initially at some point in time on humans and/or animals. Whether designated so or not,

such use does constitute experimentation. This being the case, it seems best to acknowledge

this fact and to try to make such experiments as appropriate, justified, and useful as possible.

Considerable work has been devoted to this end. The ethics of experimentation on humans has

been the subject of intense study in recent decades. Ethics was touched on in Section 2.5, and

because of its importance, we return to the subject here. A good introduction is Beauchamp

and Childress [2001]. They review four principles for biomedical ethics: respect for autonomy,

nonmaleficence, beneficence, and justice. Briefly summarized:

• The principle of autonomy recognizes a person’s right to “hold views, make choices, and

take actions based on personal values and beliefs.”

• The principle of nonmaleficence is not to inflict harm to others.

• The principle of beneficence “asserts an obligation to help others further their important

and legitimate interests.”

• The principle of justice is more difficult to characterize briefly and may mean different

things to different people. As Beauchamp and Childress note: “The only principle common

to all theories of justice is a minimal principle traditionally attributed to Aristotle: Equals

must be treated equally, and un-equals must be treated unequally.”

One of the cornerstones of modern clinical research is informed consent (consistent with the

respect for autonomy). This seemingly simple concept is difficult and complex in application.

Can someone near death truly give informed consent? Can prisoners truly give informed consent?

Biologically, children are not small adults; drugs may have very different results with children.

How can one get informed consent when studying children? Do parents or legal guardians

really suffice? How can one do research in emergency settings with unconscious persons who

need immediate treatment (e.g., in cardiac arrest)? Do people really understand what they are

being told?

The issues have given rise to declarations by professional bodies (e.g., the Declaration

of Helsinki, [World Medical Association, 1975], the Nuremberg Code [Reiser et al., 1947],

and worldwide regulatory authorities (e.g., Federal Regulations [1988] on Institutional Review

Boards). The Health Insurance Portability and Accountability Act (HIPAA) was passed by the

U.S. Congress in 1996. The rules resulting from this act have been published and refined since

that time. The revised final privacy rules were published in 2002. Much information is protected

health information (PHI) and researchers in the United States need to be aware of these regu-

lations and conform to the rules. In the United States, anyone involved in research on humans

or animals needs to be familiar with the legal as well as the more general ethical requirements.

Without a doubt there is great tension for medical personnel involved in research. Their man-

date is to deliver the best possible care to their patients as well as to do good research. See

Fisher [1998a] for a brief discussion and some references. In addition, some statistical profes-

sional societies have given ethical guidelines for statisticians [Royal Statistical Society, 1993;

American Statistical Association, 1999].

All agree that ethical considerations must precede and take precedence over the science.

What this means in practice can lead to legitimate differences of opinion. Further continuing

scientific advances (such as genetics, cloning, or fetal research) bring up new and important

issues that require a societal resolution of what constitutes ethical behavior.

19.3 OBSERVATIONAL AND EXPERIMENTAL STUDIES IN HUMANS

In this section we consider some reasons why randomized studies are usually required by law in

the development of new drugs and biologics. Rather than a systematic development, we begin

with a few examples and possible lessons to be learned from them.
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Example 19.2. If taking a drug helps you survive, it must be effective! During a National

Institutes of Health (NIH) Randomized Clinical Trial [Coronary Drug Project Research Group,

1980] a drug was found to have about half the mortality among those who took the drug

(defined as taking 80% or more of the assigned medication) vs. those who did not take the drug

consistently. The five-year mortality in the men with coronary heart disease was 15.1% of the

“good adherers” to drug and 28.2% in the “poor adherers” to drug. Although it certainly seems

that the drug is effective (after all counting bodies is not subject to bias), it is possible that

those who were good adherers were different when the study started. Fortunately, this was an

NIH study with excellent detailed data collected for the known risk factors in this population.

There were some differences at baseline between the good and poor adherers. Thus, a multiple

linear regression analysis of five-year mortality was run, adjusting for 40 baseline variables in

the 2695 patients taking the drug.

The analysis adjusting for these 40 variables led to adjusted five-year mortality of 16.4% for

good adherers vs. 25.8% for the poor adherers. This would seem to clearly indicate a survival
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Actual Mortality Adjusted for 40 baseline variables

5-
ye

ar
 m

or
ta

lit
y

0

10

20

30

40
Compliance < 80%
Compliance > 80%

Figure 19.1 Five-year mortality among good and poor adherers to treatment.
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Figure 19.2 Five-year mortality by compliance and treatment in the Coronary Drug Project.

benefit of the drug—thus negating the need for a controlled study, although the data were

collected for one arm of a controlled study. The only problem with this result is that the drug

above was the placebo! In fact, the good and poor adherers of the active drug, clofibrate, had a

very similar pattern. Figures 19.1 and 19.2 give the five-year mortality for the placebo arm of

the trial and then for both arms of the trial. The two treatment arms did not differ statistically.

The reason for the difference between the placebo mortality for the good and poor adherers was

never fully understood.

Results such as this show how difficult it can be to assess a drug effect correctly from

observational data. This is one reason why randomized clinical trials are the regulatory gold

standard for most drug approvals. This is fine as far as it goes. We are then left with a very

difficult consideration. Why, then, does this book give the majority of space to observational

data analyses? If we cannot trust such analyses, why bother? The answer is that we do the best

we can in any situation. If observational data analyses are the only practical method (due to cost

or other feasibility factors), or the only ethical method (as the epidemiology of smoking risk

became clear, it would not been considered ethical to randomize to smoking and nonsmoking

treatment arms—not to mention the difficulty of execution), observational data must be used.

Example 19.3. If we stop the thing that appears to cause the deaths, we must be prolong-

ing life (or are we?). One of the wonders of the body is our heart; it beats steadily minute
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after minute, year after year. If the average number of beats is 60 per minute, there are 86,400

beats/day or 31,536,000 beats/year. In a 65-year-old, the heart may have delivered over 2 billion

heartbeats. The contraction of the heart muscle to force blood out into the body is triggered by

electrical impulses that depolarize and thus contract the heart in a fixed pattern. As the heart

muscle becomes damaged, there can be problems with the electrical trigger that leads to the

contraction of the heart. The electrical changes in the heart are monitored when a physician takes

an electrocardiogram (ECG) of the heart. If the depolarization starts inappropriately someplace

other than the usual trigger point (the sinus atrial node), the heart can contract early; such a

resulting irregular heartbeat, or arrhythmic beat, is called a ventricular premature depolariza-

tion (VPD). Although most people have occasional VPDs, after a heart attack or myocardial

infarction (MI), patients may have many more VPDs and complex patterns of irregular heart

beats, called arrhythmias. The VPDs place patients at an increased risk of sudden cardiac death.

To monitor the electrical activity of the heart over longer time periods, ambulatory electrocar-

diographic monitors (AECGMs) may be used. These units, also called Holter monitors, measure

and record the electrical activity of the heart over approximately 24-hour periods. In this way,

patients’ arrhythmic patterns may be monitored over time. Patients have suffered sudden cardiac

death, or sudden death, while wearing these monitors, and the electrical sequence of events is

usually the following: Patients experience numerous VPDs and then a run of VPDs that occur

rapidly in succession (say, at a rate greater than or equal to 120 beats/min); the runs are called

ventricular tachycardia (VT). Now many coronary patients have runs of VT; however, before

death, the VT leads to rapid, irregular, continuous electrical activity of the heart called ven-

tricular fibrillation (VF). Observed in a cardiac operation, VF is a fluttering, or quivering, of

the heart. This irregular activity interrupts the blood flow and the patient blacks out and if not

resuscitated, invariably dies. In hospital monitoring settings and cities with emergency rescue

systems, the institution of cardiopulmonary resuscitation (CPR) has led to the misnomer of

sudden death survivors. In a hospital setting and when emergency vehicles arrive, electrical

defibrillation with paddles that transmit an electrical shock is used. Individuals with high VPD

counts on AECGMs are known to be at increased risk of sudden death, with the risk increasing

with the amount and type of arrhythmia.

This being the case, it was natural to try to find drugs that reduced, or even abolished, the

arrhythmia in many or most patients. A number of such compounds have been developed. In

patients with severe life-threatening arrhythmia, if an antiarrhythmic drug can be found that

controls the arrhythmia, the survival is greatly superior to the survival if the arrhythmia cannot

be controlled [Graboys et al., 1982]. Graboys and colleagues examined the survival of patients

with severe arrhythmia defined as VF (outside the period of an MI) or VT that compromised

the blood flow of the heart to the degree that the patients were symptomatic. Figure 19.3 gives

the survival from cardiac deaths in 98 patients with the arrhythmia controlled and 25 patients

in whom the arrhythmia was not controlled.

Thus, there was a very compelling biological scenario. Arrhythmia leads to runs of VT, which

leads to VF and sudden death. Drugs were developed, and could be evaluated using AECGMs,

that reduced the amount of arrhythmia and even abolished arrhythmia on AECGMs in many

patients. Thus, these people with the reduced or abolished arrhythmia should live longer. One

would then rely on the surrogate endpoint of the arrhythmia evaluation from an AECGM. A

surrogate endpoint is a measurement or event that is thought to be closely associated with the real

endpoint of interest such that inducing changes in the surrogate endpoint would imply similar

changes in the “real” endpoint of interest. Usually, the surrogate endpoint is a measurement or

event that is not of direct benefit to a patient or subject, but that is presumably related to direct

benefit and can be used to establish benefit. Prentice [1989] defines the issue statistically: “I

define a surrogate endpoint to be a response variable for which a test of the null hypothesis of no

relationship to the treatment groups under comparison is also a valid test of the corresponding

null hypothesis based on the true endpoint.” Antiarrhythmic drugs were approved by the U.S.

Food and Drug Administration (FDA) based on this surrogate endpoint. It is important to point

out that antiarrhythmic drugs may have other benefits than preventing sudden death.
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Figure 19.3 Survival free 17 cardiac mortality in patients with severe arrhythmia. The curves are for those

whose arrhythmia was controlled by antiarrhythmic drugs and for those in whom the arrhythmia was not

controlled by antiarrhythmic drugs.

For example, some patients have such severe runs of VT that they faint. Prevention of fainting

spells is of direct benefit to the patient. However, asymptomatic or mildly symptomatic patients

with arrhythmia were being prescribed antiarrhythmics with the faith(?), hope(?) that the drugs

would prolong their life.

Why, then, would anyone want to perform a randomized survival trial in patients with

arrhythmia? How could one perform such a trial ethically? There were a number of reasons:

(1) the patients for whom arrhythmia could be controlled by drugs have selected themselves out

as biologically different; thus, the survival even without antiarrhythmic therapy might naturally

be much better than patients for whom no drug worked. That is, modification of the surrogate

endpoint of arrhythmia had never been shown to improve the results of the real endpoint of

interest (sudden death). (2) Some trials had disturbing results, with adverse trends in mortality on

antiarrhythmic drugs [IMPACT Research Group, 1984; Furberg, 1983]. (3) All antiarrhythmic

drugs actually produce more arrhythmia in some patients, a proarrhythmic effect.

The National Heart, Lung and Blood Institute decided to study the survival benefit of antiar-

rhythmic drugs in survivors of a myocardial infarction (MI). The study began with a pilot phase

to see if antiarrhythmic drugs could be found that reduced arrhythmia by a satisfactory amount.

If this could be done, the randomized survival trial would begin. The first study, by the Cardiac

Arrhythmia Pilot Study (CAPS) Investigators [1988], showed that three of the drugs studied—

encainide, flecainide, and moricizine—suppressed arrhythmias adequately to allow proceeding

with the primary survival trial, the Cardiac Arrhythmia Suppression Trial (CAST). Patients

within six weeks to two years of an MI needed six VPDs per hour to be eligible for the

study. There was an open label, dose titration period where drugs were required to reduce

VPDs by at least 80% and runs of VT by at least 90%. (For more detail, see the Cardiac

Arrhythmia Suppression Trial (CAST) Investigators [1989] and Echt et al. [1991].) Patients for

whom an effective drug was found were then randomized to placebo or to the effective drug

(Figure 19.4). Such was the confidence of the investigators that the drugs at least were doing

no harm that the test statistic was one-sided to stop for a drug benefit at the 0.025 significance

level. The trial was not envisioned as stopping early for excess mortality in the antiarrhythmic

drug groups.

The first results to appear were a tremendous shock to the cardiology community. The

encainide and flecainide arms were dropped from the study because of excess mortality! Strictly

speaking, the investigators could not conclude this with their one-sided design. However, the
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Figure 19.4 The panel on the left shows the survival, free of an arrhythmic death, among 1455 patients

randomized to either placebo or one of encainide or flecainide. The second panel is based on all-cause

mortality. (From the Cardiac Arrhythmia Suppression Trial (CAST) Investigators [1989].)

evidence was so strong that the investigators, and almost everyone else, were convinced of the

harmful effects of these two antiarrhythmic drugs as used in this patient population.

The results of the study have been addressed by Pratt et al. [1990] and Pratt [1990]; the timing

of the announcement of the results is described in Bigger [1990]; this paper gives a feeling for the

ethical pressure of quickly promulgating the results. Ruskin [1989] conveys some of the impact

of the trial results: “The preliminary results . . . have astounded most observers and challenge

much of the conventional wisdom about antiarrhythmic drugs and some of the arrhythmias they

are used to treat. . . . Although its basis is not entirely clear, this unexpected outcome is best

explained as the result of the induction of lethal ventricular arrhythmias (i.e., a proarrhythmic

effect) by encainide and flecainide.”

This trial has saved, and will continue to save lives by virtue of changed physician behavior.

In addition, it clearly illustrates that consistent, plausible theories and changes in surrogate

endpoints cannot be used to replace trials involving the endpoints of importance to the patient,

at least not initially. Finally, it is important to note that one should not overextrapolate the

results of a trial; the study does not apply directly to patients with characteristics other than

those in the trial; it does not imply that other antiarrhythmic drugs have the same effect in

this population. However, it does make one more suspicious about the role of antiarrhythmic

therapy, with a resulting need for even more well-controlled randomized data for other patient

populations and/or drugs.

The trial illustrates the difficulty of relying on very plausible biological theories to generate

new drug therapy. New therapies should be tested systematically in a controlled fashion on

humans following ethical guidelines and laws. Note also that the arrhythmia itself is not the true

focus of the therapy. It was thought to be a good “surrogate” for survival. The use of surrogate

endpoints as a guide to approving new therapies is very risky, as the example shows [Temple,

1995; Fleming and DeMets, 1996].

Example 19.4. Epidemiological studies have shown that higher than normal blood pressure

in humans is associated with shorter life span [Kesteloot and Joosens, 1980]. The decrease

is due especially to increased cardiovascular events, such as a heart attack, stroke, or sudden

death due to arrhythmia. Early clinical trials showed that lowering blood pressure by drug

therapy resulted in fewer heart attacks, strokes, and cardiovascular deaths. Subsequently, it was

considered unethical to treat persons with high blood pressure, called hypertensive individuals,

with a placebo or sham treatment for a long period of time. Thus blood pressure–lowering drugs,

antihypertensive drugs, were studied for relatively short periods, six to 12 weeks, in subjects with

mild to moderate hypertension. The surrogate endpoint of blood pressure reduction is used for

approval of antihypertensive drugs. As blood pressure tends to rise with physical or emotional
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stress it is subject to change in response to subtle clues in the environment. For this reason trials

use placebo (inactive) pills or capsules that are in appearance, smell, and so on, the same as

tested active treatment pills or capsules, as discussed in Chapter 1. In addition, to prevent the

transmission of clues that might affect blood pressure, the subject is not informed if she or he

is taking the active drug or the placebo drug. If only the subject does not know the treatment,

the trial is a single-blind trial.

However, since subtle clues by those treating and/or evaluating the subjects could affect

blood pressure, those treating and/or evaluating the subjects also are not told if the subject is

getting the active or placebo treatment. A study with both the subject and medical personnel

blinded is called a double-blind study.

At the beginning of the study, subjects are usually all started on placebo during an initial

single-blind period. This period serves multiple purposes: (1) it allows the effect of prior therapy

to wash out or disappear; (2) it allows identification of subjects who will take their medication

to be used in the comparative part of the trial; (3) it lessens the effect of raised blood pressure

due to the unsettling medical setting (the white coat hypertension effect); (4) it helps to remove

a regression to the mean effect of patient selection; and (5) multiple readings can assure relative

stability of and measurement of the baseline blood pressure.

Figure 19.5 shows the data of the placebo arm in such a trial. Since subjects were on placebo

the entire time, the explanation for the stable mean pressure during the single-blind run-in period

and the drop during the double-blind portion of the trial was thought to be subtle clues being

given to the patients by the medical personnel when they knew that some patients would be

getting active therapy. It should be emphasized that subjects were never told in the single-blind

portion of the trial that they were not potentially receiving active therapy. (The subjects did sign

an informed consent and knew that they might receive placebo or active therapy during portions

of the trial.) This figure illustrates the need for blinding in some clinical trials.

Figure 19.6 shows data from a second trial of an antihypertensive drug. The trial was a dose

escalation study. That is, the dose of a drug was increased in individual patients until they had

a satisfactory blood pressure response. Again the data are from the placebo arm of the trial.

The increasing “benefit” observed as the “dose” of placebo escalates illustrates the need for a

control group.

Example 19.5. In the United States, the National Institutes of Health (NIH) administers

most federal funds for health sciences research as well as having its own (intramural) programs

of research. Most of its employees thus value and are aware of the importance of well-conducted

medical research. Thus, the NIH population would seem the ideal place to study an intervention
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Figure 19.5 Average diastolic blood pressure (±1 standard error) during single-blind run-in and double-

blind treatment with placebo.
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if there were sufficient numbers of NIH employees experiencing the malady in question. The

results of a study on the use of ascorbic acid (vitamin C) for the common cold were published

by Karlowski et al. [1975]. Most aspects of the study will not be presented here, in order to

concentrate on the difficulty of performing a good experiment. There were four groups in the

study. As a preventive (prophylactic) measure there was random assignment to either ascorbic

acid or placebo (with capsules containing the study medication), and when a cold was thought

to occur (with a clear definition), the study participants were assigned at random (the same for

all colds if multiple colds occurred) to either ascorbic acid or placebo. Thus, there were four

groups. Three hundred and eleven persons were randomized to therapy (discounting 12 subjects

who dropped out early “before taking an appreciable number of capsules”). During the study the

investigators learned that some subjects had opened the capsules and tasted the contents to see if

they were taking ascorbic acid or placebo. More prophylactic placebo subjects (69) dropped out

than ascorbic acid prophylactic subjects (52). At the end of the study the investigators queried

the subjects about whether they thought they knew their study drug; of 102 subjects who thought

they knew, 79 (77%) guessed correctly. The study results showed no statistical difference in

the number of colds, but there was a trend for less severity of a cold if one took ascorbic acid.

Unfortunately, this trend disappeared if one took into account those who knew their therapy. The

NIH investigators comment under the heading the power of suggestion: “Depending upon one’s

point of view, it is either an unfortunate or fortunate aspect of the study. It would have been

gratifying to have performed a flawless clinical trial; on the other hand, it has turned out to be

a unique opportunity to gain some insight into the importance of perfect blinding in trials with

subjective endpoints. An association between severity and duration of symptoms and knowledge

of the medication taken seems to have been clearly established.”

These examples above illustrate:

1. The need for a control group to be compared with an active therapy

2. The need for a “fair” or unbiased control, or comparison, group or appropriate mathemat-

ical adjustment to make a fair comparison. Appropriate mathematical adjustment is very

difficult to do in this setting (as Example 19.2 illustrates)

3. The need for blinding to avoid introducing bias into clinical trials

4. The need for an endpoint of a trial that has clinical relevance (e.g., Temple [1995])

19.4 OBTAINING A FAIR OR UNBIASED COMPARISON: RANDOMIZED
CLINICAL TRIAL

We now turn to two aspects of the clinical trial. The first is summarized by the question: How

can we assign subjects to unbiased, or comparable, groups at the start of a clinical trial? The

idea of random selection to get a “fair” choice or comparison goes back a long time in human

history. Lots were used in Old Testament times, the idea of “drawing the short straw,” tak-

ing a card from a well-shuffled pack, and so on, all show the intuitive appeal of this type of
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procedure. However, the formal introduction of randomization was made in the 1930s by the

British statistician and geneticist Sir Ronald Aylmer Fisher [Box, 1978]. In one of the great intel-

lectual advances of the twentieth century, he combined the methodology of probability theory

with the intuitive appeal of randomization to begin the randomized experiment. The idea is in

some ways counterintuitive. As seen previously in this book, a theme of good observational data

analysis or experimentation is to eliminate variability in order to make comparisons as precise

as possible. Randomness, or “unexplained noise,” does just the opposite. Think of the simplest

type of random assignment between two treatments: Each eligible patient has her or his therapy

determined (after informed consent) by the flip of an unbiased coin (i.e., the probability of each

treatment is 1
2

). The different flips are statistically independent, and if there are n assignments,

the number on treatment A, or B for that matter, is a binomial variable. Further, any particular

pattern of assignment is equally likely (1/2n).

What are the benefits of this random assignment? First, the assignment to treatment is fair.

Human biases, whether conscious or unconscious, are eliminated. Second, on average, the two

assignments have the same number of easy or difficult-to-treat assignments; that is, patient

characteristics are balanced (statistically). Third, if we assume that treatment is unrelated to our

outcome, we can assume that the outcomes were preordained to be good or bad. We can find

the probability under this random assignment that each treatment arm had outcomes as extreme

or more extreme than that actually observed with the actual assignments because we know that

each assignment of cases is equally likely. (see Chapter 8). That is, we can compute a p-value

that is not dependent on assumptions about the population we are observing. This is called using

the randomization distribution (see Edgington [1995]). We do, however, need to be sure that

the randomization is done appropriately.

The benefits of the randomized trial are so widely recognized that by law and regulation, in

most countries new drugs or biologics need to be evaluated by a randomized clinical trial in

order to gain regulatory approval to market the new advance legally. See Note 19.4 for a few

references on the need for and benefits of the RCT.

19.4.1 Intent to Treat

There are complications to RCTs in practice. Suppose, in fact, that many patients assigned to

one, or both, of the treatments do not get the assigned therapy? Does it make sense to compare

the treatments as randomized? How can patients who do not receive a therapy benefit from it?

Thus, does it not seem odd to keep such patients in a comparison of two therapies? This sticking

point has led to some difficult considerations: If we consider only patients who received their

assigned or randomized therapy, we can introduce bias since those who do not receive their

therapy are usually different (and unfortunately, possibly in unknown ways) from those who do

receive their assigned therapy. The issue then becomes one of avoiding bias (include all patients

who are randomized into their assigned group) vs. biological plausibility (only count those who

actually receive a treatment). At its worst this might pit biostatisticians vs. clinicians. At this

point in time, including all subjects in the analysis into the group to which they are randomized

is considered standard; such analyses are called intent-to-treat (ITT) analyses. The name arises

from the fact that under the randomized assignment there is an implied initial intent to treat the

subject in the manner to which he or she was randomized. The best way to avoid the conflict

between bias and biology is to perform an excellent experiment where those randomized to a

treatment do receive the treatment. For this reason the assignment to randomization should be

accomplished at the last possible moment.

If those subjects who do not begin treatment do so for reasons that cannot have been due to

the randomized assignment (e.g., nonbreakable double blinding), the subjects who at least begin

therapy can be included into the analysis with all the benefits of the randomization process listed

above. Such analyses are called modified intent to treat (mITT) and are acceptable provided that

one can be assured that the lack of therapeutic delivery cannot have been related to the treatment

assignment. In practice, modified intent-to-treat analyses are often also called intent to treat.
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19.4.2 Blinding

We have seen above that using a randomized assignment does not accomplish the full task of

assuring a fair comparison. If the outcome is affected by biased behavior due to the treatment

assignment, we can have misleading results despite the fact that the treatments were assigned at

random. Bias can still ruin an RCT. We have seen this in both the blood pressure and vitamin C

examples above. Wherever possible, double blinding should be used. The more subjective the

endpoint, the more important blinding is to a trial. However, even with very “hard” endpoints that

would not seem to need blinding (e.g., mortality), blinding can be important. The reason is that

if the blinding is not effective, there may be treatment biases that change the way subjects in the

assigned groups are treated (e.g., hospitalized, given other medications) and this may affect even

hard endpoints such as mortality. It is difficult to blind in many trials [e.g., a drug may induce

physiologic changes (in heart rate or blood pressure)] and those seeing and treating a patient

may have reasonable guesses as to the therapy. Added steps can be taken. For example, those

involved in evaluating a patient for outcome might be required to be different from those treating

a patient. Often, outcomes for a trial are evaluated by an external classification committee to

reduce bias in the determination of events.

19.4.3 Missing Data

Missing data are one of the most common and difficult issues in the analysis of RCTs. Even

a modest discussion of the ways to approach and handle missing data in RTCs goes beyond

the scope of this book. However, a few partial solutions, based on the concepts introduced in

Section 10.5.2 and Chapter 18 are presented here.

The first and most important thing to understand is that there is no totally satisfactory method

of dealing with the issue. The best course is not to have any missing data, but often, that

wonderful counsel cannot possibly be implemented. For example, in studies performed in a

population of street people with illicit drug use, complete data are virtually unknown if the

study requires patient cooperation over a moderate length of time. Subjects simply disappear

and are extremely difficult to find. Some turn up in jail or hospitals, but follow-up is difficult.

It they are to return for follow-up visits, adherence can be quite low. What are those running

such a trial, as well as the general society, with its interest in the outcome, to do? We do the

best we can but realize that there will be many missing data. Another example: One studies

treadmill walking time in a population of congestive heart failure patients. The primary study

endpoint is the change in treadmill time from the baseline measurement to the final visit (at

some fixed interval from the time the subject was randomized). Some subjects will die: How

should their data be treated in the final analysis? Clearly, the missing information (the impossible

final treadmill test) is not independent of patient status. This is known as informative censoring.

Others may have their heart failure progress to a stage where it is too difficult to come in for

the test or to perform the test. Other subjects may become discouraged and exercise their right

to withdraw from the study. Others may go on vacation and not be around at the correct time

for their evaluation. The possibilities go on and on.

First, one might assume that the missing data do not bias the conclusions and analyze only

those who have all appropriate data. This is usually not an acceptable approach unless there are

only minimal missing data. However, it is often used as an additional analysis. Data may also

be “missing” for legitimate medical reasons. In a trial of blood-pressure-lowering medication,

patients may present with greatly elevated blood pressures that require immediate, or perhaps

after a week’s delay, treatment with known effective drug or drugs. In many trials there are more

such subjects in the placebo group. If their data are not taken into account, there is a bias against

the active therapy. Further, their data at the end of the scheduled therapy period are not unbiased,

as strong active therapy is used to lower blood pressure. In this case the endpoint used is the last

observation on the assigned randomized therapy. In effect, the last observation is carried forward

to the time for final evaluation. Not surprisingly, such analyses are called last observation carried
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forward (LOCF). This is often used as a method of analysis when the primary parameter of the

study is collected at regularly scheduled visits. Sometimes the missing data are replaced by the

mean of the known values for the study. In other cases, more sophisticated methods are used

to estimate, impute, the missing values. Such strategies can be quite complex. For a discussion

of the implications of different reasons that data are missing, the implications for missing data,

and analysis methods, see Little and Rubin [2002] and Section 18.6.

If the data are extremely strong, a worst-case analysis can be used and an effect still estab-

lished. For example, in a survival analysis study that is placebo controlled, the comparison to

a new therapy, the worst case (for establishing the new therapy), would assume that placebo

patients not observed for the full observation period lived to the end of the follow-up period

and that those assigned to the new active therapy died immediately after the last time they were

known to be alive before being lost to follow-up.

The robustness of the study data to the missing data is sometimes assessed with some type

of sensitivity analysis. Such analyses make a variety of assumptions about the actual pattern of

the missing data and see how extreme it must be to change the study results in some important

manner.

19.5 PLANNING AN RCT

19.5.1 Selection of the Study Population

In clinical studies the selection of the study population is critical. The understanding of the

drug, biologic, or device mechanism will suggest a population of subjects where efficacy is to

be shown. Selection of the highest-risk population is often the most logical choice to demonstrate

the effect; however, if only such subjects are studied, the approval for use will usually be limited

to such subjects. This may limit use of the new treatment. As a result, this may narrow the range

of subjects getting a benefit, as well as lowering the sales potential for the sponsor developing

the new therapy.

19.5.2 Special Populations

Historically, many important special populations either were not investigated at all or had very

limited data—despite the fact that any realistic appraisal of usage patterns would anticipate such

use. For example, women of childbearing potential were avoided; in large part, this was to

avoid law suits if there were any birth defects in the children conceived, developing, or born

during or close to the trial. The expense of a lifetime of care was avoided by not studying

such women. The most infamous example of a drug causing birth defects was thalidomide in

Europe and the United States. Nevertheless, many medications are used by pregnant women.

Over-the-counter (OTC) products are the most obvious; analgesics (i.e., pain relievers) are one

clear class. Now the FDA strongly recommends, and sometimes requires, such studies. Another

underevaluated population was children. One might think that from a pharmacological point of

view, children are merely small adults and that smaller doses would clearly work if the drug

worked in adults. Unfortunately, this idea is simply not true. Children differ in many important

ways in addition to size, and care is needed in extrapolating adult results to children. Historically,

minorities, especially African-Americans, had limited experimental results in drug development

(except in obvious special cases such as sickle cell anemia). In part, this was related to limited

access to health care. There are genetic differences in the way that drugs affect humans, and

minorities are now studied more systematically. Often, some clinical sites in studies are selected

to test a therapy on a more diverse population. The elderly were also underrepresented in

RCTs. In part, this is because the elderly have more trouble showing up for clinic visits and

complying with their therapy (as they may forget to take their medication). However, the elderly

are a particularly important population to study because (1) they take many medications, and

drug–drug interactions that cause trouble are more likely to occur in this population; (2) drugs



778 RANDOMIZED CLINICAL TRIALS

are often metabolized in the liver, so poor liver function can cause problems (the elderly have

more liver impairment); (3) elimination is often through the kidneys, and the elderly are more

likely to have kidney problems; and (4) the changing world demography shows that a larger

proportion of the world population will be elderly in the next few decades.

19.5.3 Multicenter Clinical Trials

Many clinical trials use multiple clinical centers to enroll patients or subjects. There are several

reasons for this. The most obvious is the need to enroll many patients in a timely fashion.

There are also other reasons, perhaps not as obvious. Most new drugs are developed to be

registered (approved for marketing) in many markets around the world: the United States, the

European Union, Japan, and Canada, among others. Thus, the studies often have clinical sites

from around the world to aid in approval under the various regulatory authorities. Using “influ-

ential” physicians at different centers as investigating clinicians in the research program can

also be an aid to marketing when approval is granted. Other benefits of using multiple clinics

include (1) showing that there is a benefit in different settings, and (2) assessing therapy under

a variety of concomitant medical therapeutic settings.

In addition to the benefits, there are numerous additional challenges to multicenter clinical

trials. Standardization of treatment and data recording often require extensive education and

monitoring. The randomization process needs to be available over a wide range of times if

subjects are enrolled around the world. Forms and data collection may be complicated by the

number of languages and cultures involved. Data are analyzed for clinical site heterogeneity in

response; often, this is done for different delivery settings (e.g., North America, Europe, and

the rest of the world). Security of data, monitoring of the raw data (often in clinical files), and

investigator and staff training are all quite complicated.

19.5.4 Practical Aspects of Randomization

The process of randomizing subjects in an RCT involves choices. To simplify the discussion

we consider only two-arm trials, but similar considerations can be used with more than two

treatment arms. The simplest random allocation is a fair coin flip, allocating each subject to

one arm or the other. (In practice, the “flips” are done using a pseudorandom number generator

on a computer.) There are drawbacks to the coin-flip approach. If there are clinical sites, each

enrolling a small number of subjects, a number of such sites may involve only one treatment.

This makes it impossible to see the variability in treatment effect within such sites. Therefore,

the randomization is done using randomized blocks. If the ratio of subjects randomized to each

arm is to be the same, even-numbered blocks are used. If the size is 2n, then among each 2n

randomizations, n will be to one arm and n to the other. Potentially, this can lead to bias, since

if the study is unblinded or one can unblind with a reasonable probability, the probabilities for

subsequent patients is no longer 1
2

to 1
2

. To see this, consider an unblinded study: If we know the

first 2n − 1 treatment assignments, we know what the next subject will receive as a treatment.

To get around this problem partially, blocks of different size are sometimes used, being chosen

with some probability. For example, one might choose a block of size 4 half the time and a

block of size 6 half the time.

Often, the blocks are not used to get balance within a site. If there is an important factor

that determines the risk of the trial outcome, blocks with some strata for the risk factor may

be used. This “forces” some balance with respect to the important prognostic factor. If more

than one factor exists, combinations of two or more factors might be used. There is a limitation,

however; if one had five factors, each of which had three levels, and we took all combinations,

there would be 53
= 125 possible strata. As the number goes up, we tend to get cells with

zero or one subject actually randomized within a cell. When we are using only the first element

of each block, randomization is the same as if we did not block at all! For this reason, more

complex schemes have been developed for forcing balance on a number of factors; this technique
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is known as adaptive randomization. For blocking and adaptive randomization, one needs to

know selected information about a subject before an assignment can be given. This is often done

through either an interactive voice randomization system that uses touchtone phones or through

the Internet. In either case, the needed information will be entered, eligibility may be checked,

and the database is quickly informed of the randomization, and may check for subsequently

expected data. See Efron [1971], Friedman et al. [1999, Chap. 5], or Meinert [1986, Sec. 10.2].

19.5.5 Data Management and Processing

Data management of randomized clinical trials is challenging, particularly so for international

multicenter trials. In most instances, data are entered on case report forms (CRFs). Often, clinical

sites are visited to compare the forms with the official medical records for consistency and docu-

mentation. Inspections are made by those sponsoring a study as well as by regulatory authorities

if the trial aims to register a drug. Forms are usually submitted to a central data processing unit.

They may be carried by hand using monitors, faxed after data entry at the clinical site (remote

data entry), transferred electronically, entered via the Internet, or (more and more rarely) mailed

in batches. To minimize data-entry errors, the data are often entered twice by two different peo-

ple, and the entries compared for consistency with resolution in the case of disagreement. Entered

files usually undergo extensive consistency checks [e.g., are the dates possible? Is a datum plausi-

ble (in that it is in a reasonable range)? If a discrete variable, is the code a legal one?] One of the

worst errors is to have an incorrect patient identifier for a form or forms; for this reason, patient-

identifying information (which only identifies the patient uniquely, not allowing the actual person

to be identified) often has redundant checking information. When an entry fails a check, a pro-

cess is instituted to resolve the problem. Tracking the resolution and any changes is documented

for possible subsequent review. Problem resolution can be quite extensive and time consuming.

The database often allows identification of the timing of needed follow-up visits, exami-

nations, or contact. For complex studies the database is sometimes used for notifying clinical

sites of the expected upcoming data collection. Missing forms (i.e., those expected from sub-

sequent visits) are asked for after some time interval. Some possible inconsistencies may arise

externally (e.g., from a blinded committee used to classify endpoints that need resolution), and

these are also tracked and recorded. Before a study is analyzed, or unblinded, all outstanding

data issues are resolved to the extent possible, and the data file is then frozen for the analysis

and interpretation of data. In studies that need ongoing monitoring for ethical reasons, there

may be an independent data and safety monitoring board to review interim data (see Ellenberg

et al. [2002]). To avoid introducing bias into the study, a group, independent of the sponsor,

often provides tables, lists, and materials. The complexity and effort needed for such processes

is hard to appreciate unless one has been through it. (See also Sections 2.6 to 2.9.)

19.6 ANALYSIS OF AN RCT

19.6.1 Preservation of the Validity of Type I Error

Because drug development costs so much and because the financial reward for a successful

new drug in the right setting is so great, there is an apparent conflict between the sponsors

and regulators. Stated statistically, the sponsors want to maximize the power of a study (i.e.,

minimize Type II error), and the regulators want to minimize and preserve the appropriateness

and interpretability of the Type I error or p-value. Some areas of particular related concern are

discussed below.

19.6.2 Interim Analysis of an Ongoing Clinical Trial

New investigational therapies hold potential for both benefit and harm. Experience has shown

that no matter how thorough the prior work in other animal species, the results in humans may
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differ in unexpected ways. This is especially true with respect to adverse events. This requires

looking at outcomes during the study—carrying out interim analyses. Similarly, when serious

irreversible endpoints, such as death or permanent disability, are being considered, if a therapy is

beneficial, there is an ethical requirement to stop the trial. But repeated interim analyses inflate

the Type I error. This problem has been dealt with extensively in the biostatistical literature

under the rubric of sequential analysis. Boundaries for values of a test statistic that would stop

the trial at different times have been studied extensively (e.g., O’Brien and Fleming [1979];

Whitehead [1983]; Jennison and Turnbull [2000]; Lan and DeMets [1983]). In recent years,

methods have been developed that allow examination of the results by treatment arm, with

resulting modifications of the trial that still preserve the Type I error (e.g., Fisher [1998b]; Cui

et al. [1999]). A basic strategy is to parcel out the Type I error over the trial. For example,

suppose that two interim analyses are planned during the course of a study. Then test the results

for the two interim analyses at the 0.001 level and the final analysis at the 0.048 level. This still

ensures an overall level of 0.05.

19.6.3 Multiple Endpoints, Multivariate Endpoints, and Composite Endpoints

In some situations, multiple endpoints may be used to demonstrate the benefit of a new therapy.

Of course, one cannot simply look at all of them and claim success if any one of them meets

the significance level used in the RCT because the multiple comparisons inflate the Type I error.

Several strategies have been used:

1. Select one of the possible beneficial endpoints to be the primary analysis for trial.

2. Adjust the p-value to account for the multiple comparisons. A conservative adjustment is

to use the Bonferroni inequality and its refinements (Chapter 12) [Wright, 1992]. If the

possible endpoints are positively correlated, as is usually the case, less severe adjustments

are possible using the randomization distribution for the RCT.

3. The various components of possible endpoints can be considered to be a vector (i.e.,

arranged in sequence), and methods are available to test all the endpoints at once.

4. Sometimes an index, a weighted sum of the endpoints, is used as the one primary endpoint

(see Schouten [2000]).

5. When a number of endpoints occur as distinct events in time, the first occurrence of any of

them can be used as one event. Comparisons may be made using the methods of survival,

or time to event, analysis (Chapter 16).

These issues are discussed in more detail in Chapter 12.

19.7 DRUG DEVELOPMENT PARADIGM

The following points introduce some of the ideas and terminology used in the development of

drugs and biologics (see Mathieu [2002] for more). The first step is to identify a potential drug

(a molecule). This used to be accomplished largely by chance (e.g., the discovery of penicillin)

or through large screening programs, but because of recent substantial advances in genetics,

molecular biology, and computer modeling, more and more compounds are being designed for

specific purposes. Compounds may be screened for in vitro (i.e., “in glass”) reaction with known

molecules to identify candidates.

The first testing is carried out in several animal species. This preclinical phase of drug

development accomplishes several purposes. Among the purposes are the following: The first is

to identify if a drug is toxic at most possible doses (both short-term and longer-term studies in at

least two species are done). Second, a range of doses can be evaluated. Are there doses that are

not toxic (that have efficacy at the lower doses)? Third, use of an animal species will sometimes

allow examination of an efficacy assessment vs. toxicity as a function of the dose. Other tasks
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performed are to look for the formation of fetal and birth abnormalities (teratogenicity studies),

to see if drugs cause cancer (carcinogenicity, as a function of animal species and dose), and to see

if gene abnormality results (mutagenicity testing). Of course, usually, the more drug one takes,

the greater the amount that enters the body. One studies the time course of the drug [whether

administered as a pill or capsule, by injection (intravenously or intramuscularly), by inhalation,

etc.] within the body. Almost all drugs change into other molecules (metabolites) when in the

body. Study of the time course of adsorption, distribution, metabolism, and elimination of the

drug molecule and its metabolites comprises the field of drug pharmacokinetics. The relationship

of the drug time–concentration value to the magnitude of effect is the field of pharmacodynamics.

After the preclinical data have been reviewed (in the United States) and approved by appro-

priate authorities, testing may begin in humans. Phase I of drug development is initial use of the

drug in humans. Unfortunately, the preclinical animal testing gives only a rough idea of possible

appropriate doses in humans. The animal data are often predictive only to an order of magnitude,

so testing in humans usually begins at a very low dose and is slowly escalated. If the drug is

anticipated to be well tolerated by normal subjects, the initial testing is usually done in healthy,

normal volunteers. Drugs that are harmful by their nature [e.g., cancer (oncology) drugs that kill

cells] are tested initially in patients. Some idea of activity may be gained in this initial phase.

Slow escalation of the dose given helps to establish a preliminary dose range for the compound.

Phase II studies are reasonably large studies that give preliminary evidence of the efficacy of

a drug in humans, to determine reasonable doses, and to get evidence on safety and tolerability

in a patient population. These studies are often not blinded.

Phase III studies are large, randomized clinical trials to establish efficacy and safety. For

most drugs it is expected that there will be at least two independent RCTs, double-blinded where

possible, that establish efficacy at the 0.05 significance level. An increasing number of active

control trials are being conducted in which noninferiority is established by showing that the new

compound does not differ from the active control by more than a small equivalence margin (see,

e.g., Temple and Ellenberg [2000]; Ellenberg and Temple [2000]). Often, the Phase III trials

for efficacy do not provide adequate experience to evaluate patient safety. There often are open

label (i.e., patient and physician know what treatment the subject is getting) extensions, where

all patients get the new therapy if they consent to continue in the study. These trials may enroll

more subjects, to get additional safety data.

After drugs are approved, postmarketing, or Phase IV, studies are sometimes performed for a

variety of purposes: to collect more safety data, to do additional evaluation of efficacy (sometimes

using a different endpoint), or to study efficacy in a broader, representative population.

19.8 SUMMARY

RCTs are difficult, expensive, ethically challenging, and require great attention to planning and

monitoring operationally. Still the benefits are generally agreed to be worth the effort. This type

of human experimentation gives the most cogent and convincing proof of the benefit of a new

therapy. Further, the control group (whether a placebo or a proven active therapy) provides a

better comparison of the safety of a new therapy. The benefit and risk must be traded off in the

approval of new therapies.

NOTES

19.1 Interventions Other Than Drugs

In the discussion above we have discussed RCTs primarily as if they were for new drugs or

biologics. Many interventions, such as medical devices, have been and/or could be investigated

using RCTs or analogs. A variety of surgical interventions have been investigated by RCTs.
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Prevention programs, such as smoking-cessation programs, can be investigated by randomizing

larger experimental units. For example, in an NIH study of smoking prevention, the school

district was the unit of randomization [Peterson et al., 2000]. One could randomize to different

health care strategies, different modes of psychotherapy, and so on. In these studies the unit of

randomization may be much larger; such group randomization is discussed by Feng et al. [2001].

19.2 Drug Approval and Physician Use of Drugs

In the United States, drugs are approved by the Food and Drug Administration. The approval

includes labeling that specifies the population the drug is to benefit (i.e., the indication) as

well as dosing information and warnings about safety, interactions with other drugs, and so

on. Physicians may then legally use the drug for other indications (other diseases or patient

populations) without violating the law (off-label use). If this use is in accord with the practice

norms of the community, adequate malpractice defense can often be established. Drug companies

selling the drugs are prohibited by law from advertising such off-label use of their product. One

suspects that implied off-label uses are sometimes promoted.

19.3 Generic Drugs

In the United States, from the time that human experimentation begins, a sponsor has exclusive

rights to sell the drug (assuming approval) for a limited period of time. The rights are for 17

years from the time the application is approved for experimentation on humans. Thus, there is a

limited time to recoup research costs and make a profit. After this time, others may manufacture

and sell the drug provided that they establish that it is the same drug (bioequivalence). These

are called generic drugs. Equivalence is shown by establishing that the pharmacokinetics is the

same for the new version and the original approved version. We do not address the topic of

bioequivalence further here (see Chow and Liu [2000]).

19.4 Further Reading: Specific Topics

For more information on informed consent see, for example, Faden and Beauchamp [1986]. For

a mathematical discussion of what constitutes an appropriate surrogate endpoint, see the paper

of Prentice [1989]. For nice discussions of the history of blinding, see the papers by Kaptchuk

[1998] and Chalmers [2001]. Some references on the benefits of the randomized clinical trial

are Ederer [1975], Green [1982], Greenberg [1951], and Kempthorne [1977].

Since the 1970s, the number of articles and books about RCTs and statistical analysis has

grown exponentially (e.g., books on clinical trials: Bulpitt, 1996; Cato and Sutton, 2002; Chow

and Liu, 2003; Cleophas et al., 2002; Duley and Farrell, 2002; Friedman et al., 1999; Matthews,

2000; Meinert, 1986; Mulay, 2001; Norleans, 2001; Piantadosi, 1997; Pocock, 1996; Spilker,

1991).

There are numerous books about particular disease areas (e.g., AIDS [Finkelstein and Schoen-

feld, 1999]; cardiology and cardiovascular disease [Hennekens and Zorab, 2000; Pitt et al., 1997];

epilepsy [French et al., 1997]; hypertension [Black, 2001]; multiple sclerosis [Goodkin and

Rudick, 1998]; neurology [Guilogg, 2001; Porter and Schoenberg, 1990]; oncology [Green

et al., 2002]; opthamology [Kertes and Conway, 1998]); and for material for patients [Giffels,

1996; Slevin and Wood, 1996]; aspects of trials, such as quality of life and pharmacoeconomics

[Fairclough, 2002; Spilker, 1995]; data management [McFadden, 1997]; combining data from

trials (metaanalysis: [Whitehead, 2002]; evaluating the literature [Ascione, 2001]; and dictionary

or encyclopedic entries [Day, 1999; Redmond et al., 2001]).
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Personal Postscript

20.1 INTRODUCTION

One reviewer of this book felt that it would be desirable to have a final chapter that ended

the book with more interesting material than yet another statistical method. This stimulated us

to think about all the exciting, satisfying, and interesting things that had occurred in our own

careers as biostatisticians. We decided to try to convey some of these feelings through our own

experiences. This chapter is unabashedly written from a first-person point of view. The examples

do not represent a random sample of our experiences but rather, the most important and/or inter-

esting experiences of our careers. There is some deliberate duplication of background material

that appears in other chapters so that this chapter may be self-contained (except for the statistical

methods used). We have not made an effort to choose experiences that illustrate the use of many

different statistical methods (although this would have been possible). Rather, we want to enter-

tain, and in doing so, show the important collaborative role of biostatistics in biomedical research.

20.2 IS THERE TOO MUCH CORONARY ARTERY SURGERY?

The National Institutes of Health in the United States funds much of the health research in the

country. During the late 1960s and early 1970s, an exciting new technique for dealing with

anginal chest pain caused by coronary artery disease was developed. Recall that coronary artery

disease is caused by fibrous fatty deposits building up within the arteries that supply blood

to the heart muscle (i.e., the coronary arteries). As the arteries narrow, the blood supply to

the heart is inadequate when there are increased demands because of exercise and/or stress;

the resulting pain is called angina. Further, the narrowed arteries tend to close with blood

clots, which results in the death (infarction) of heart muscle (myocardium), whose oxygen and

nutrients are supplied by the blood coming through the artery; these heart attacks are also called

myocardial infarctions (Mls). Coronary artery bypass graft (CABG; pronounced “cabbage”)

surgery replumbs the system. Either saphenous veins from the leg or the internal mammary

arteries already in the chest are used to supply blood beyond the narrowing, that is, bypassing the

narrowing. Figure 20.1 shows the results of bypass surgery. A key measure of damaged arteries

is the ejection fraction (EF), the proportion of blood pushed out of the pumping chamber of the

heart, the left ventricle. A normal value is 0.5 or greater. EF values between 0.35 and 0.49 are

considered evidence of mild to moderate impairment. When the heart muscle is damaged, say

by an MI, or has a limited blood supply, the EF decreases.
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1) Narrowing (Stenosis)

2) Saphenous veins inserted to bypass narrowing.

Figure 20.1 Schematic display of coronary artery bypass graft surgery. Here saphenous veins from the

leg are sewn into the aorta where the blood is pumped out of the heart and then sewn into coronary arteries

beyond narrowings in order to deliver a normal blood supply.

Because the restored blood flow should allow normal function, it was conjectured that surgery

would both remove the anginal pain and also prolong life by reducing both the stress on

the heart and the number of myocardial infarctions. It became clear early on that surgery

did help to relieve angina pain (although even this has been debated; see Preston [1977]).

However, the issue of prolonging life was more debatable. The amount of surgery had impor-

tant implications for the health care budget, since in the early 1970s the cost per operation

ranged between $12,000 and $50,000, depending on the location of the clinic, complexity of the

surgery, and a variety of other factors. The number of surgeries by year up to 1972 is shown

in Figure 20.2.

Because of the potential savings in lives and the large health resources requirements, the

National Heart, Lung and Blood Institute (NHLBI; at that time the National Heart Institute)

decided that it was appropriate to obtain firm information about which patients have improved

survival with CABG surgery. Such therapeutic comparisons are best addressed through a ran-

domized clinical trial, and that was the approach taken here with randomization to early surgery

or early medical treatment. However, because not all patients could ethically be randomized,

it was also decided to have a registry of patients studied with coronary angiography so that

observational data analyses could be performed on other subsets of patients to compare medical

and surgical therapy. When the NHLBI has internally sponsored initiatives, they are developed

through a request for proposals (RFP), which recruits investigators to perform the collabora-

tive research. This trial and registry, called the Coronary Artery Surgery Study (CASS), had

two RFPs; one was for clinical sites and the other for a coordinating center. The RFP for the
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Figure 20.2 Number of coronary artery bypass graft surgeries in thousands of operations by year, 1970–

1989. Marked are some of the key time points in the Coronary Artery Surgery Study. (Data courtesy of

the cardiac diseases branch of the National Heart, Lung and Blood Institute from the National Hospital

Discharge Survey, National Center for Health Services.)

clinical sites was issued in November 1972 and described the proposed study, both random-

ized and registry components, and asked for clinics to help complete the design and to enroll

patients in the randomized and registry components of the study. The coordinating center RFP

requested applications for a center to help with the statistical design and analysis of the study,

to receive and process the study forms with a resultant database, to produce reports for mon-

itoring the progress of the study and to otherwise participate in the quality assurance of the

study, and finally, to collaborate in the analysis and publication of the randomized study and

registry results. The organization of such a large multicenter study had a number of components:

The NHLBI had a program office with medical, biostatistical, and financial expertise to oversee

operation of the study; there were 15 cooperating clinical sites in the United States and Canada;

the Coordinating Center was at the University of Washington under the joint direction of Lloyd

Fisher and Richard Kronmal; a laboratory to read electrocardiograms (ECG lab) was established

at the University of Alabama.

The randomized study enrolled 780 cases with mild angina or no angina with a prior MI,

and significant disease (defined as a 70% or greater narrowing of the internal diameter of a

coronary artery that was suitable for bypass surgery). There were a variety of other criteria for

eligibility for randomization. The registry, including the patients randomized, enrolled 24,959

patients. Extensive data were collected on all patients. The first patients were enrolled in July

1974, with randomization beginning in August 1975 [CASS Principal Investigators and Their

Associates, 1981]. Follow-up of patients within the randomized study ended in 1992. Needless

to say, such a large effort cost a considerable amount of money, over $30,000,000. It will be

shown that the investment was very cost-effective.

Results of the survival analysis and indicators of the quality of life were made public in 1983

[CASS Investigators, 1983a,b, 1984b]. The survival estimates for the subjects randomized to
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Figure 20.3 Data from the CASS randomized clinical trial; the bottom panel is for patients with ejection

fractions less than 0.50; the top panel is for patients with ejection fractions of 0.50 or above. The p-values

are the log-rank statistic for the comparison.

initial medical and surgical treatment are given in Figure 20.3. For patients with an EF of 0.5

or more, the survival curves were virtually identical; for subjects with lower EF values, there

was a trend toward favorable mortality in the surgery group (p = 0.085 by the log-rank test).

A number of points were important in interpreting these data:

1. The CASS investigators agreed before the study started that the surgery was efficacious in

relieving angina. Thus, if a patient started to have severe angina that could not be controlled by

medication, the patient was allowed to “cross over” to surgery. By year 5, 24% of the patients

assigned to initial medical therapy had crossed over to the CABG surgery group. If surgery

is, in fact, having a beneficial effect and there is much crossover, the statistical power of the

comparison is reduced. Is this a bad thing? The issue is a complex one (see Peto et al. [1977];

Weinstein and Levin [1989]; Fisher et al. [1989, 1990]). We know that one of the benefits

of randomization is that we are assured of comparable groups (on average) even with respect

to unrecorded and unknown variables. If we manipulated people, or parts of their experience,

between groups by using events that occurred after the time of randomization, bias can enter

the analysis. Thus, people should be included only in the group to which they are randomized;

this is called an intent-to-treat analysis since they are counted with the group whose treatment
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was intended. (Does such an approach avoid bias? Does it always make biological sense?) The

CASS investigators favored an intent-to-treat analysis not only because it avoided possible bias

but also because of the ethical imperative to perform CABG surgery for pain relief when the

pain became intractable under medical treatment. Thus, including all the experience of those

assigned to initial medical treatment, including CABG surgery and subsequent events, mirrored

what would happen to such a group in real life. This is the question that the trial should

answer: Is early surgery helpful when patients will receive it anyway when the pain becomes

too severe? However, the power of such a comparison will be diminished by the crossovers.

The interpretation of such intent-to-treat analyses must acknowledge that without the crossover,

the results could have been substantially different.

2. Because bypass surgery is such a big industry (e.g., 200,000 surgeries per year at $30,000

per operation adds up to $6 billion per year), with many careers and much professional prestige

committed to the field, one could expect a counter reaction if surgery did not look beneficial.

Such reactions did occur, and a number of editorials, reviews, and sessions at professional

meetings were given to consideration of the results. One of the authors (LF) appeared on the

CBS national news as well as going to New York City to be interviewed by Mike Wallace

and appearing on the TV program 60-minutes. Based largely on the CASS results, the program

suggested that there was too much CABG surgery.

3. It is important to keep the findings in context. They did not apply to all, or even most,

patients. The CASS was one of three major randomized trials of CABG surgery. One study

showed definitively that the surgery prolonged life in patients with left main disease [Takaro

et al., 1976]. This study excluded patients with severe angina and thus had nothing to say about

differential survival in such patients. In fact, there is observational data to suggest that early

elective CABG surgery prolonged life in such patients [Kaiser et al., 1985; Myers et al., 1989].

4. Even though the findings may apply to a relatively small number of patients, the results

could have a very substantial impact on the national health scene. Subsequent CASS papers

showed that the trend toward increased survival with surgery in the low ejection fraction patients

was real [Passamani et al., 1985; Alderman et al., 1990]. Thus, suppose that we restrict our-

selves to those patients with EFs of at least 0.5. This accounted for 575 of the 780 randomized

patients. Suppose that the randomized study had not been in effect; how many of these patients

might have received early surgery? In the CASS study, there were 1315 patients who met the

eligibility criteria and might have been randomized but in fact were not randomized [CASS

Principal Investigators, 1984a; Chaitman et al., 1990]; these patients were called the random-

izable patients. In this group, 43% (570/1315) received early elective surgery. Of those who

did not receive early surgery and had good ejection fractions, by 10 years, 38% had received

surgery. That is, 60% or so did not receive surgery. Assuming that the CASS clinics were

representative of the surgical practice in the country (they may have been more conservative

than many centers because they were willing to participate in research to assess the appropriate

role of bypass surgery), about 4.4% of the surgery in the United States might be prevented by

applying the results of the study. In a year with 188,000 CABGs costing $30,000 each, this

would lead to a savings of over $245 million. Over a 4-year period over $1 billion could be

saved in surgical costs. However, because the patients treated medically have more anginal pain,

they have higher drug costs; they might have higher hospitalization costs (but they do not; see

CASS Principal Investigators [1983b] and Rogers et al. [1990]). Without going into detail, it is

my (L.F.) opinion that the study saved several billion dollars in health care costs without added

risk to patient lives.

5. The issues are more complex than presented here; we have not discussed the findings

and integration of results with the other major randomized studies of CABG surgery. Further,

it is important to note that a number of other proven and/or promising techniques for dealing

with coronary artery disease (CAD) have been developed. These include drug and/or dietary

therapy; blowing up balloons in the artery to “squish” the narrowing into the walls of the artery

[percutaneous transluminal coronary angioplasty (PTCA)]; introducing lasers into the coronary
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arteries to disintegrate the plaques that narrow the arteries; using a roto-rooter in the arteries to

replumb by grinding up the plaques; and stents. Although all of these alternatives have been or

are being used, the number of CABG surgeries did not decrease but leveled off up to 1989.

6. The surgery may improve with time as techniques and skills improve. Further, it became

apparent that the results of the surgery deteriorated at 10 to 12 years or so. The disease process

at work in the coronary arteries also was at work in the grafts that bypassed the narrowed areas;

thus the grafts themselves narrow and close, often requiring repeat CABG surgery. Internal

mammary grafts have a longer lifetime and are now used more often, suggesting that current

long-term results will be better.

In summary, the CASS study showed that in patients with selected characteristics, CABG

surgery is not needed immediately to prolong life and can often be avoided. The study was

a bargain both in human and economic terms, illustrating the need and benefits of careful

evaluation of important health care procedures.

20.3 SCIENCE, REGULATION, AND THE STOCK MARKET

In the United States, foods, drugs, biologics, devices, and cosmetics are regulated by the Food

and Drug Administration (FDA). To get a new drug or biologic approved for marketing within

the United States, the sponsor (usually, a pharmaceutical company or biotechnology company)

must perform adequate and well-controlled clinical trials that show the efficacy and safety of

the product. The FDA is staffed with personnel who have expertise in a number of areas,

including pharmacology, medicine, and biostatistics. The FDA staff reviews materials submitted

and rules on the approval or nonapproval of a product. The FDA also regulates marketing of the

compounds. Marketing before approval is not allowed. The FDA uses the services of a number

of advisory committees composed of experts in the areas considered. The deliberations of the

advisory committees are carried out in public, often with large audiences in attendance. At the

meetings, the sponsor makes a presentation, usually with both company and clinical experts, and

answers questions from the committee. The FDA has a presence, asks questions, particularly of

the advisory committee, but usually does not play a dominant role. At the end of its deliberations

the committee votes on whether the drug or biologic should be approved, should be disapproved,

or should be disapproved at least temporarily because further information is needed before final

approval or disapproval is appropriate.

Two of the authors have been members of FDA advisory committees, G.vB. with the periph-

eral and central nervous system drugs advisory committee and L.F. with the cardiovascular and

renal drugs advisory committee. Here we discuss the consideration of one biologic: tissue plas-

minogen activator (tPA). A biologic is a compound that occurs naturally in the human body,

whereas a drug is a compound that does not occur naturally but is introduced artificially, solely

for therapeutic purposes. For example, insulin is a biologic, whereas aspirin is a drug. Here we

will use the term drug for tPA because that is the more common usage, although within the

FDA, drugs and biologics go to different divisions. We turn next to the background and rationale

for the use of tPA.

As discussed above, when coronary artery disease occurs, it narrows the arteries, changing

the fluid flow properties of the blood, leading to clotting within the coronary arteries. These

clots then block the blood supply to the heart muscle, resulting in heart attacks, or myocardial

infarctions (MIs), as discussed above. The clot is composed largely of fibrin. When converted

to plasmin, plasminogen converts insoluble fibrin into soluble fragments. One conceptual way

to treat a heart attack would be to dissolve the blood clot, thus reestablishing blood flow to the

heart muscle and preventing the death of the muscle, saving the heart and often saving the life.

Should a drug be approved for dissolving blood clots alone? Although biologically plausible,

does this assure that the drug will work? In other words, is this an acceptable surrogate endpoint?
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Returning to the thrombolytic (i.e., to lyse, or break up, the blood clot, the thrombosis) tPA

therapy, it is clear that lysing the coronary arterial blood clot is a surrogate endpoint. Should

this surrogate endpoint be appropriate for approving the drug? After all, there is such a clearcut

biological rationale: Coronary artery clots cause heart attacks; heart attacks damage the heart,

often either impairing the heart function, and thus lowering exercise capacity, or killing the

person directly. But experience has shown that very convincing biological scenarios do not

always deliver the benefits expected; below we present an important example of a situation

where an obvious surrogate endpoint did not work out.

Let us return now to the tPA cardiorenal advisory committee meeting and decision. In addition

to tPA, another older thrombolytic drug, streptokinase, was also being presented for approval for

the same indication. Prior to the meeting, there was considerable publicity over the upcoming

meeting and possible approval of the drug tPA. The advisory committee meeting was to take

place on Friday, May 29, 1987. On Thursday, May 28, 1987, the Wall Street Journal published

an editorial entitled “The TPA Decision.” The editorial read as follows:

Profile of a heart-attack victim: 49 years old, three children, middle-manager, in seemingly good

health. Cutting the grass on a Saturday afternoon, he is suddenly driven to the ground with severe

chest pain. An ambulance takes him to the nearest emergency room, where he receives drugs to

reduce shock and pain.

At this point, he is one of approximately 4000 people who suffer a heart attack each day. If he has

indeed had a heart attack, he will experience one of two possible outcomes. Either he will be dead,

joining the 500,000 Americans killed each year by heart attack. Or, if he’s lucky, he will join the

one million others who go on to receive some form of therapy for his heart disease.

Chances of survival will depend in great part on the condition of the victim’s heart, that is, how

much permanent muscular damage the heart sustained during the time a clot prevented the normal

flow of blood into the organ. Heart researchers have long understood that if these clots can be

broken up early after a seizure’s onset, the victim’s chances of staying alive increase significantly.

Dissolving the clot early enhances the potential benefits of such post-attack therapies as coronary

bypass surgery or balloon angioplasty.

Tomorrow morning, a panel of the Food and Drug Administration will review the data on a blood-

clot dissolver called TPA, for tissue-type plasminogen activator. In our mind, TPA—not any of the

pharmaceutical treatments for AIDS—is the most noteworthy, unavailable drug therapy in the United

States. Put another way, the FDA’s new rules permitting the distribution of experimental drugs for

life-threatening diseases came under pressure to do something about the AIDS epidemic. But isn’t it

as important for the government to move with equal speed on the epidemic of heart attacks already

upon us?

This isn’t to say that TPA is more important than AIDS treatments. Both have a common goal:

keeping people alive. The difference is that while the first AIDS drug received final approval in

about six months, TPA remains unapproved and unavailable to heart-attack victims despite the fact

that the medical community has known for more than two years that it can save lives.

How many lives? Obviously no precise projection is possible, but the death toll is staggering, with

about 41,000 individuals killed monthly by heart attacks.

In its April 4, 1985, issue, the New England Journal of Medicine carried the first report on the results

of the National Institutes of Health’s TIMI study comparing TPA’s clot dissolving abilities with a

drug already approved by the FDA. NIH prematurely ended that trial because TPA’s results were so

significantly better than the other drug.

In an accompanying editorial, the Journal ’s editor, Dr. Arnold Relman, said a safe and effective

thrombolytic “might be of immense clinical value.” In October 1985, a medical-policy committee of

California’s Blue Shield recommended that TPA be recognized “as acceptable medical practice.” The

following month at the American Heart Association’s meeting, Dr. Eugene Braunwald, chairman of

the department of medicine at Harvard Medical School, said, “If R-TPA were available on a wide

basis, I would select that drug today.” In its original TIMI report, the NIH said TPA would next be
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tested against a placebo; later, citing ethical reasons, the researchers dropped the placebo and now

all heart patients in the TIMI trial are receiving TPA.

It is for these reasons that we call TPA the most noteworthy unavailable drug in the U.S. The FDA

may believe it is already moving faster than usual with the manufacturer’s new-drug application.

Nonetheless, bureaucratic progress [sic] must be measured against the real-world costs of keeping

this substance out of the nation’s emergency rooms. The personal, social and economic consequences

of heart disease in this country are immense. The American Heart Association estimates the total

costs of providing medical services for all cardiovascular disease at $71 billion annually.

By now more than 4,000 patients have been treated with TPA in clinical trials. With well over a

thousand Americans going to their deaths each day from heart attack, it is hard to see what additional

data can justify the government’s further delay in making a decision about this drug. If tomorrow’s

meeting of the FDA’s cardio-renal advisory committee only results in more temporizing, some in

Congress or at the White House should get on the phone and demand that the American public be

given a reason for this delay.

The publicity before the meeting of the advisory committee was quite unusual since compa-

nies are prohibited from preapproval advertising; thus the impetus presumably came from other

sources.

The cardiorenal advisory committee members met and considered the two thrombolytic drugs,

streptokinase and tPA. They voted to recommend approval of streptokinase but felt that further

data were needed before tPA could be approved. The reactions to the decision were extreme,

but probably predictable given the positions expressed prior to the meeting.

The Wall Street Journal responded with an editorial on Tuesday, June 2, 1987, entitled

“Human Sacrifice.” It follows in its entirety:

Last Friday an advisory panel of the Food and Drug Administration decided to sacrifice thousands

of American lives on an altar of pedantry.

Under the klieg lights of a packed hearing room at the FDA, an advisory panel picked by the agency’s

Center for Drugs and Biologics declined to recommend approval of TPA, a drug that dissolves blood

clots after heart attacks. In a 1985 multicenter study conducted by the U.S. National Heart, Lung and

Blood Institute, TPA was so conclusively effective at this that the trial was stopped. The decision to

withhold it from patients should be properly viewed as throwing U.S. medical research into a major

crisis.

Heart disease dwarfs all other causes of death in the industrialized world, with some 500,000 Amer-

icans killed annually; by comparison, some 20,000 have died of AIDS. More than a thousand lives

are being destroyed by heart attacks every day. In turning down treatment with TPA, the committee

didn’t dispute that TPA breaks up the blood clots impeding blood flow to the heart. But the commit-

tee asked that Genentech, which makes the genetically engineered drug, collect some more mortality

data. Its submission didn’t include enough statistics to prove to the panel that dissolving blood clots

actually helps people with heart attacks.

Yet on Friday, the panel also approved a new procedure for streptokinase, the less effective clot

dissolver—or thrombolytic agent—currently in use. Streptokinase previously had been approved for

use in an expensive, specialized procedure called intracoronary infusion. An Italian study, involving

11,712 randomized heart patients at 176 coronary-care units in 1984–1985, concluded that adminis-

tering streptokinase intravenously reduced deaths by 18%. So the advisory panel decided to approve

intravenous streptokinase, but not approve the superior thrombolytic TPA. This is absurd.

Indeed, the panel’s suggestion that it is necessary to establish the efficacy of thrombolysis stunned

specialists in heart disease. Asked about the committee’s justification for its decision, Dr. Eugene

Braunwald, chairman of Harvard Medical School’s department of medicine, told us: “The real ques-

tion is, do you accept the proposition that the proximate cause of a heart attack is a blood clot

in the coronary artery? The evidence is overwhelming, overwhelming. It is sound, basic medical

knowledge. It is in every textbook of medicine. It has been firmly established in the past decade

beyond any reasonable question. If you accept the fact that a drug [TPA] is twice as effective as
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streptokinase in opening closed vessels, and has a good safety profile, then I find it baffling how

that drug was not recommended for approval.”

Patients will die who would otherwise live longer. Medical research has allowed statistics to become

the supreme judge of its inventions. The FDA, in particular its bureau of drugs under Robert Temple,

has driven that system to its absurd extreme. The system now serves itself first and people later.

Data supersede the dying.

The advisory panel’s suggestion that TPA’s sponsor conduct further mortality studies poses grave

ethical questions. On the basis of what medicine already knows about TPA, what U.S. doctor will

give a randomized placebo or even streptokinase? We’ll put it bluntly: Are American doctors going

to let people die to satisfy the bureau of drugs’ chi-square studies?

Friday’s TPA decision should finally alert policy makers in Washington and the medical-research

community that the theories and practices now controlling drug approval in this country are sig-

nificantly flawed and need to be rethought. Something has gone grievously wrong in the FDA

bureaucracy. As an interim measure FDA Commissioner Frank Young, with Genentech’s assent,

could approve TPA under the agency’s new experimental drug rules. Better still, Dr. Young should

take the matter in hand, repudiate the panel’s finding and force an immediate reconsideration. More-

over, it is about time Dr. Young received the clear, public support of Health and Human Services

Secretary Dr. Otis Bowen in his efforts to fix the FDA.

If on the other hand Drs. Young and Bowen insist that the actions of bureaucrats are beyond challenge,

then perhaps each of them should volunteer to personally administer the first randomized mortality

trials of heart-attack victims receiving the TPA clot buster or nothing. Alternatively, coronary-care

units receiving heart-attack victims might use a telephone hotline to ask Dr. Temple to randomize the

trial himself by flipping a coin for each patient. The gods of pedantry are demanding more sacrifice.

Soon after joining the Cardiovascular and Renal Drugs Advisory Committee, L.F. noticed

that a number of people left the room at what seemed inappropriate times, near the end of

some advisory deliberations. I was informed that often, stock analysts with expertise in the

pharmaceutical industry attended meetings about key drugs; when the analysts thought they

knew how the vote was going to turn out, they went out to the phones to send instructions. That

was the case during the tPA deliberations (and made it particularly appropriate that the Wall

Street Journal take an interest in the result). Again we convey the effect of the deliberations

through quotations taken from the press. On June 1, 1978, the Wall Street Journal had an article

under the heading “FDA Panel Rejection of Anti-Clot Drug Set Genentech Back Months, Perils

Stock.” The article said in part:

A Food and Drug Administration advisory panel rejected licensing the medication TPA, spoiling

the summer debut of what was touted as biotechnology’s first billion-dollar drug. . . . Genentech’s

stock—which reached a high in March of $64.50 following a 2-for-1 split—closed Friday at $48.25,

off $2.75, in national over-the-counter trading, even before the close of the FDA panel hearing

attended by more than 400 watchful analysts, scientists and competitors. Some analysts expect the

shares to drop today. . . . Wall Street bulls will also be rethinking their forecasts. For example,

Kidder Peabody & Co.’s Peter Drake, confident of TPA’s approval, last week predicted sales of $51

million in the second half of 1987, rising steeply to $205 million in 1988, $490 million in 1989 and

$850 million in 1990.

USA Today, on Tuesday, June 2, 1987, on the first page of the Money section, had an article

headed “Biotechs Hit a Roadblock, Investors Sell.” The article began:

Biotechnology stocks, buoyed more by promise than products, took one of their worst beatings Mon-

day. Leading the bad-news pack: Biotech giant Genentech Inc., dealt a blow when its first blockbuster

drug failed to get federal approval Friday. Its stock plummeted 11 1
2

points to $36 3
4

, on 14.2 million

shares traded—a one-day record for Genentech. “This is very serious, dramatically serious,” said

analyst Peter Drake, of Kidder, Peabody & Co., who Monday changed his recommendations for the
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group from buy to “unattractive.” His reasoning: The stocks are driven by “a blend of psychology

and product possibilities. And right now, the psychology is terrible.”

Biotechnology stocks as a group dropped with the Genentech panel vote. This seemed strange

to me because the panel had not indicated that the drug, tPA, was bad but only that in a number

of areas the data needed to be gathered and analyzed more appropriately (as described below).

The panel was certainly not down on thrombolysis (as the streptokinase approval showed); it

felt that the risk/benefit ratio of tPA needed to be clarified before approval could be made.

The advisory committee members replied to the Wall Street Journal editorials both individ-

ually and in groups, explaining the reasons for the decision [Borer, 1987; Kowey et al., 1988;

Fisher et al., 1987]. This last response to the Wall Street Journal was submitted with the title “The

Prolongation of Human Life”; however, after the review of the article by the editor, the title was

changed by the Wall Street Journal to “The FDA Cardio-Renal Committee Replies.” The reply:

The evaluation and licensing of new drugs is a topic of legitimate concern to not only the medical

profession but our entire populace. Thus it is appropriate when the media, such as the Wall Street

Journal, take an interest in these matters. The Food and Drug Administration recognizes the public

interest by holding open meetings of advisory committees that review material presented by phar-

maceutical companies, listen to expert opinions, listen to public comment from the floor and then

give advice to the FDA. The Cardiovascular and Renal Drugs Advisory Committee met on May 29

to consider two drugs to dissolve blood clots causing heart attacks. The Journal published editorials

prior to the meeting (“The TPA Decision,” May 28) and after the meeting (“Human Sacrifice,” June

2 and “The Flat Earth Committee,” July 13). The second editorial began with the sentence: “Last

Friday an advisory committee of the Food and Drug Administration decided to sacrifice thousands

of American lives on an altar of pedantry.” How can such decisions occur in our time? This reply

by members of the advisory panel presents another side to the story. In part the reply is technical,

although we have tried to simplify it. We first discuss drug evaluation in general and then turn to

the specific issues involved in the evaluation of the thrombolytic drugs streptokinase and TPA.

The history of medicine has numerous instances of well-meaning physicians giving drugs and treat-

ments that were harmful rather than beneficial. For example, the drug thalidomide was widely

marketed in many countries—and in West Germany without a prescription—in the late 1950s and

early 1960s. The drug was considered a safe and effective sleeping pill and tranquilizer. Marketing

was delayed in the U.S. despite considerable pressure from the manufacturer upon the FDA. The

drug was subsequently shown to cause birth defects and thousands of babies world-wide were born

with grotesque malformations, including seal-like appendages and lack of limbs. The FDA physician

who did not approve the drug in the U.S. received an award from President Kennedy. One can hardly

argue with the benefit of careful evaluation in this case. We present this, not as a parallel to TPA, but

to point out that there are two sides to the approval coin—early approval of a good drug, with minimal

supporting data, looks wise in retrospect; early approval, with minimal supporting data, of a poor drug

appears extremely unwise in retrospect. Without adequate and well-controlled data one cannot distin-

guish between the two cases. Even with the best available data, drugs are sometimes found to have

adverse effects that were not anticipated. Acceptance of unusually modest amounts of data, based

on assumptions and expectations rather than actual observation is very risky. As will be explained

below, the committee concluded there were major gaps in the data available to evaluate TPA.

The second editorial states that “Medical research has allowed statistics to become the supreme judge

of its inventions.” If this means that data are required, we agree; people evaluate new therapies with

the hope that they are effective—again, before licensing, proof of effectiveness and efficacy is needed.

If the editorial meant that the TPA decision turned on some arcane mathematical issue, it is incorrect.

Review of the transcript shows that statistical issues played no substantial role.

We now turn to the drug of discussion, TPA. Heart attacks are usually caused by a “blood clot in

an artery supplying the heart muscle with blood.” The editorial quotes Dr. Eugene Braunwald, “The

real question is, do you accept the proposition that the proximate cause of a heart attack is a blood

clot in the coronary artery?” We accept the statement, but there is still a significant question: “What

can one then do to benefit the victim?” It is not obvious that modifying the cause after the event
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occurs is in the patient’s best interest, especially when the intervention has toxicity of its own. Blood

clots cause pulmonary embolism; it is the unusual patient who requires dissolution of the clot by

streptokinase. Several trials show the benefit does not outweigh the risk.

On May 29 the Cardiovascular and Renal Drugs Advisory Committee reviewed two drugs that

“dissolve” blood clots. The drug streptokinase had been tested in a randomized clinical trial in Italy

involving 11,806 patients. The death rate in those treated with streptokinase was 18% lower than

in patients not given streptokinase; patients treated within six hours did even better. Review of 10

smaller studies, and early results of a large international study, also showed improved survival. It is

important to know that the 18% reduction in death rate is a reduction of a few percent of the patients

studied. The second drug considered—recombinant tissue plasminogen activator (TPA)—which also

was clearly shown to dissolve blood clots, was not approved. Why? At least five issues contributed,

to a greater or lesser amount, to the vote not to recommend approval for TPA at this time. These

issues were: the safety of the drug, the completeness and adequacy of the data presented, the dose

to be used, and the mechanism of action by which streptokinase (and hopefully TPA) saves lives.

Safety was the first and most important issue concerning TPA. Two formulations of TPA were

studied at various doses; the highest dose was 150 milligrams. At this dose there was an unacceptable

incidence of cerebral hemorrhage (that is, bleeding in the brain), in many case leading to both severe

stroke and death. The incidence may be as high as 4% or as low as 1.5% to 2% (incomplete data

at the meeting made it difficult to be sure of the exact figure), but in either case it is disturbingly

high; this death rate due to side effects is of the same magnitude as the lives saved by streptokinase.

This finding led the National Heart, Lung and Blood Institute to stop the 150-milligram treatment

in a clinical trial. It is important to realize that this finding was unexpected, as TPA was thought to

be relatively unlikely to cause such bleeding. Because of bleeding, the dose of TPA recommended

by Genentech was reduced to 100 milligrams. The safety profile at doses of 100 milligrams looks

better, but there were questions of exactly how many patients had been treated and evaluated fully.

Relatively few patients getting this dose had been reported in full. Without complete reports from the

studies there could be smaller strokes not reported and uncertainty as to how patients were examined.

The committee felt a substantially larger database was needed to show safety.

The TPA used to evaluate the drug was manufactured by two processes. Early studies used the

double-stranded (roller bottle) form of the drug; the sponsor then changed to a predominantly single-

stranded form (suspension culture method) for marketing and production reasons. The second drug

differed from the first in how long the drug remained in the blood, in peak effect, in the effect on

fibrinogen and in the dose needed to cause lysis of clots. Much of the data was from the early form;

these data were not considered very helpful with respect to the safety of the recommended dose of

the suspension method drug. This could perhaps be debated, but the intracranial bleeding makes the

issue an important one. The excessive bleeding may well prove to be a simple matter of excessive

dose, but this is not yet known unequivocally.

Data were incomplete in that many of the patients’ data had not been submitted yet and much of the

data came from treatment with TPA made by the early method of manufacture. There was uncertainty

about the data used to choose the 100-milligram dose, i.e., perhaps a lower dose is adequate. When

there is a serious dose-related side effect it is crucial that the dose needed for effectiveness has been

well-defined and has acceptable toxicity.

Let us turn to the mechanism of action, the means by which the beneficial effect occurs. There

may be a number of mechanisms. The most compelling is clot lysis (dissolution). However, experts

presented data that streptokinase changes the viscosity of the blood that could improve the blood

flow; the importance is uncertain. Streptokinase also lowers blood pressure, which may decrease

tissue damage during a heart attack. While there is convincing evidence that TPA (at least by the

first method of manufacture) dissolves clots faster than streptokinase (at least after a few hours from

the onset of the heart attack), we do not have adequate knowledge to know what portion of the

benefit of streptokinase comes from dissolving the clot. TPA, thus, may differ in its effect on the

heart or on survival. The drugs could differ in other respects, such as how often after opening a

vessel they allow reclosure, and, of course, the frequency of important adverse effects.

These issues delay possible approval. Fortunately, more data are being collected. It is our sincere

hope that the drug lives up to its promise, but should the drug prove as valuable as hoped, that would
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not imply the decision was wrong. The decision must be evaluated as part of the overall process of

drug approval.

The second editorial suggests that if the drug is not approved, Dr. Temple (director of the Bureau

of Drugs, FDA), Dr. Young (FDA commissioner) and Dr. Bowen (secretary of health and human

services) should administer “randomized mortality trials of heart-attack victims receiving the TPA clot

buster or nothing.” This indignant rhetoric seems inappropriate on several counts. First, the advisory

committee has no FDA members; our votes are independent and in the past, on occasion, we have

voted against the FDA’s position. It is particularly inappropriate to criticize Drs. Temple and Young

for the action of an independent group. The decision (by a vote of eight against approval, one for and

two abstaining) was made by an independent panel of experts in cardiovascular medicine and research

from excellent institutions. These unbiased experts reviewed the data presented and arrived at this

decision; the FDA deserves no credit or blame. Second, we recommend approval of streptokinase;

we are convinced that the drug saves lives of heart-attack victims (at least in the short term). To us it

would be questionable to participate in a trial without some treatment in patients of the type shown

to benefit from streptokinase. A better approach is to use streptokinase as an active control drug in a

randomized trial. If it is as efficacious or better than streptokinase, we will rejoice. We have spent our

adult lives in the care of patients and/or research to develop better methods for treatment. Both for

our patients and our friends, our families and ourselves, we want proven beneficial drugs available.

In summary, with all good therapeutic modalities the benefits must surely outweigh the risks of

treatment. In interpreting the data presented by Genentech in May 1987 the majority of the Cardio-

vascular and Renal Drugs Advisory Committee members could not confidently identify significant

benefits without concomitant significant risk. The review was clouded by issues of safety, manufac-

turing process, dose size and the mechanism of action. We are hopeful these issues will be addressed

quickly, allowing more accurate assessment of TPA’s risk-benefit ratio with conclusive evidence that

treatment can be recommended that allows us to uphold the physician’s credo, primum non nocere

(first do no harm).

The July 28 1987, USA Today’s Life section carried an article on the first page entitled

“FDA Speeds Approval of Heart Drug.” The article mentioned that the FDA commissioner

Frank Young was involved in the data gathering. Within a few months of the advisory com-

mittee meeting, tPA was approved for use in treating myocardial infarctions. The drug was 5

to 10 times more expensive than streptokinase; however, it opened arteries faster and that was

thought to be a potential advantage. A large randomized comparison of streptokinase and tPA

was performed (ISIS 3); the preliminary results were presented at the November 1990 American

Heart Association meeting. The conclusion was that the efficacy of the two drugs was essen-

tially equivalent. Thus by approving streptokinase, even in retrospect, no period of the lack of

availability of a clearly superior drug occurred because of the time delay needed to clear up the

questions about tPA. This experience shows that biostatistical collaboration has consequences

above and beyond the scientific and humanitarian aspects; large political and financial issues

also are often involved.

20.4 OH, MY ACHING BACK!

One of the most common maladies in the industrialized world is the occurrence of low-back

problems. By the age of 50, nearly 85% of humans can recall back symptoms; and as someone

has said, the other 15% probably forgot. Among persons in the United States, back and spine

impairment are the chronic conditions that most frequently cause activity limitation. The occur-

rence of industrial back disability is one of the most expensive health problems afflicting industry

and its employees. The cost associated with back injury in 1976 was $14 billion; the costs are

greatly skewed, with a relatively low percent of the cost accrued by a few chronic back injury

cases [Spengler et al., 1986]. The costs and human price associated with industrial back injury

prompted the Boeing Company to contact the orthopedics department at the University of Wash-

ington to institute a collaborative study of back injury at a Boeing factory in western Washington
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State. Collaboration was obtained from the Boeing company management, the workers and their

unions, and a research group at the University of Washington (including one of the authors, L.F.).

The study was supported financially by the National Institutes of Health, the National Institute for

Occupational Safety and Health, the Volvo Foundation, and the Boeing Company. The study was

designed in two phases. The first phase was a retrospective analysis of past back injury reports

and insurance costs from already existing Boeing records; the second phase was a prospective

study looking at a variety of possible predictors (to be described below) of industrial back injury.

The retrospective Boeing data were analyzed and presented in a series of three papers [Spen-

gler et al., 1986; Bigos et al., 1986a,b]. The analysis covered 31,200 employees who reported

900 back injuries among 4645 claims filed by 3958 different employees. The data emphasized

the cost to Boeing of this malady, and as in previous studies, showed that a small percentage

of the back injury reports lead to most of the cost; for example, 10% of the cases accounted for

79% of the cost. The incurred costs of back injury claims was 41% of the Boeing total, although

only 19% of the claims were for the back. The most expensive 10% of the back injury claims

accounted for 32% of all the Boeing injury claims. Workers were more likely to have reported

an acute back injury if they had a poor employee appraisal rating from their supervisor within

6 months prior to the injury.

The prospective study was unique and had some very interesting findings (the investigators

were awarded the highest award of the American Academy of Orthopedic Surgeons, the Kappa

Delta award, for excellence in orthopedic research). Based on previously published results and

investigator conjectures, data were collected in a number of areas with potential ability to predict

reports of industrial back injury. Among the information obtained prospectively from the 3020

aircraft employees who volunteered to participate in the study were the following:

• Demographics: race, age, gender, total education, marital status, number in family, method,

and time spent in commuting to work.

• Medical history: questions about treatment for back pain by physicians and by chiroprac-

tors; hospitalization for back pain; surgery for back injury; smoking status.

• Physical examination: flexibility; spinal canal size by ultrasonography; and anthropometric

measures such as height and weight.

• Physical capacities: arm strength; leg strength; and aerobic capacity measured by a sub-

maximal treadmill test.

• Psychological testing: the MMPI (Minnesota Multiphasic Inventory and its subscales); a

schedule of recent life change events; a family questionnaire about interactions at home;

a health locus of control questionnaire.

• Job satisfaction: subjects were asked a number of questions about their job: did they enjoy

their job almost always, some of the time, hardly ever; do they get along well with their

supervisor; do they get along well with their fellow employees, etc.

The details of the design and many of the study results may be found in Battie et al. [1989,

1990a,b] and Bigos et al. [1991, 1992a,b]. The extensive psychological questionnaires were

given to the employees to be taken home and filled out; 54% of the 3020 employees returned

completed questionnaires, and some data analyses were necessarily restricted to those who

completed the questionnaire(s). Figure 20.4 summarizes graphically some of the important pre-

dictive results.

The results of several stepwise, step-up multivariate Cox models are presented in Table 20.1.

There are some substantial risk gradients among the employees. However, the predictive power

is not such that one can conclusively identify employees likely to report an acute industrial

back injury report. Of more importance, given the traditional approaches to this field, which

have been largely biomechanical, work perception and psychological variables are important

predictors, and the problem cannot be addressed effectively with only one factor in mind. This

is emphasized in Figure 20.5, which represents the amount of information (in a formal sense)
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in each of the categories of variables as given above. The figure is a Venn diagram of the

estimated amount of predictive information for variables in each of the data collection areas

[Fisher and Zeh, 1991]. The job perception and psychological areas are about as important as

the medical history and physical examination areas. To truly understand industrial back injury,

a multifactorial approach must be used.

Among the more interesting aspects of the study is speculation on the meaning and impli-

cations of the findings. Since, as mentioned above, most people experience back problems at
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Figure 20.4 Panel (a) shows the product limit curves for the time to a subsequent back injury report for

those reporting previous back problems and those who did not report such problems. Panel (b) divides the

MMPI scale 3 (hysteria) values by cut points taken from the quintiles of those actually reporting events.

Panel (c) divides the subjects by their response to the question: “Do you enjoy your job (1) almost always;

(2) some of the time; or (3) hardly ever?” Panel (d) gives the results of the multivariate Cox model of

Table 20.1; the predictive equation uses the variables from the first three panels. (From Bigos et al. [1991].)
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Figure 20.4 (continued)

some time in their lives, could legitimate back discomfort be used as an escape if one does

not enjoy his or her job? Can the problem be reduced by taking measures to make workers

more satisfied with their employment, or do a number of people tend to be unhappy no matter

what? Is the problem a mixture of these? The results invite systematic, randomized intervention

studies. Because of the magnitude of the problem, such approaches may be effective in both

human and financial terms; however, this remains for the future.

20.5 SYNTHESIZING INFORMATION ABOUT MANY COMPETING
TREATMENTS

Randomized controlled trials, discussed in Chapter 19, are the gold standard for deciding if a

drug is effective and are required before new drugs are marketed. These trials may compare a
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Table 20.1 Predicting Acute Back Injury Reportsa

Univariate Analysis Multivariate Analysis (95% Confidence

Variable p-Value p-Value Relative Risk Interval)

Entire Population (n = 1326, injury = 117)

Enjoy jobb 0.0001 0.0001 1.70 (1.31, 2.21)

MMPI 3c 0.0003 0.0032 1.37 (1.11, 1.68)

Prior back paind 0.0010 0.0050 1.70 (1.17, 2.46)

Those with a History of Prior Back Injury (n = 518, injury = 63)

Enjoy jobb 0.0003 0.0006 1.85 (1.30, 2.62)

MMPI 3c 0.0195 0.0286 1.34 (1.17, 1.54)

Those without a History of Prior Back Pain (n = 808, injury = 54)

Enjoy jobsb 0.0220 0.0353 1.53 (1.09, 2.29)

MMPI 3c 0.0334 0.0475 1.41 (1.19, 1.68)

aUsing the Cox proportional hazards regression model.
bOnly subjects with complete information on the enjoy job question, MMPI, and history of back pain were included in
these analyses.
cFor an increase of one unit.
d For an increase of 10 units.

Medical
History

Physical
Exam

Psycho-
logical

Job
Satisfaction

Predictive Information

Capacities
(No Sig. Inf.)
Demography

Figure 20.5 Predictive information by type of variable collected. Note that the job satisfaction and psy-

chological areas contribute the same order of magnitude as the more classical medical history and physical

examination variables. The relative lack of overlap in predictive information means that at least these areas

must be considered if the problem is to be fully characterized. Capacities and demography variables added

no information and so have no boxes.
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new treatment to a placebo or to an accepted treatment. When many different treatments are

available, however, it is not enough to know that they are all better than nothing, and it is often

not feasible to compare all possible pairs of treatments in large randomized trials.

Clinicians would find it helpful to be able to use information from “indirect” comparisons.

For example, if drug A reduces mortality by 20% compared to placebo, and drug B reduces

mortality by 10% compared to drug A, it would be useful to conclude that B was better than

placebo. However, indirect comparisons may not be reliable. The International Conference on

Harmonisation, a project of European, Japanese, and U.S. regulators and industry experts, says

in its document E10 on choice of control groups [2000, Sec. 2.1.7.4]

“Placebo-controlled trials lacking an active control give little useful information about comparative

effectiveness, information that is of interest and importance in many circumstances. Such information

cannot reliably be obtained from cross-study comparisons, as the conditions of the studies may have

been quite different.”

The major concern with cross-study comparisons is that the populations being studied may

be importantly different. People who participate in a trial of drug A when no other treatment is

available may be very different from those who participate in a trial comparing drug A as an

established treatment with a new experimental drug, B. For example, people for whom drug A

is less effective may be more likely to participate in the hope of getting a better treatment. The

ICH participants are certainly correct that cross-study comparisons may be misleading, but it

would be very useful to know if they are actually misleading in a particular case.

An important example of this comes from the treatment of high blood pressure. There

are many classes of drugs to treat high blood pressure, working in different ways on the

heart, the blood vessels, and the kidneys. These include α-blockers, β-blockers, calcium chan-

nel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers,

and diuretics. The availability of multiple treatments is useful because they have different

side effects and because a single drug may not reduce blood pressure sufficiently. Some of

the drug classes have the advantage of also treating other conditions that may be present in

some people (β-blockers or calcium channel blockers for angina, α-blockers for the symp-

toms of prostatic hyperplasia). However, in many cases it is not obvious which drug class to

try first.

Many clinical trials have been done, but these usually compare a single pair of treatments, and

many important comparisons have not been done. For example, until late 2002, there had been

only one trial in previously healthy people designed to measure clinical outcomes comparing

ACE inhibitors with diuretics, although these drug classes are both useful in congestive heart

failure and so seem a natural comparison. In a situation such as this, where there is reliable

information from within-study comparisons of many, but not all, pairs of drugs, it should be

possible to assess the reliability of cross-study comparisons and decide whether they can be

used. That is, the possible cross-study comparisons of, say, ACE inhibitors and calcium channel

blockers can be compared with each other and with any direct within-study comparisons. The

better the agreement, the more confidence we will have in the cross-study comparisons. This

technique is called network metaanalysis [Lumley, 2002]. The name comes from thinking of

each randomized trial as a link connecting two treatments. A cross-study comparison is a path

between two treatments composed of two or more links. If there are many possible paths

joining two treatments, we can obtain an estimate along each path and see how well they

agree.

The statistical model behind network metaanalysis is similar to the random-effects models

discussed in Chapter 18. Write Y

ijk

for a summary of the treatment difference in trial k of drugs

i and j , for example, the logarithm of the estimated relative risk. If we could simply assume

that trials were comparable, we could model this log relative risk by

Y

ijk

= β

i

− β

j

+ ǫ

ijk
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where β

i

and β

j

measure the effectiveness of drugs i and j , and ǫ

ijk

represents the random

sampling error.

When we say that trials of different sets of treatments are not comparable, we mean precisely

that the average log relative risk when comparing drugs i and j is not simply given by β

i

−β

j

:

there is some extra systematic difference. These differences can be modeled as random intercepts

belonging to each pair of drugs:

Y

ijk

= β

i

− β

j

+ ξ

ij

+ ǫ

ijk

ξ ∼ N(0, ω

2
)

So, comparing two drugs i and j gives on average β

i

−β

j

− ξ

ij

. If ξ

ij

is large, the metaanalysis

is useless, since the true differences between treatments (β

i

− β

j

) are masked by the biases ξ

ij

.

The random effects standard deviation, ω, also called the incoherence, measures how large these

biases are, averaged over all the trials. If the incoherence is large, the metaanalysis should not

be done. If the incoherence is small, the metaanalysis may be worthwhile. Confidence intervals

for β

i

− β

j

will be longer because of the uncertainty in ξ

ij

, slightly longer if the incoherence is

very small, and substantially longer if the incoherence is moderately large.

Clearly, it would be better to have a single large trial that compared all the treatments, but this

may not be feasible. There is no particular financial incentive for the pharmaceutical companies

to conduct such a trial, and the cost would make even the National Institutes of Health think

twice. In the case of antihypertensive treatments, a trial of many of the competing treatments

was eventually done. This trial, ALLHAT [ALLHAT, 2002] compared a diuretic, a calcium

channel blocker, an ACE inhibitor, and an α-blocker. It found that α-blockers were distinctly

inferior (that portion of the trial was stopped early), and that diuretics were perhaps slightly

superior to the other treatments.

Before the results of ALLHAT were available, Psaty et al. performed a network metaanalysis

of the available randomized trials, giving much the same conclusions but also including com-

parisons with β-blockers, placebo, and angiotensin receptor blockers. This analysis, updated to

include the results of ALLHAT, strengthens the conclusion that diuretics are probably slightly

superior to the other options in preventing serious cardiovascular events [Psaty et al., 2003].

The cross-study comparisons showed good agreement except for the outcome of congestive

heart failure, where there seemed to be substantial disagreement (perhaps due to different defi-

nitions over time). The network metaanalysis methodology incorporates this disagreement into

confidence intervals, so the conclusions are weaker than they would otherwise be, but still valid.

The most important limitation of network metaanalysis is that it requires many paths and

many links to assess the reliability of the cross-study comparisons. If each new antihypertensive

drug had been compared only to placebo, there would be only a single path between any two

treatments, and no cross-checking would be possible. Reliability of cross-study comparisons

would then be an unsupported (and unsupportable) assumption.

20.6 SOMETHING IN THE AIR?

Fine particles in the air have long been known to be toxic in sufficiently high doses. Recently,

there has been concern that even the relatively low exposures permitted by European and U.S.

law may be dangerous to sensitive individuals. These fine particles come from smoke (wood

smoke, car exhaust, power stations), dust from roads or fields, and haze formed by chemical

reactions in the air. They have widely varying physical and chemical characteristics, which

are incompletely understood, but the legal limits are based simply on the total mass per cubic

meter of air.

Most of the recent concern has come from time-series studies, which are relatively easy

and inexpensive to carry out. These studies examine the associations between total number of

deaths, hospital admissions, or emergency room visits in a city with the average pollution levels.
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As the EPA requires regular monitoring of air pollution and other government agencies collect

information on deaths and hospital attendance, the data merely need to be extracted from the

relevant databases.

This description glosses over some important statistical issues, many of which were pointed

out by epidemiologists when the first studies were published:

1. There is a lot of variation in exposure among a group of people.

2. The monitors may be deliberately located in dirty areas to detect problems (or in clean

areas so as not to detect problems).

3. The day-to-day outcome measurements are not independent.

4. There is a large seasonal variation in both exposure and outcome, potentially confounding

the results.

5. We don’t know how much time should be expected between exposure to fine particles

and death or illness.

You should be able to think of several other potential problems, but a more useful exercise

for the statistician is to classify the problems by whether they are important and whether they

are soluble. It turns out that the first two are not important because they are more or less constant

from day to day and so cancel out of our comparisons. The third problem is potentially important

and led to some interesting statistical research, but it turns out that addressing it does not alter

the results.

The fourth problem, seasonal variation, is important, as Figure 20.6 shows. In Seattle, mor-

tality and air pollution peak in the winter. In many other cities the pattern is slightly different,

with double peaks in winter and summer, but some form of strong seasonality is the rule. The
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Seattle.
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solution to this confounding problem is to include these seasonal effects in our regression model.

This is complicated: As gardeners and skiers well know, the seasons are not perfectly regular

from year to year. Epidemiologists found a statistical solution, the generalized additive model

(GAM), which had been developed for completely different problems, and adapted it to these

time series. The GAM models allow the seasonal variation to be modeled simply by saying how

smooth it should be:

log(mortality rate on day t) = α(t) + β × fine-particle concentration

The smooth function α(t) absorbs all the seasonal variation and leaves only the short-term day-to-

day fluctuations for evaluating the relationship between air pollution and mortality summarized

by the log relative risk β. Computationally, α(t) is similar to the scatter plot smoothers discussed

in Chapter 3.

With the problem of seasonal variation classified as important but soluble, analyses proceeded

using data from many different U.S. cities and cities around the world. Shortly after the EPA had

compiled a review of all the relevant research as a prelude to setting new standards, some bad

news was revealed. Researchers at Johns Hopkins School of Public Health, who had compiled

the largest and most systematic set of time-series studies, reported that they and everyone else

had been using the GAM software incorrectly. The software had been written many years before,

when computers were much slower, and had been intended for simpler examples than these time-

series studies. The computations for a GAM involve iterative improvements to an estimate until

it stops changing, and the default criterion for “stops changing” was not tight enough for the air

pollution time-series models. At about the same time, researchers in Canada noticed that one

of the approximations used in calculating confidence intervals and p-values was also not quite

good enough in these time-series models [Ramsay et al., 2003]. When the dust settled, it became

clear that the problem of seasonal variation was still soluble—fixes were found for these two

problems, many studies were reanalyzed, and the conclusions remained qualitatively the same.

The final problem, the fact that the latency is not known, is just one special case of the

problem of model uncertainty—choosing a regression model is much harder than fitting it.

It is easy to estimate the association between mortality and today’s pollution, or yesterday’s

pollution, or the previous day’s, or the average of the past week, or any other choice. It is very

hard to choose between these models. Simply reporting the best results is clearly biased, but is

sometimes done. Fitting all the possible models may obscure the true associations among all the

random noise. Specifying a particular model a priori allows valid inference but risks missing the

true association. This final problem is important, but there is no simple mathematical solution.

20.7 ARE TECHNICIANS AS GOOD AS PHYSICIANS?

The neuropathological diagnosis of Alzheimer’s disease (AD) is time consuming and difficult,

even for experienced neuropathologists. Work in the late 1960s and early 1970s found that the

presence of senile neuritic plaques in the neocortex and hippocampus justified a neuropatho-

logical diagnosis of Alzheimer’s disease [Tomlinson et al., 1968, 1970]. Plaques are proteins

associated with degenerating nerve cells in the brain; they tend to be located near the points of

contact between cells. Typically, they are found in the brains of older persons.

These studies also found that large numbers of neurofibrillary tangles were often present in the

neocortex and the hippocampus of brains from Alzheimer’s disease victims. A tangle is another

protein in the shape of a paired helical fragment found in the nerve cell. Neurofibrillary tangles

are also found in other diseases. Later studies showed that plaques and tangles could be found in

the brains of elderly persons with preserved mental status. Thus, the quantity and distribution of

plaques and tangles, rather than their mere presence, are important in distinguishing Alzheimer’s

brains from the brains of normal aging persons.
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A joint conference of 1985 [Khachaturian, 1985] stressed the need for standardized clinical

and neuropathological diagnoses for Alzheimer’s disease. We wanted to find out whether subjects

with minimal training can count plaques and tangles in histological specimens of patients with

Alzheimer’s disease and controls [van Belle et al., 1997]. Two experienced neuropathologists

trained three student helpers to recognize plaques and tangles in slides obtained from autopsy

material. After training, the students and pathologists examined coded slides from patients with

Alzheimer’s disease and controls. Some of the slides were repeated to provide an estimate of

reproducibility. Each reader read four fields, which were then averaged.

Ten sequential cases with a primary clinical and neuropathological diagnosis of Alzheimer’s

disease were chosen from the Alzheimer’s Disease Research Center’s (ADRC) brain autopsy

registry. Age at death ranged from 67 years to 88 years, with a mean of 75.7 years and a

standard deviation of 5.9 years.

Ten controls were examined for this study. Nine controls were selected from the ADRC

registry of patients with brain autopsy, representing all subjects in the registry with no neu-

ropathological evidence of AD. Four of these did have a clinical diagnosis of Alzheimer’s

disease, however. One additional control was drawn from files at the University of Washing-

ton’s Department of Neuropathology. This control, aged 65 years at death, had no clinical history

of Alzheimer’s disease.

For each case and control, sections from the hippocampus and from the temporal, parietal, and

frontal lobes were viewed by two neuropathologists and three technicians. The three technicians

were a first-year medical school student, a graduate student in biostatistics with previous histo-

logical experience, and a premedical student. The technicians were briefly trained (for several

hours) by a neuropathologist. The training consisted of looking at brain tissue (both Alzheimer’s

cases and normal brains) with a double-headed microscope and at photographs of tissue. The

neuropathologist trained the technicians to identify plaques and tangles in the tissue samples

viewed. The training ended when the neuropathologist was satisfied that the technicians would

be able to identify plaques and tangles in brain tissue samples on their own for the purposes

of this study. The slides were masked to hide patient identity and were arbitrarily divided into

batches of five subjects, with cases and controls mixed. Each viewer was asked to scan the

entire slide to find the areas of the slide with the highest density of plaques and tangles (implied

by Khachaturian [1985]). The viewer then chose the four fields on the slide that appeared to

contain the highest density of plaques and tangles when viewed at 25×. Neurofibrillary tangles

and senile plaques were counted in these four fields at 200×. If the field contained more than

30 plaques or tangles, the viewer scored the number of lesions in that field as 30.

The most important area in the brain for the diagnosis of Alzheimer’s is the hippocampus,

and the results are presented for that region. Results for other regions were similar. In addition,

we deal here only with cases and plaques. Table 20.2 contains results for the estimated number

of plaques per field for cases; each reading is the average of readings from four fields. The

estimated number of plaques varied considerably, ranging from zero to more than 20. Inspection

of Table 20.2 suggests that technician 3 tends to read higher than the other technicians and the

neuropathologists, that is, tends to see more plaques. An analysis of variance confirms this

impression:

Mean
Source of Variation d.f. Square F -Ratio

Patients 9 102.256 —

Observers 4 — —

Technicians vs. neuropathologists 1 21.31 2.70

Within technicians 2 42.53 5.39

Neuropathologist A vs. neuropathologist B 1 2.556 0.32

Patients × observers 36 7.888 —
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Table 20.2 Average Number of Plaques per Field in the Hippocampus as Estimated by Three
Technicians and Two Neuropathologistsa

Correlations:

Technician Neuropathologist Technician Neuropathologist

Case 1 2 3 A B 2 3 A B

1 0.75 0.00 0.00 0.00 0.00 1 0.69 0.63 0.65 0.76

2 7.25 6.50 7.50 4.75 3.75 2 0.77 0.79 0.84

3 5.50 7.25 5.50 5.75 8.75 3 0.91 0.67

4 5.25 8.00 14.30 5.75 6.50 A 0.82

5 10.00 8.25 9.00 3.50 7.75

6 7.25 7.00 21.30 13.00 8.50

7 5.75 15.30 18.80 10.30 8.00

8 1.25 4.75 3.25 3.25 4.00

9 1.75 5.00 7.25 2.50 3.50

10 10.50 16.00 18.30 13.80 19.00

Mean 5.25 7.80 10.50 6.26 6.98

SD 3.44 4.76 7.21 4.60 5.08

aAverages are over four fields.

You will recognize from Chapter 10 the idea of partitioning the variance attributable to

observers into three components; there are many ways of partitioning this variance. The table

above contains one useful way of doing this. The analysis suggests that the average levels of

response do not vary within neuropathologists. There is a highly significant difference among

technicians. We would conclude that technician 3 is high, rather than technician 1 being low,

because of the values obtained by the two neuropathologists. Note also that the residual variabil-

ity is estimated to be
√

7.888 = 2.81 plaques per patient. This represents considerable variability

since the values represent averages of four readings. Using a single reading as a basis produces

an estimated standard deviation of (

√

4)(2.81) = 5.6 plaques per reading.

But how shall agreement be measured or evaluated? Equality of the mean levels suggests

only that the raters tended to count the same number of plaques on average. We need a more

precise formulation of the issue. A correlation between the technicians and the neuropathologists

will provide some information but is not sufficient because the correlation is invariant under

changes in location and scale. In Chapter 4 we distinguished between precision and accuracy.

Precision is the degree to which the observations cluster around a line; accuracy is the degree

to which the observations are close to some standard. In this case the standard is the score

of the neuropathologist and accuracy can be measured by the extent to which a technician’s

readings are from a 45◦ line. A paper by Lin [1989] nicely provides a framework for analyzing

these data. In our case, the data are analyzed according to five criteria: location shift, scale shift,

precision, accuracy, and concordance. Location shift refers to the degree to which the means of

the data differ between technician and neuropathologist. A scale shift measures the differences in

variability. Precision is quantified by a measure of correlation (Pearson’s in our case). Accuracy

is estimated by the distance that the observations are from the 45◦ line. Concordance is defined

as the product of the precision and the accuracy. In symbols, denote two raters by subscripts 1

and 2. Then we define

location shift = u =

µ1 − µ2
√

σ1σ2

scale shift = v =

σ1

σ2
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Table 20.3 Characteristics of Ratings of Three Technicians and Two Neuropathologistsa

Technician Pathologist Location Shift Scale Shift Precision Accuracy Concordance

1 A −0.18 0.75 0.95 0.94 0.89

B −0.35 0.68 0.76 0.88 0.67

2 A 0.33 1.03 0.79 0.95 0.75

B 0.17 0.94 0.84 0.98 0.83

3 A 0.74 1.57 0.91 0.73 0.66

B 0.58 1.42 0.67 0.81 0.55

A B −0.14 0.98 0.82 0.99 0.81

aEstimated numbers of plaques in the hippocampus of 10 cases, based on data from Table 20.2.

precision = r

accuracy = A =

(

v + 1/v + u

2

2

)−1

concordance = rA

We discuss these briefly. The location shift is a standardized estimate of the difference

between the two raters. The quantity
√

σ1σ2 is the geometric mean of the two standard deviations.

If there is no location difference between the two raters, this quantity is centered around zero. The

scale shift is a ratio; if there is no scale shift, this quantity is centered around 1. The precision is

the usual correlation coefficient; if the paired data fall on a straight line, the correlation is 1. The

accuracy is made up of a mixture of the means and the standard deviations. Note that if there is no

location or scale shift, the accuracy is 1, the upper limit for this statistic. The concordance is the

product of the accuracy and the precision; it is also bounded by 1. The data in Table 20.2 are ana-

lyzed according to the criteria above and displayed in Table 20.3. This table suggests that all the

associations between technicians and neuropathologists are comparable. In addition, the compar-

isons between neuropathologists provide an internal measure of consistency. The “location shift”

column indicates that, indeed, technician 3 tended to see more plaques than the neuropatholo-

gists. Technician 3 was also more variable, as indicated in the “scale shift” column. Technician 1

tended to be less variable than the neuropathologists. The precision of the technicians was com-

parable to that of the two neuropathologists compared with each other. The neuropathologists

also displayed very high accuracy, almost matched by technician 1 and 2. The concordance,

the product of the precision and the accuracy, averaged over the two neuropathologists is com-

parable to their concordance. As usual, it is very important to graph the data to confirm these

analytical results by a graphical display. Figure 20.7 displays the seven possible graphs.

In summary, we conclude that it is possible to train relatively naive observers to count plaques

in a manner comparable to that of experienced neuropathologists, as defined by the measures

above. By this methodology, we have also been able to isolate the strengths and weaknesses of

each technician.

20.8 RISKY BUSINESS

Every day of our lives we meet many risks: the risk of being struck by lightning, getting into

a car accident on the way to work, eating contaminated food, and getting hepatitis. Many risks

have associated moral and societal values. For example, what is the risk of being infected by

AIDS through an HIV-positive health practitioner? How does this risk compare with getting

infectious hepatitis from an infected worker? What is the risk to the health practitioner in being

identified as HIV positive? As we evaluate risks, we may ignore them, despite their being real



810 PERSONAL POSTSCRIPT

Figure 20.7 Seven possible graphs for the data in Table 20.3, prepared by SYSTAT, a very comprehensive

software package. (From Wilkinson [1989].)

and substantial: for example, smoking in the face of the evidence in the Surgeon General’s

reports. Or we may react to risks even though they are small: for example, worry about being

hit by a falling airplane.

What is a risk? A risk is usually an event or the probability of the event. Thus, the risk

of being hit by lightning is defined to be the probability of this event. The word risk has an

unfavorable connotation. We usually do not speak of the risk of winning the lottery. For purposes

of this chapter, we relate the risk of an event to the probability of the occurrence of the event.

In Chapter 3 we stated that all probabilities are conditional probabilities. When we talk about

the risk of breast cancer, we usually refer to its occurrence among women. Probabilities are

modified as we define different groups at risk. R. A. Fisher talked about relevant subsets, that

is, what group or set of events is intended when a probability is specified.

In the course of thinking about environmental and occupational risks, one of us (G.vB.)

wanted to develop a scale of risks similar to the Richter scale for earthquakes. The advantages

of such a scale is to present risks numerically in such a way that the public would have an

intuitive understanding of the risks. This, despite not understanding the full basis of the scale

(it turns out to be fairly difficult to find a complete description of the Richter scale).

What should be the characteristics of such a scale? It became clear very quickly that the

scale would have to be logarithmic. Second, it seemed that increasing risks should be associated

with increasing values of the scale. It would also be nice to have the scale have roughly the

same numerical range as the Richter scale. Most of its values are in the range 3 to 7. The risk

scale for events is defined as follows: Let P(E) be the probability of an event; then the risk

units, RU(E), for this event are defined to be

RU(E) = 10 + log10[P(E)]
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Table 20.4 Relationship of Risk Units to
Probabilities

Probability of Event Risk Units

1 10

1/10 9

1/100 8

1/1000 7

1/10,000 6

1/100,000 5

1/1,000,000 4

1/10,000,000 3

1/100,000,000 2

1/1,000,000,000 1

1/10,000,000,000 0

1/100,000,000,000 −1

This scale has several nice properties. First, the scale is logarithmic. Second, if the event is

certain, P(E) = 1 and RU(E) = 10. Given two independent events, E1 and E2, the difference

in their risks is

RU(E1) − RU(E2) = log10

P(E1)

P (E2)

that is, the difference in the risk units is related to the relative risk of the events in a logarithmic

fashion, that is, a logarithm of the odds (see Table 20.4). Third, the progression is terms of

powers of 10 is very simple; and so on. So a shift of 2 risk units represents a 100-fold change

in probabilities. Events with risk units of the order of 1 to 4 are associated with relatively rare

events. Note that the scale can go below zero.

As with the Richter scale, familiarity with common events will help you get a feeling for the

scale. Let us start by considering some random events; next we deal with some common risks

and locate them on the scale; finally, we give you some risks and ask you to place them on

the scale (the answers are given at the end of the chapter). The simplest case is the coin toss.

The probability of, say, a head is 0.5. Hence the risk units associated with observing a head

with a single toss of a coin is RU(heads) = 10 − log10(0.5) = 9.7 (expressing risk units to one

decimal place is usually enough). For a second example, the risk units of drawing at random

a specified integer from the digits 0, 1, 2, 3, . . . , 9 is 1/10 and the RU value is 9. Rolling a

pair of sevens with two dice has a probability of 1/36 and are RU value of 8.4. Now consider

some very small probabilities. Suppose that you dial at random; what is the chance of dialing

your own phone number? Assume that we are talking about the seven-digit code and we allow

all zeros as a possible number. The RU value is 3. If you throw in the area code as well, you

must deduct three more units to get the value RU = 0. There are clearly more efficient ways to

make phone calls.

The idea of a logarithmiclike scale for probabilities appears in the literature quite frequently.

In a delightful, little-noticed book, Risk Watch, Urquhart and Heilmann [1984] defined the safety

unit of an event, E, as

safety unit of E = − log10[P(E)]

The drawback of this definition is that it calibrates events in terms of safety rather than risk.

People are more inclined to think in terms of risk; they are “risk avoiders” rather than safety
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Table 20.5 The Risk Unit Scale and Some Associated Risks

Risk Unit Event

10 Certain event

9 Pick number 3 at random from 0 to 3

8 Car accident with injury (annual)

7 Killed in hang gliding (annual)

6 EPA action (life time risk)

5 Cancer from 4 tbsp peanut butter/day (annual)

4 Cancer from one transcontinental trip

3 Killed by falling aircraft

2 Dollar bill has specified set of eight numbers

1 Pick spot on earth at random and land within
1
4

mile of your house

0 Your phone number picked at random

(+ area code)

−0.5 Killed by falling meteorite (annual)

Table 20.6 Events to Be Ranked and Placed on Risk Units
Scalea

a. Accidental drowning

b. Amateur pilot death

c. Appear on the Johnny Carson Show (1991)

d. Death due to smoking

e. Die in mountain climbing accident

f. Fatality due to insect bite or sting

g. Hit by lightning (in lifetime)

h. Killed in college football

i. Lifetime risk of cancer due to chlorination

j. Cancer from one diet cola per day with

saccharin

k. Ace of spades in one draw from 52-card deck

l. Win the Reader’s Digest Sweepstakes

m. Win the Washington State lottery grand prize

(with one ticket)

aAll risks are annual unless otherwise indicated. Events not ordered by
risk.

seekers. But it is clear that risk units and safety units very simply related:

RU(E) = 10 − SU(E)

Table 20.5 lists the risk units for a series of events. Most of these probabilities were gleaned

from the risk literature. Beside the events mentioned already, the risk unit for a car accident with

injury in a 1-year time interval has a value of 8. This corresponds to a probability of 0.01, or

1/100. The Environmental Protection Agency takes action on lifetime risks of risk unit 6. That

is, if the lifetime probability of death is 1/10,000, the agency will take some action. This may

seem rather anticonservative, but there are many risks, and some selection has to be made. All

these probabilities are estimates with varying degrees of precision. Crouch and Wilson [1982]

include references to the data set upon which the estimate is based and also indicate whether

the risk is changing. Table 20.6 describes some events for which you are asked to estimate the

risk units. The answers are given in Table 20.7, preceding the References.
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Table 20.7 Activities Estimated to Increase the Annual Probability of Death by One in a Milliona

Activity Cause of Death

Smoking 1.4 cigarettes Cancer, heart disease

Drinking 0.5 liter of wine Cirrhosis of the liver

Living 2 days in New York or Boston Air pollution

Traveling 10 miles by bicycle Accident

Living 2 months with a cigarette smoker Cancer, heart disease

Drinking Miami drinking water for 1 year Cancer from chloroform

Living 150 years within 5 miles of a nuclear power plant Cancer from radiation

Eating 100 charcoal-broiled steaks Cancer from benzopyrene

Source: Condensed from Wynne [1991].
aAll events have a risk unit value of 4.

How do we evaluate risks? Why do we take action on some risks but not on others? The

study of risks has been become a separate science with its own journals and society. The

Borgen [1990] and Slovic [1986] articles in the journal Risk Analysis are worth examining. The

following dimensions about evaluating risks have been mentioned in the literature:

Voluntary Involuntary

Immediate effect Delayed effect

Exposure essential Exposure a luxury

Common hazard “Dread” hazard

Affects average person Affects special group

Reversible Irreversible

We discuss these briefly. Recreational scuba diving has an annual probability of death of

4/10,000, or a risk unit of 6.6 [Crouch and Wilson, 1982, Table 7.4]. Compare this with some

of the risks in Table 20.5. Another dimension is the timing of the effect. If the effect is delayed,

we are usually willing to take a bigger risk; the most obvious example is smoking (which also is

a voluntary behavior). If the exposure is essential, as part of one’s occupation, then again, larger

risks are acceptable. A “dread” hazard is often perceived as of greater risk than a common

hazard. The most conspicuous example is an airplane crash vs. an automobile accident. But

perversely, we are less likely to be concerned about hazards that affect special groups to which

we are not immediately linked. For example, migrant workers have high exposures to pesticides

and resulting increased immediate risks of neurological damage and long-term risks of cancer.

As a society, we are not vigorous in reducing those risks. Finally, if the effects of a risk are

reversible, we are willing to take larger risks.

Table 20.7 lists some risks with the same estimated value: Each one increases the annual

risk of death by 1 in a million; that is, all events have a risk unit value of 4. These examples

illustrate that we do not judge risks to be the same even though the probabilities are equal.

Some of the risks are avoidable; others may not be. It may be possible to avoid drinking Miami

drinking water by drinking bottled water or by moving to Alaska. Most of the people who live

in New York or Boston are not aware of the risk of living in those cities. But even if they did,

it is unlikely that they would move. A risk of 1 in a million is too small to act on.

How can risks be ranked? There are many ways. The primary one is by the probability of

occurrence as we have discussed so far. Another is by the expected loss (or gain). For example,

the probability of a fire destroying your home is fairly small but the loss is so great that it pays

to make the unfair bet with the insurance company. An unfair bet is one where the expected gain

is negative. Another example is the lottery. A typical state lottery takes more than 50 cents from

every dollar that is bet (compared to about 4 cents for roulette play in a casino). But the reward

is so large (and the investment apparently small) that many people gladly play this unfair game.
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Table 20.8 Answers to Evaluation of Risks in Table 20.5

Risk Units Source/Comments

a. 5.6 Crouch and Wilson [1982, Table 7.2]

b. 7.0 Crouch and Wilson [1982, Table 7.4]

c. 4.3 Siskin et al. [1990]

d. 7.5 Slovic [1986, Table 1]

e. 6.8 Crouch and Wilson [1982, Table 7.4]

f. 3.4 Crouch and Wilson [1982, Table 7.2]

g. 4.2 Siskin et al. [1990]

h. 5.5 Crouch and Wilson [1982, Table 7.4]

i. 4.0 Crouch and Wilson [1982, Table 7.5 and

pp. 186–187]

j. 5.0 Slovic [1986, Table 1]

k. 8.3 10 + log(1/52)

l. 1.6 From back of announcement;

10 + log(1/250,000,000)

m. 3.0 From back of lottery ticket;

10 + log(1/10,000,000)

How can risks be changed? It is clearly possible to stop smoking, to give up scuba diving,

quit the police force, never drive a car. Many risks are associated with specific behaviors and

changing those behaviors will change the risks. In the language of probability we have moved to

another subset. Some changes will not completely remove the risks because of lingering effects

of the behavior. But a great deal of risk reduction can be effected by changes in behavior. It

behooves each one of us to assess the risks we take and to decide whether they are worth it.

The Journal of the Royal Statistical Society, Series A devoted the June 2003 issue (Volume

166) to statistical issues in risk communication. The journal Risk Analysis address risk analysis,

risk assessment, and risk communication.
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Table A.1 Standard Normal Distribution

Let Z be a normal random variable with mean zero and variance 1. For selected values of Z, three values

are tabled: (1) the two-sided p-value, or P [|Z| ≥ z]; (2) the one-sided p-value, or P [Z ≥ z]; and (3) the

cumulative distribution function at Z, or P [Z ≤ z].

Two- One- Cum- Two- One- Cum- Two- One- Cum-

z sided sided dist. z sided sided dist. z sided sided dist.

0.00 1.0000 .5000 .5000 1.30 .1936 .0968 .9032 1.80 .0719 .0359 .9641

0.05 .9601 .4801 .5199 1.31 .1902 .0951 .9049 1.81 .0703 .0351 .9649

0.10 .9203 .4602 .5398 1.32 .1868 .0934 .9066 1.82 .0688 .0344 .9656

0.15 .8808 .4404 .5596 1.33 .1835 .0918 .9082 1.83 .0673 .0336 .9664

0.20 .8415 .4207 .5793 1.34 .1802 .0901 .9099 1.84 .0658 .0329 .9671

0.25 .8026 .4013 .5987 1.35 .1770 .0885 .9115 1.85 .0643 .0322 .9678

0.30 .7642 .3821 .6179 1.36 .1738 .0869 .9131 1.86 .0629 .0314 .9686

0.35 .7263 .3632 .6368 1.37 .1707 .0853 .9147 1.87 .0615 .0307 .9693

0.40 .6892 .3446 .6554 1.38 .1676 .0838 .9162 1.88 .0601 .0301 .9699

0.45 .6527 .3264 .6736 1.39 .1645 .0823 .9177 1.89 .0588 .0294 .9706

0.50 .6171 .3085 .6915 1.40 .1615 .0808 .9192 1.90 .0574 .0287 .9713

0.55 .5823 .2912 .7088 1.41 .1585 .0793 .9207 1.91 .0561 .0281 .9719

0.60 .5485 .2743 .7257 1.42 .1556 .0778 .9222 1.92 .0549 .0274 .9726

0.65 .5157 .2578 .7422 1.43 .1527 .0764 .9236 1.93 .0536 .0268 .9732

0.70 .4839 .2420 .7580 1.44 .1499 .0749 .9251 1.94 .0524 .0262 .9738

0.75 .4533 .2266 .7734 1.45 .1471 .0735 .9265 1.95 .0512 .0256 .9744

0.80 .4237 .2119 .7881 1.46 .1443 .0721 .9279 1.96 .0500 .0250 .9750

0.85 .3953 .1977 .8023 1.47 .1416 .0708 .9292 1.97 .0488 .0244 .9756

0.90 .3681 .1841 .8159 1.48 .1389 .0694 .9306 1.98 .0477 .0239 .9761

0.95 .3421 .1711 .8289 1.49 .1362 .0681 .9319 1.99 .0466 .0233 .9767

1.00 .3173 .1587 .8413 1.50 .1336 .0668 .9332 2.00 .0455 .0228 .9772

1.01 .3125 .1562 .8438 1.51 .1310 .0655 .9345 2.01 .0444 .0222 .9778

1.02 .3077 .1539 .8461 1.52 .1285 .0643 .9357 2.02 .0434 .0217 .9783

1.03 .3030 .1515 .8485 1.53 .1260 .0630 .9370 2.03 .0424 .0212 .9788

1.04 .2983 .1492 .8508 1.54 .1236 .0618 .9382 2.04 .0414 .0207 .9793

1.05 .2937 .1469 .8531 1.55 .1211 .0606 .9394 2.05 .0404 .0202 .9798

1.06 .2891 .1446 .8554 1.56 .1188 .0594 .9406 2.06 .0394 .0197 .9803

1.07 .2846 .1423 .8577 1.57 .1164 .0582 .9418 2.07 .0385 .0192 .9808

1.08 .2801 .1401 .8599 1.58 .1141 .0571 .9429 2.08 .0375 .0188 .9812

1.09 .2757 .1379 .8621 1.59 .1118 .0559 .9441 2.09 .0366 .0183 .9817

1.10 .2713 .1357 .8643 1.60 .1096 .0548 .9452 2.10 .0357 .0179 .9821

1.11 .2670 .1335 .8665 1.61 .1074 .0537 .9463 2.11 .0349 .0174 .9826

1.12 .2627 .1314 .8686 1.62 .1052 .0526 .9474 2.12 .0340 .0170 .9830

1.13 .2585 .1292 .8708 1.63 .1031 .0516 .9484 2.13 .0332 .0166 .9834

1.14 .2543 .1271 .8729 1.64 .1010 .0505 .9495 2.14 .0324 .0162 .9838

1.15 .2501 .1251 .8749 1.65 .0989 .0495 .9505 2.15 .0316 .0158 .9842

1.16 .2460 .1230 .8770 1.66 .0969 .0485 .9515 2.16 .0308 .0154 .9846

1.17 .2420 .1210 .8790 1.67 .0949 .0475 .9525 2.17 .0300 .0150 .9850

1.18 .2380 .1190 .8810 1.68 .0930 .0465 .9535 2.18 .0293 .0146 .9854

1.19 .2340 .1170 .8830 1.69 .0910 .0455 .9545 2.19 .0285 .0143 .9857

1.20 .2301 .1151 .8849 1.70 .0891 .0446 .9554 2.20 .0278 .0139 .9861

1.21 .2263 .1131 .8869 1.71 .0873 .0436 .9564 2.21 .0271 .0136 .9864

1.22 .2225 .1112 .8888 1.72 .0854 .0427 .9573 2.22 .0264 .0132 .9868

1.23 .2187 .1093 .8907 1.73 .0836 .0418 .9582 2.23 .0257 .0129 .9871

1.24 .2150 .1075 .8925 1.74 .0819 .0409 .9591 2.24 .0251 .0125 .9875

1.25 .2113 .1056 .8944 1.75 .0801 .0401 .9599 2.25 .0244 .0122 .9878

1.26 .2077 .1038 .8962 1.76 .0784 .0392 .9608 2.26 .0238 .0119 .9881

1.27 .2041 .1020 .8980 1.77 .0767 .0384 .9616 2.27 .0232 .0116 .9884

1.28 .2005 .1003 .8997 1.78 .0751 .0375 .9625 2.28 .0226 .0113 .9887

1.29 .1971 .0985 .9015 1.79 .0735 .0367 .9633 2.29 .0220 .0110 .9890
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Table A.1 (continued)

Two- One- Cum- Two- One- Cum- Two- One- Cum-

z sided sided dist. z sided sided dist. z sided sided dist.

2.30 .0214 .0107 .9893 2.80 .0051 .0026 .9974 3.30 .0010 .0005 .9995

2.31 .0209 .0104 .9896 2.81 .0050 .0025 .9975 3.31 .0009 .0005 .9995

2.32 .0203 .0102 .9898 2.82 .0048 .0024 .9976 3.32 .0009 .0005 .9995

2.33 .0198 .0099 .9901 2.83 .0047 .0023 .9977 3.33 .0009 .0004 .9996

2.34 .0193 .0096 .9904 2.84 .0045 .0023 .9977 3.34 .0008 .0004 .9996

2.35 .0188 .0094 .9906 2.85 .0044 .0022 .9978 3.35 .0008 .0004 .9996

2.36 .0183 .0091 .9909 2.86 .0042 .0021 .9979 3.36 .0008 .0004 .9996

2.37 .0178 .0089 .9911 2.87 .0041 .0021 .9979 3.37 .0008 .0004 .9996

2.38 .0173 .0087 .9913 2.88 .0040 .0020 .9980 3.38 .0007 .0004 .9996

2.39 .0168 .0084 .9916 2.89 .0039 .0019 .9981 3.39 .0007 .0003 .9997

2.40 .0164 .0082 .9918 2.90 .0037 .0019 .9981 3.40 .0007 .0003 .9997

2.41 .0160 .0080 .9920 2.91 .0036 .0018 .9982 3.41 .0006 .0003 .9997

2.42 .0155 .0078 .9922 2.92 .0035 .0018 .9982 3.42 .0006 .0003 .9997

2.43 .0151 .0075 .9925 2.93 .0034 .0017 .9983 3.43 .0006 .0003 .9997

2.44 .0147 .0073 .9927 2.94 .0033 .0016 .9984 3.44 .0006 .0003 .9997

2.45 .0143 .0071 .9929 2.95 .0032 .0016 .9984 3.45 .0006 .0003 .9997

2.46 .0139 .0069 .9931 2.96 .0031 .0015 .9985 3.46 .0005 .0003 .9997

2.47 .0135 .0068 .9932 2.97 .0030 .0015 .9985 3.47 .0005 .0003 .9997

2.48 .0131 .0066 .9934 2.98 .0029 .0014 .9986 3.48 .0005 .0003 .9997

2.49 .0128 .0064 .9936 2.99 .0028 .0014 .9986 3.49 .0005 .0002 .9998

2.50 .0124 .0062 .9938 3.00 .0027 .0013 .9987 3.50 .0005 .0002 .9998

2.51 .0121 .0060 .9940 3.01 .0026 .0013 .9987 3.51 .0004 .0002 .9998

2.52 .0117 .0059 .9941 3.02 .0025 .0013 .9987 3.52 .0004 .0002 .9998

2.53 .0114 .0057 .9943 3.03 .0024 .0012 .9988 3.53 .0004 .0002 .9998

2.54 .0111 .0055 .9945 3.04 .0024 .0012 .9988 3.54 .0004 .0002 .9998

2.55 .0108 .0054 .9946 3.05 .0023 .0011 .9989 3.55 .0004 .0002 .9998

2.56 .0105 .0052 .9948 3.06 .0022 .0011 .9989 3.56 .0004 .0002 .9998

2.57 .0102 .0051 .9949 3.07 .0021 .0011 .9989 3.57 .0004 .0002 .9998

2.58 .0099 .0049 .9951 3.08 .0021 .0010 .9990 3.58 .0003 .0002 .9998

2.59 .0096 .0048 .9952 3.09 .0020 .0010 .9990 3.59 .0003 .0002 .9998

2.60 .0093 .0047 .9953 3.10 .0019 .0010 .9990 3.60 .0003 .0002 .9998

2.61 .0091 .0045 .9955 3.11 .0019 .0009 .9991 3.61 .0003 .0002 .9998

2.62 .0088 .0044 .9956 3.12 .0018 .0009 .9991 3.62 .0003 .0001 .9999

2.63 .0085 .0043 .9957 3.13 .0017 .0009 .9991 3.63 .0003 .0001 .9999

2.64 .0083 .0041 .9959 3.14 .0017 .0008 .9992 3.64 .0003 .0001 .9999

2.65 .0080 .0040 .9960 3.15 .0016 .0008 .9992 3.65 .0003 .0001 .9999

2.66 .0078 .0039 .9961 3.16 .0016 .0008 .9992 3.66 .0003 .0001 .9999

2.67 .0076 .0038 .9962 3.17 .0015 .0008 .9992 3.67 .0002 .0001 .9999

2.68 .0074 .0037 .9963 3.18 .0015 .0007 .9993 3.68 .0002 .0001 .9999

2.69 .0071 .0036 .9964 3.19 .0014 .0007 .9993 3.69 .0002 .0001 .9999

2.70 .0069 .0035 .9965 3.20 .0014 .0007 .9993 3.70 .0002 .0001 .9999

2.71 .0067 .0034 .9966 3.21 .0013 .0007 .9993 3.71 .0002 .0001 .9999

2.72 .0065 .0033 .9967 3.22 .0013 .0006 .9994 3.72 .0002 .0001 .9999

2.73 .0063 .0032 .9968 3.23 .0012 .0006 .9994 3.73 .0002 .0001 .9999

2.74 .0061 .0031 .9969 3.24 .0012 .0006 .9994 3.74 .0002 .0001 .9999

2.75 .0060 .0030 .9970 3.25 .0012 .0006 .9994 3.75 .0002 .0001 .9999

2.76 .0058 .0029 .9971 3.26 .0011 .0006 .9994 3.76 .0002 .0001 .9999

2.77 .0056 .0028 .9972 3.27 .0011 .0005 .9995 3.77 .0002 .0001 .9999

2.78 .0054 .0027 .9973 3.28 .0010 .0005 .9995 3.78 .0002 .0001 .9999

2.79 .0053 .0026 .9974 3.29 .0010 .0005 .9995 3.79 .0002 .0001 .9999
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Table A.2 Critical Values (Percentiles) for the Standard Normal Distribution

The fourth column is the N (0, 1) percentile for the percent given in column one. It is also the upper

one-sided N (0, 1) critical value and two-sided N (0, 1) critical value for the significance levels given

in columns two and three, respectively.

Percent One-sided Two-sided z Percent One-sided Two-sided z

50 .50 1.00 0.00 99.59 .0041 .0082 2.64

55 .45 .90 0.13 99.60 .0040 .0080 2.65

60 .40 .80 0.25 99.61 .0039 .0078 2.66

65 .35 .70 0.39 99.62 .0038 .0076 2.67

70 .30 .60 0.52 99.63 .0037 .0074 2.68

75 .25 .50 0.67 99.64 .0036 .0072 2.69

80 .20 .40 0.84 99.65 .0035 .0070 2.70

85 .15 .30 1.04 99.66 .0034 .0068 2.71

90 .10 .20 1.28 99.67 .0033 .0066 2.72

91 .09 .18 1.34 99.68 .0032 .0064 2.73

92 .08 .16 1.41 99.69 .0031 .0062 2.74

93 .07 .14 1.48 99.70 .0030 .0060 2.75

94 .06 .12 1.55 99.71 .0029 .0058 2.76

95 .05 .10 1.64 99.72 .0028 .0056 2.77

95.5 .045 .090 1.70 99.73 .0027 .0054 2.78

96.0 .040 .080 1.75 99.74 .0026 .0052 2.79

96.5 .035 .070 1.81 99.75 .0025 .0050 2.81

97.0 .030 .060 1.88 99.76 .0024 .0048 2.82

97.5 .025 .050 1.96 99.77 .0023 .0046 2.83

98.0 .020 .040 2.05 99.78 .0022 .0044 2.85

98.5 .015 .030 2.17 99.79 .0021 .0042 2.86

99.0 .010 .020 2.33 99.80 .0020 .0040 2.88

99.05 .0095 .0190 2.35 99.81 .0019 .0038 2.89

99.10 .0090 .0180 2.37 99.82 .0018 .0036 2.91

99.15 .0085 .0170 2.39 99.83 .0017 .0034 2.93

99.20 .0080 .0160 2.41 99.84 .0016 .0032 2.95

99.25 .0075 .0150 2.43 99.85 .0015 .0030 2.97

99.30 .0070 .0140 2.46 99.86 .0014 .0028 2.99

99.35 .0065 .0130 2.48 99.87 .0013 .0026 3.01

99.40 .0060 .0120 2.51 99.88 .0012 .0024 3.04

99.45 .0055 .0110 2.54 99.89 .0011 .0022 3.06

99.50 .0050 .0100 2.58 99.90 .0010 .0020 3.09

99.51 .0049 .0098 2.58 99.91 .0009 .0018 3.12

99.52 .0048 .0096 2.59 99.92 .0008 .0016 3.16

99.53 .0047 .0094 2.60 99.93 .0007 .0014 3.19

99.54 .0046 .0092 2.60 99.94 .0006 .0012 3.24

99.55 .0045 .0090 2.61 99.95 .0005 .0010 3.29

99.56 .0044 .0088 2.62 99.96 .0004 .0008 3.35

99.57 .0043 .0086 2.63 99.97 .0003 .0006 3.43

99.58 .0042 .0084 2.64 99.98 .0002 .0004 3.54

99.99 .0001 .0002 3.72
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Table A.3 Critical Values (Percentiles) for the Chi-Square Distribution

For each degree of freedom (d.f.) in the first column, the table entries are the critical values for the upper

one-sided significance levels in the column headings or, equivalently, the percentiles for the corresponding

percentages.

Percentage

2.5 5 50 75 90 95 97.5 99 99.9

Upper One-Sided α

d.f. .975 .95 .50 .25 .10 .05 .025 .01 .001

1 .001 .004 .455 1.32 2.71 3.84 5.02 6.63 10.83

2 .051 .103 1.39 2.77 4.61 5.99 7.38 9.21 13.82

3 .216 .352 2.37 4.11 6.25 7.82 9.35 11.34 16.27

4 .484 .711 3.36 5.39 7.78 9.49 11.14 13.28 18.47

5 .831 1.15 4.35 6.63 9.24 11.07 12.83 15.09 20.52

6 1.24 1.64 5.35 7.84 10.64 12.59 14.45 16.81 22.46

7 1.69 2.17 6.35 9.04 12.02 14.07 16.01 18.47 24.32

8 2.18 2.73 7.34 10.22 13.36 15.51 17.53 20.09 26.12

9 2.70 3.33 8.34 11.39 14.68 16.92 19.02 21.67 27.88

10 3.25 3.94 9.34 12.55 15.99 18.31 20.48 23.21 29.59

11 3.82 4.57 10.34 13.70 17.27 19.68 21.92 24.72 31.26

12 4.40 5.23 11.34 14.85 18.55 21.03 23.34 26.22 32.91

13 5.01 5.89 12.34 15.98 19.81 22.36 24.74 27.69 34.53

14 5.63 6.57 13.34 17.12 21.06 23.68 26.12 29.14 36.12

15 6.26 7.26 14.34 18.25 22.31 25.00 27.49 30.58 37.70

16 6.91 7.96 15.34 19.37 23.54 26.30 28.85 32.00 39.25

17 7.56 8.67 16.34 20.49 24.77 27.59 30.19 33.41 40.79

18 8.23 9.39 17.34 21.60 25.99 28.87 31.53 34.81 42.31

19 8.91 10.12 18.34 22.72 27.20 30.14 32.85 36.19 43.82

20 9.59 10.85 19.34 23.83 28.41 31.41 34.17 37.57 45.31

21 10.28 11.59 20.34 24.93 29.62 32.67 35.48 38.93 46.80

22 10.98 12.34 21.34 26.04 30.81 33.92 36.78 40.29 48.27

23 11.69 13.09 22.34 27.14 32.01 35.17 38.08 41.64 49.73

24 12.40 13.85 23.34 28.24 33.20 36.42 39.36 42.98 51.18

25 13.12 14.61 24.34 29.34 34.38 37.65 40.65 44.31 52.62

26 13.84 15.38 25.34 30.43 35.56 38.89 41.92 45.64 54.05

27 14.57 16.15 26.34 31.53 36.74 40.11 43.19 46.96 55.48

28 15.31 16.93 27.34 32.62 37.92 41.34 44.46 48.28 56.89

29 16.05 17.71 28.34 33.71 39.09 42.56 45.72 49.59 58.30

30 16.79 18.49 29.34 34.80 40.26 43.77 46.98 50.89 59.70

35 20.57 22.47 34.34 40.22 46.06 49.80 53.20 57.34 66.62

40 24.43 26.51 39.34 45.62 51.81 55.76 59.34 63.69 73.40

45 28.37 30.61 44.34 50.98 57.51 61.66 65.41 69.96 80.08

50 32.36 34.76 49.33 56.33 63.17 67.50 71.42 76.15 86.66

55 36.40 38.96 54.33 61.66 68.80 73.31 77.38 82.29 93.17

60 40.48 43.19 59.33 66.98 74.40 79.08 83.30 88.38 99.61

65 44.60 47.45 64.33 72.28 79.97 84.82 89.18 94.42 105.99

70 48.76 51.74 69.33 77.58 85.53 90.53 95.02 100.43 112.32

75 52.94 56.05 74.33 82.86 91.06 96.22 100.84 106.39 118.60

80 57.15 60.39 79.33 88.13 96.58 101.88 106.63 112.33 124.84

85 61.39 64.75 84.33 93.39 102.08 107.52 112.39 118.24 131.04

90 65.65 69.13 89.33 98.65 107.57 113.15 118.14 124.12 137.21

95 69.92 73.52 94.33 103.90 113.04 118.75 123.86 129.97 143.34

100 74.22 77.93 99.33 109.14 118.50 124.34 129.56 135.81 149.45

For more than 100 degrees of freedom chi-square critical values may be found in terms of the degrees of freedom and the

corresponding two-sided critical value for a standard normal deviate Z by the equation X

2
= 0.5 · (Z +

√

2 · D − 1)

2.
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Table A.4 Critical Values (Percentiles) for the t-Distribution
The table entries are the critical values (percentiles) for the t-distribution. The column headed d.f. (degrees of freedom)

gives the degrees of freedom for the values in that row. The columns are labeled by “percent,” “one-sided,” and “two-

sided.” “Percent” is 100 × cumulative distribution function—the table entry is the corresponding percentile. “One-sided”

is the significance level for the one-sided upper critical value—the table entry is the critical value. “Two-sided” gives the

two-sided significance level—the table entry is the corresponding two-sided critical value.

Percent

75 90 95 97.5 99 99.5 99.75 99.9 99.95 99.975 99.99 99.995

One-Sided α

.25 .10 .05 .025 .01 .005 .0025 .001 .0005 .00025 .0001 .00005

Two-Sided α

.50 .20 .10 .05 .02 .01 .005 .002 .001 .0005 .0002 .0001

d.f.

1 1.00 3.08 6.31 12.71 31.82 63.66 127.32 318.31 636.62 1273.24 3183.10 6366.20

2 .82 1.89 2.92 4.30 6.96 9.22 14.09 22.33 31.60 44.70 70.70 99.99

3 .76 1.64 2.35 3.18 4.54 5.84 7.45 10.21 12.92 16.33 22.20 28.00

4 .74 1.53 2.13 2.78 3.75 4.60 5.60 7.17 8.61 10.31 13.03 15.54

5 .73 1.48 2.02 2.57 3.37 4.03 4.77 5.89 6.87 7.98 9.68 11.18

6 .72 1.44 1.94 2.45 3.14 3.71 4.32 5.21 5.96 6.79 8.02 9.08

7 .71 1.42 1.90 2.37 3.00 3.50 4.03 4.79 5.41 6.08 7.06 7.88

8 .71 1.40 1.86 2.31 2.90 3.36 3.83 4.50 5.04 5.62 6.44 7.12

9 .70 1.38 1.83 2.26 2.82 3.25 3.69 4.30 4.78 5.29 6.01 6.59

10 .70 1.37 1.81 2.23 2.76 3.17 3.58 4.14 4.59 5.05 5.69 6.21

11 .70 1.36 1.80 2.20 2.72 3.11 3.50 4.03 4.44 4.86 5.45 5.92

12 .70 1.36 1.78 2.18 2.68 3.06 3.43 3.93 4.32 4.72 5.26 5.69

13 .69 1.35 1.77 2.16 2.65 3.01 3.37 3.85 4.22 4.60 5.11 5.51

14 .69 1.35 1.76 2.15 2.63 2.98 3.33 3.79 4.14 4.50 4.99 5.36

15 .69 1.34 1.75 2.13 2.60 2.95 3.29 3.73 4.07 4.42 4.88 5.24

16 .69 1.34 1.75 2.12 2.58 2.92 3.25 3.69 4.02 4.35 4.79 5.13

17 .69 1.33 1.74 2.11 2.57 2.90 3.22 3.65 3.97 4.29 4.71 5.04

18 .69 1.33 1.73 2.10 2.55 2.88 3.20 3.61 3.92 4.23 4.65 4.97

19 .69 1.33 1.73 2.09 2.54 2.86 3.17 3.58 3.88 4.19 4.59 4.90

20 .69 1.33 1.73 2.09 2.53 2.85 3.15 3.55 3.85 4.15 4.54 4.84

21 .69 1.32 1.72 2.08 2.52 2.83 3.14 3.53 3.82 4.11 4.49 4.78

22 .69 1.32 1.72 2.07 2.51 2.82 3.12 3.51 3.79 4.08 4.45 4.74

23 .68 1.32 1.71 2.07 2.50 2.81 3.10 3.49 3.77 4.05 4.42 4.69

24 .68 1.32 1.71 2.06 2.49 2.80 3.09 3.47 3.75 4.02 4.38 4.65

25 .68 1.32 1.71 2.06 2.49 2.79 3.08 3.45 3.73 4.00 4.35 4.62

26 .68 1.32 1.71 2.06 2.48 2.78 3.07 3.44 3.71 3.97 4.32 4.59

27 .68 1.31 1.70 2.05 2.47 2.77 3.06 3.42 3.69 3.95 4.30 4.56

28 .68 1.31 1.70 2.05 2.47 2.76 3.05 3.41 3.67 3.94 4.28 4.53

29 .68 1.31 1.70 2.05 2.46 2.76 3.04 3.40 3.66 3.92 4.25 4.51

30 .68 1.31 1.70 2.04 2.46 2.75 3.03 3.39 3.65 3.90 4.23 4.48

35 .68 1.31 1.69 2.03 2.44 2.72 3.00 3.34 3.59 3.84 4.15 4.39

40 .68 1.30 1.68 2.02 2.42 2.70 2.97 3.31 3.55 3.79 4.09 4.32

45 .68 1.30 1.68 2.01 2.41 2.69 2.95 3.28 3.52 3.75 4.05 4.27

50 .68 1.30 1.68 2.01 2.40 2.68 2.94 3.26 3.50 3.72 4.01 4.23

55 .68 1.30 1.67 2.00 2.40 2.67 2.93 3.25 3.48 3.70 3.99 4.20

60 .68 1.30 1.67 2.00 2.39 2.66 2.91 3.23 3.46 3.68 3.96 4.17

65 .68 1.29 1.67 2.00 2.39 2.65 2.91 3.22 3.45 3.66 3.94 4.15

70 .68 1.29 1.67 1.99 2.38 2.65 2.90 3.21 3.44 3.65 3.93 4.13

75 .68 1.29 1.67 1.99 2.38 2.64 2.89 3.20 3.43 3.64 3.91 4.11

80 .68 1.29 1.66 1.99 2.37 2.64 2.89 3.20 3.42 3.63 3.90 4.10

85 .68 1.29 1.66 1.99 2.37 2.64 2.88 3.19 3.41 3.62 3.89 4.08

90 .68 1.29 1.66 1.99 2.37 2.63 2.88 3.18 3.40 3.61 3.88 4.07

95 .68 1.29 1.66 1.99 2.37 2.63 2.87 3.18 3.40 3.60 3.87 4.06

100 .68 1.29 1.66 1.98 2.36 2.63 2.87 3.17 3.39 3.60 3.86 4.05

200 .68 1.29 1.65 1.97 2.35 2.60 2.84 3.13 3.34 3.54 3.79 3.97

500 .68 1.28 1.65 1.97 2.33 2.59 2.82 3.11 3.31 3.50 3.75 3.92

∞ .67 1.28 1.65 1.96 2.33 2.58 2.81 3.10 3.30 3.49 3.73 3.91
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Table A.7 Fisher’s Exact Test for 2 × 2 Tables

Consider a 2 × 2 table:
aA − a|A

bB − b|B
with rows and/or columns exchanged so that (1) A ≥ B and (2) (a/A) ≥

(b/B). The table entries are ordered lexicographically by A (ascending). B (descending) and a (descending). For
each triple (A,B, a) the table presents critical values for one-sided tests of the hypothesis that the true proportion
corresponding to a/A is greater than the true proportion corresponding to b/B. Significance levels of 0.05, 0.025,
and 0.01 are considered. For A ≤ 15 all values where critical values exist are tabulated. For each significance
level two columns give (1) the nominal critical value for b (i.e., reject the null hypothesis if the observed b is
less than or equal to the table entry) and (2) the p-value corresponding to the critical value (this is less than the
nominal significance level in most cases due to the discreteness of the distribution).

A B a b p b p b p A B a b p b p b p

3 3 3 0 .050 — — — — 8 7 5 0 .019 0 .019 — —

4 4 4 0 .014 0 .014 — — 8 6 8 2 .015 2 .015 1 .003

4 3 4 0 .029 — — — — 8 6 7 1 .016 1 .016 0 .002

5 5 5 1 .024 1 .024 0 .004 8 6 6 0 .009 0 .009 0 .009

5 5 4 0 .024 0 .024 — — 8 6 5 0 .028 — — — —

5 4 5 1 .048 0 .008 0 .008 8 5 8 2 .035 1 .007 1 .007

5 4 4 0 .040 — — — — 8 5 7 1 .032 0 .005 0 .005

5 3 5 0 .018 0 .018 — — 8 5 6 0 .016 0 .016 — —

5 2 5 0 .048 — — — — 8 5 5 0 .044 — — — —

6 6 6 2 .030 1 .008 1 .008 8 4 8 1 .018 1 .018 0 .002

6 6 5 1 .040 0 .008 0 .008 8 4 7 0 .010 0 .010 — —

6 6 4 0 .030 — — — — 8 4 6 0 .030 — — — —

6 5 6 1 .015 1 .015 0 .002 8 3 8 0 .006 0 .006 0 .006

6 5 5 0 .013 0 .013 — — 8 3 7 0 .024 0 .024 — —

6 5 4 0 .045 — — — — 8 2 8 0 .022 0 .022 — —

6 4 6 1 .033 0 .005 0 .005 9 9 9 5 .041 4 .015 3 .005

6 4 5 0 .024 0 .024 — — 9 9 8 3 .025 3 .025 2 .008

6 3 6 0 .012 0 .012 — — 9 9 7 2 .028 1 .008 1 .008

6 3 5 0 .048 — — — — 9 9 6 1 .025 1 .025 0 .005

6 2 6 0 .036 — — — — 9 9 5 0 .015 0 .015 — —

7 7 7 3 .035 2 .010 1 .002 9 9 4 0 .041 — — — —

7 7 6 1 .015 1 .015 0 .002 9 8 9 4 .029 3 .009 3 .009

7 7 5 0 .010 0 .010 — — 9 8 8 3 .043 2 .013 1 .003

7 7 4 0 .035 — — — — 9 8 7 2 .044 1 .012 0 .002

7 6 7 2 .021 2 .021 1 .005 9 8 6 1 .036 0 .007 0 .007

7 6 6 1 .025 0 .004 0 .004 9 8 5 0 .020 0 .020 — —

7 6 5 0 .016 0 .016 — — 9 7 9 3 .019 3 .019 2 .005

7 6 4 0 .049 — — — — 9 7 8 2 .024 2 .024 1 .006

7 5 7 2 .045 1 .010 0 .001 9 7 7 1 .020 1 .020 0 .003

7 5 6 1 .045 0 .008 0 .008 9 7 6 0 .010 0 .010 — —

7 5 5 0 .027 — — — — 9 7 5 0 .029 — — — —

7 4 7 1 .024 1 .024 0 .003 9 6 9 3 .044 2 .011 1 .002

7 4 6 0 .015 0 .015 — — 9 6 8 2 .047 1 .011 0 .001

7 4 5 0 .045 — — — — 9 6 7 1 .035 0 .006 0 .006

7 3 7 0 .008 0 .008 0 .008 9 6 6 0 .017 0 .017 — —

7 3 6 0 .033 — — — — 9 6 5 0 .042 — — — —

7 2 7 0 .028 — — — — 9 5 9 2 .027 1 .005 1 .005

8 8 8 4 .038 3 .013 2 .003 9 5 8 1 .023 1 .023 0 .003

8 8 7 2 .020 2 .020 1 .005 9 5 7 0 .010 0 .010 — —

8 8 6 1 .020 1 .020 0 .003 9 5 6 0 .028 — — — —

8 8 5 0 .013 0 .013 — — 9 4 9 1 .014 1 .014 0 .001

8 8 4 0 .038 — — — — 9 4 8 0 .007 0 .007 0 .007

8 7 8 3 .026 2 .007 2 .007 9 4 7 0 .021 0 .021 — —

8 7 7 2 .035 1 .009 1 .009 9 4 6 0 .049 — — — —

8 7 6 1 .032 0 .006 0 .006 9 3 9 1 .045 0 .005 0 .005

(continued overleaf)
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Table A.7 (continued)

A B a b p b p b p A B a b p b p b p

9 3 8 0 .018 0 .018 — — 11 11 8 3 .043 2 .015 1 .004

9 3 7 0 .045 — — — — 11 11 7 2 .040 1 .012 0 .002

9 2 9 0 .018 0 .018 — — 11 11 6 1 .032 0 .006 0 .006

10 10 10 6 .043 5 .016 4 .005 11 11 5 0 .018 0 .018 — —

10 10 9 4 .029 3 .010 3 .010 11 11 4 0 .045 — — — —

10 10 8 3 .035 2 .012 1 .003 11 10 11 6 .035 5 .012 4 .004

10 10 7 2 .035 1 .010 1 .010 11 10 10 4 .021 4 .021 3 .007

10 10 6 1 .029 0 .005 0 .005 11 10 9 3 .024 3 .024 2 .007

10 10 5 0 .016 0 .016 — — 11 10 8 2 .023 2 .023 1 .006

10 10 4 0 .043 — — — — 11 10 7 1 .017 1 .017 0 .003

10 9 10 5 .033 4 .011 3 .003 11 10 6 1 .043 0 .009 0 .009

10 9 9 4 .050 3 .017 2 .005 11 10 5 0 .023 0 .023 — —

10 9 8 2 .019 2 .019 1 .004 11 9 11 5 .026 4 .008 4 .008

10 9 7 1 .015 1 .015 0 .002 11 9 10 4 .038 3 .012 2 .003

10 9 6 1 .040 0 .008 0 .008 11 9 9 3 .040 2 .012 1 .003

10 9 5 0 .022 0 .022 — — 11 9 8 2 .035 1 .009 1 .009

10 8 10 4 .023 4 .023 3 .007 11 9 7 1 .025 1 .025 0 .004

10 8 9 3 .032 2 .009 2 .009 11 9 6 0 .012 0 .012 — —

10 8 8 2 .031 1 .008 1 .008 11 9 5 0 .030 — — — —

10 8 7 1 .023 1 .023 0 .004 11 8 11 4 .018 4 .018 3 .005

10 8 6 0 .011 0 .011 — — 11 8 10 3 .024 3 .024 2 .006

10 8 5 0 .029 — — — — 11 8 9 2 .022 2 .022 1 .005

10 7 10 3 .015 3 .015 2 .003 11 8 8 1 .015 1 .015 0 .002

10 7 9 2 .018 2 .018 1 .004 11 8 7 1 .037 0 .007 0 .007

10 7 8 1 .013 1 .013 0 .002 11 8 6 0 .017 0 .017 — —

10 7 7 1 .036 0 .006 0 .006 11 8 5 0 .040 — — — —

10 7 6 0 .017 0 .017 — — 11 7 11 4 .043 3 .011 2 .002

10 7 5 0 .041 — — — — 11 7 10 3 .047 2 .013 1 .002

10 6 10 3 .036 2 .008 2 .008 11 7 9 2 .039 1 .009 1 .009

10 6 9 2 .036 1 .008 1 .008 11 7 8 1 .025 1 .025 0 .004

10 6 8 1 .024 1 .024 0 .003 11 7 7 0 .010 0 .010 — —

10 6 7 0 .010 0 .010 — — 11 7 6 0 .025 0 .025 — —

10 6 6 0 .026 — — — — 11 6 11 3 .029 2 .006 2 .006

10 5 10 2 .022 2 .022 1 .004 11 6 10 2 .028 1 .005 1 .005

10 5 9 1 .017 1 .017 0 .002 11 6 9 1 .018 1 .018 0 .002

10 5 8 1 .047 0 .007 0 .007 11 6 8 1 .043 0 .007 0 .007

10 5 7 0 .019 0 .019 — — 11 6 7 0 .017 0 .017 — —

10 5 6 0 .042 — — — — 11 6 6 0 .037 — — — —

10 4 10 1 .011 1 .011 0 .001 11 5 11 2 .018 2 .018 1 .003

10 4 9 1 .041 0 .005 0 .005 11 5 10 1 .013 1 .013 0 .001

10 4 8 0 .015 0 .015 — — 11 5 9 1 .036 0 .005 0 .005

10 4 7 0 .035 — — — — 11 5 8 0 .013 0 .013 — —

10 3 10 1 .038 0 .003 0 .003 11 5 7 0 .029 — — — —

10 3 9 0 .014 0 .014 — — 11 4 11 1 .009 1 .009 1 .009

10 3 8 0 .035 — — — — 11 4 10 1 .033 0 .004 0 .004

10 2 10 0 .015 0 .015 — — 11 4 9 0 .011 0 .011 — —

10 2 9 0 .045 — — — — 11 4 8 0 .026 — — — —

11 11 11 7 .045 6 .018 5 .006 11 3 11 1 .033 0 .003 0 .003

11 11 10 5 .032 4 .012 3 .004 11 3 10 0 .011 0 .011 — —

11 11 9 4 .040 3 .015 2 .004 11 3 9 0 .027 — — — —
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Table A.7 (continued)

A B a b p b p b p A B a b p b p b p

11 2 11 0 .013 0 .013 — — 12 6 11 2 .022 2 .022 1 .004

11 2 10 0 .038 — — — — 12 6 10 1 .013 1 .013 0 .002

12 12 12 8 .047 7 .019 6 .007 12 6 9 1 .032 0 .005 0 .005

12 12 11 6 .034 5 .014 4 .005 12 6 8 0 .011 0 .011 — —

12 12 10 5 .045 4 .018 3 .006 12 6 7 0 .025 0 .025 — —

12 12 9 4 .050 3 .020 2 .006 12 6 6 0 .050 — — — —

12 12 8 3 .050 2 .018 1 .005 12 5 12 2 .015 2 .015 1 .002

12 12 7 2 .045 1 .014 0 .002 12 5 11 1 .010 1 .010 1 .010

12 12 6 1 .034 0 .007 0 .007 12 5 10 1 .028 0 .003 0 .003

12 12 5 0 .019 0 .019 — — 12 5 9 0 .009 0 .009 0 .009

12 12 4 0 .047 — — — — 12 5 8 0 .020 0 .020 — —

12 11 12 7 .037 6 .014 5 .005 12 5 7 0 .041 — — — —

12 11 11 5 .024 5 .024 4 .008 12 4 12 2 .050 1 .007 1 .007

12 11 10 4 .029 3 .010 2 .003 12 4 11 1 .027 0 .003 0 .003

12 11 9 3 .030 2 .009 2 .009 12 4 10 0 .008 0 .008 0 .008

12 11 8 2 .026 1 .007 1 .007 12 4 9 0 .019 0 .019 — —

12 11 7 1 .019 1 .019 0 .003 12 4 8 0 .038 — — — —

12 11 6 1 .045 0 .009 0 .009 12 3 12 1 .029 0 .002 0 .002

12 11 5 0 .024 0 .024 — — 12 3 11 0 .009 0 .009 0 .009

12 10 12 6 .029 5 .010 5 .010 12 3 10 0 .022 0 .022 — —

12 10 11 5 .043 4 .015 3 .005 12 3 9 0 .044 — — — —

12 10 10 4 .048 3 .017 2 .005 12 2 12 0 .011 0 .011 — —

12 10 9 3 .046 2 .015 1 .004 12 2 11 0 .033 — — — —

12 10 8 2 .038 1 .010 0 .002 13 13 13 9 .048 8 .020 7 .007

12 10 7 1 .026 0 .005 0 .005 13 13 12 7 .037 6 .015 5 .006

12 10 6 0 .012 0 .012 — — 13 13 11 6 .048 5 .021 4 .008

12 10 5 0 .030 — — — — 13 13 10 4 .024 4 .024 3 .008

12 9 12 5 .021 5 .021 4 .006 13 13 9 3 .024 3 .024 2 .008

12 9 11 4 .029 3 .009 3 .009 13 13 8 2 .021 2 .021 1 .006

12 9 10 3 .029 2 .008 2 .008 13 13 7 2 .048 1 .015 0 .003

12 9 9 2 .024 2 .024 1 .006 13 13 6 1 .037 0 .007 0 .007

12 9 8 1 .016 1 .016 0 .002 13 13 5 0 .020 0 .020 — —

12 9 7 1 .037 0 .007 0 .007 13 13 4 0 .048 — — — —

12 9 6 0 .017 0 .017 — — 13 12 13 8 .039 7 .015 6 .005

12 9 5 0 .039 — — — — 13 12 12 6 .027 5 .010 5 .010

12 8 12 5 .049 4 .014 3 .004 13 12 11 5 .033 4 .013 3 .004

12 8 11 3 .018 3 .018 2 .004 13 12 10 4 .036 3 .013 2 .004

12 8 10 2 .015 2 .015 1 .003 13 12 9 3 .034 2 .011 1 .003

12 8 9 2 .040 1 .010 1 .010 13 12 8 2 .029 1 .008 1 .008

12 8 8 1 .025 1 .025 0 .004 13 12 7 1 .020 1 .020 0 .004

12 8 7 0 .010 0 .010 — — 13 12 6 1 .046 0 .010 0 .010

12 8 6 0 .024 0 .024 — — 13 12 5 0 .024 0 .024 — —

12 7 12 4 .036 3 .009 3 .009 13 11 13 7 .031 6 .011 5 .003

12 7 11 3 .038 2 .010 2 .010 13 11 12 6 .048 5 .018 4 .006

12 7 10 2 .029 1 .006 1 .006 13 11 11 4 .021 4 .021 3 .007

12 7 9 1 .017 1 .017 0 .002 13 11 10 3 .021 3 .021 2 .006

12 7 8 1 .040 0 .007 0 .007 13 11 9 3 .050 2 .017 1 .004

12 7 7 0 .016 0 .016 — — 13 11 8 2 .040 1 .011 0 .002

12 7 6 0 .034 — — — — 13 11 7 1 .027 0 .005 0 .005

12 6 12 3 .025 3 .025 2 .005 13 11 6 0 .013 0 .013 — —

(continued overleaf)
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Table A.7 (continued)

A B a b p b p b p A B a b p b p b p

13 11 5 0 .030 — — — — 13 4 11 0 .006 0 .006 0 .006

13 10 13 6 .024 6 .024 5 .007 13 4 10 0 .015 0 .015 — —

13 10 12 5 .035 4 .012 3 .003 13 4 9 0 .029 — — — —

13 10 11 4 .037 3 .012 2 .003 13 3 13 1 .025 1 .025 0 .002

13 10 10 3 .033 2 .010 1 .002 13 3 12 0 .007 0 .007 0 .007

13 10 9 2 .026 1 .006 1 .006 13 3 11 0 .018 0 .018 — —

13 10 8 1 .017 1 .017 0 .003 13 3 10 0 .036 — — — —

13 10 7 1 .038 0 .007 0 .007 13 2 13 0 .010 0 .010 0 .010

13 10 6 0 .017 0 .017 — — 13 2 12 0 .029 — — — —

13 10 5 0 .038 — — — — 14 14 14 10 .049 9 .020 8 .008

13 9 13 5 .017 5 .017 4 .005 14 14 13 8 .038 7 .016 6 .006

13 9 12 4 .023 4 .023 3 .007 14 14 12 6 .023 6 .023 5 .009

13 9 11 3 .022 3 .022 2 .006 14 14 11 5 .027 4 .011 3 .004

13 9 10 2 .017 2 .017 1 .004 14 14 10 4 .028 3 .011 2 .003

13 9 9 2 .040 1 .010 0 .001 14 14 9 3 .027 2 .009 2 .009

13 9 8 1 .025 1 .025 0 .004 14 14 8 2 .023 2 .023 1 .006

13 9 7 0 .010 0 .010 — — 14 14 7 1 .016 1 .016 0 .003

13 9 6 0 .023 0 .023 — — 14 14 6 1 .038 0 .008 0 .008

13 9 5 0 .049 — — — — 14 14 5 0 .020 0 .020 — —

13 8 13 5 .042 4 .012 3 .003 14 14 4 0 .049 — — — —

13 8 12 4 .047 3 .014 2 .003 14 13 14 9 .041 8 .016 7 .006

13 8 11 3 .041 2 .011 1 .002 14 13 13 7 .029 6 .011 5 .004

13 8 10 2 .029 1 .007 1 .007 14 13 12 6 .037 5 .015 4 .005

13 8 9 1 .017 1 .017 0 .002 14 13 11 5 .041 4 .017 3 .006

13 8 8 1 .037 0 .006 0 .006 14 13 10 4 .041 3 .016 2 .005

13 8 7 0 .015 0 .015 — — 14 13 9 3 .038 2 .013 1 .003

13 8 6 0 .032 — — — — 14 13 8 2 .031 1 .009 1 .009

13 7 13 4 .031 3 .007 3 .007 14 13 7 1 .021 1 .021 0 .004

13 7 12 3 .031 2 .007 2 .007 14 13 6 1 .048 0 .010 — —

13 7 11 2 .022 2 .022 1 .004 14 13 5 0 .025 0 .025 — —

13 7 10 1 .012 1 .012 0 .002 14 12 14 8 .033 7 .012 6 .004

13 7 9 1 .029 0 .004 0 .004 14 12 13 6 .021 6 .021 5 .007

13 7 8 0 .010 0 .010 — — 14 12 12 5 .025 4 .009 4 .009

13 7 7 0 .022 0 .022 — — 14 12 11 4 .026 3 .009 3 .009

13 7 6 0 .044 — — — — 14 12 10 3 .024 3 .024 2 .007

13 6 13 3 .021 3 .021 2 .004 14 12 9 2 .019 2 .019 1 .005

13 6 12 2 .017 2 .017 1 .003 14 12 8 2 .042 1 .012 0 .002

13 6 11 2 .046 1 .010 1 .010 14 12 7 1 .028 0 .005 0 .005

13 6 10 1 .024 1 .024 0 .003 14 12 6 0 .013 0 .013 — —

13 6 9 1 .050 0 .008 0 .008 14 12 5 0 .030 — — — —

13 6 8 0 .017 0 .017 — — 14 11 14 7 .026 6 .009 6 .009

13 6 7 0 .034 — — — — 14 11 13 6 .039 5 .014 4 .004

13 5 13 2 .012 2 .012 1 .002 14 11 12 5 .043 4 .016 3 .005

13 5 12 2 .044 1 .008 1 .008 14 11 11 4 .042 3 .015 2 .004

13 5 11 1 .022 1 .022 0 .002 14 11 10 3 .036 2 .011 1 .003

13 5 10 1 .047 0 .007 0 .007 14 11 9 2 .027 1 .007 1 .007

13 5 9 0 .015 0 .015 — — 14 11 8 1 .017 1 .017 0 .003

13 5 8 0 .029 — — — — 14 11 7 1 .038 0 .007 0 .007

13 4 13 2 .044 1 .006 1 .006 14 11 6 0 .017 0 .017 — —

13 4 12 1 .022 1 .022 0 .002 14 11 5 0 .038 — — — —
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Table A.7 (continued)

A B a b p b p b p A B a b p b p b p

14 10 14 6 .020 6 .020 5 .006 14 5 8 0 .040 — — — —

14 10 13 5 .028 4 .009 4 .009 14 4 14 2 .039 1 .005 1 .005

14 10 12 4 .028 3 .009 3 .009 14 4 13 1 .019 1 .019 0 .002

14 10 11 3 .024 3 .024 2 .007 14 4 12 1 .044 0 .005 0 .005

14 10 10 2 .018 2 .018 1 .004 14 4 11 0 .011 0 .011 — —

14 10 9 2 .040 1 .011 0 .002 14 4 10 0 .023 0 .023 — —

14 10 8 1 .024 1 .024 0 .004 14 4 9 0 .041 — — — —

14 10 7 0 .010 0 .010 0 .010 14 3 14 1 .022 1 .022 0 .001

14 10 6 0 .022 0 .022 — — 14 3 13 0 .006 0 .006 0 .006

14 10 5 0 .047 — — — — 14 3 12 0 .015 0 .015 — —

14 9 14 6 .047 5 .014 4 .004 14 3 11 0 .029 — — — —

14 9 13 4 .018 4 .018 3 .005 14 2 14 0 .008 0 .008 0 .008

14 9 12 3 .017 3 .017 2 .004 14 2 13 0 .025 0 .025 — —

14 9 11 3 .042 2 .012 1 .002 14 2 12 0 .050 — — — —

14 9 10 2 .029 1 .007 1 .007 15 15 15 11 .050 10 .021 9 .008

14 9 9 1 .017 1 .017 0 .002 15 15 14 9 .040 8 .018 7 .007

14 9 8 1 .036 0 .006 0 .006 15 15 13 7 .025 6 .010 5 .004

14 9 7 0 .014 0 .014 — — 15 15 12 6 .030 5 .013 4 .005

14 9 6 0 .030 — — — — 15 15 11 5 .033 4 .013 3 .005

14 8 14 5 .036 4 .010 4 .010 15 15 10 4 .033 3 .013 2 .004

14 8 13 4 .039 3 .011 2 .002 15 15 9 3 .030 2 .010 1 .003

14 8 12 3 .032 2 .008 2 .008 15 15 8 2 .025 1 .007 1 .007

14 8 11 2 .022 2 .022 1 .005 15 15 7 1 .018 1 .018 0 .003

14 8 10 2 .048 1 .012 0 .002 15 15 6 1 .040 0 .008 0 .008

14 8 9 1 .026 0 .004 0 .004 15 15 5 0 .021 0 .021 — —

14 8 8 0 .009 0 .009 0 .009 15 15 4 0 .050 — — — —

14 8 7 0 .020 0 .020 — — 15 14 15 10 .042 9 .017 8 .006

14 8 6 0 .040 — — — — 15 14 14 8 .031 7 .013 6 .005

14 7 14 4 .026 3 .006 3 .006 15 14 13 7 .041 6 .017 5 .007

14 7 13 3 .025 2 .006 2 .006 15 14 12 6 .046 5 .020 4 .007

14 7 12 2 .017 2 .017 1 .003 15 14 11 5 .048 4 .020 3 .007

14 7 11 2 .041 1 .009 1 .009 15 14 10 4 .046 3 .018 2 .006

14 7 10 1 .021 1 .021 0 .003 15 14 9 3 .041 2 .014 1 .004

14 7 9 1 .043 0 .007 0 .007 15 14 8 2 .033 1 .009 1 .009

14 7 8 0 .015 0 .015 — — 15 14 7 1 .022 1 .022 0 .004

14 7 7 0 .030 — — — — 15 14 6 1 .049 0 .011 — —

14 6 14 3 .018 3 .018 2 .003 15 14 5 0 .025 — — — —

14 6 13 2 .014 2 .014 1 .002 15 13 15 9 .035 8 .013 7 .005

14 6 12 2 .037 1 .007 1 .007 15 13 14 7 .023 7 .023 6 .009

14 6 11 1 .018 1 .018 0 .002 15 13 13 6 .029 5 .011 4 .004

14 6 10 1 .038 0 .005 0 .005 15 13 12 5 .031 4 .012 3 .004

14 6 9 0 .012 0 .012 — — 15 13 11 4 .030 3 .011 2 .003

14 6 8 0 .024 0 .024 — — 15 13 10 3 .026 2 .008 2 .008

14 6 7 0 .044 — — — — 15 13 9 2 .020 2 .020 1 .005

14 5 14 2 .010 2 .010 1 .001 15 13 8 2 .043 1 .013 0 .002

14 5 13 2 .037 1 .006 1 .006 15 13 7 1 .029 0 .005 0 .005

14 5 12 1 .017 1 .017 0 .002 15 13 6 0 .013 0 .013 — —

14 5 11 1 .038 0 .005 0 .005 15 13 5 0 .031 — — — —

14 5 10 0 .011 0 .011 — — 15 12 15 8 .028 7 .010 7 .010

14 5 9 0 .022 0 .022 — — 15 12 14 7 .043 6 .016 5 .006

(continued overleaf)
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Table A.7 (continued)

A B a b p b p b p A B a b p b p b p

15 12 13 6 .049 5 .019 4 .007 15 8 10 1 .019 1 .019 0 .003

15 12 12 5 .049 4 .019 3 .006 15 8 9 1 .038 0 .006 0 .006

15 12 11 4 .045 3 .017 2 .005 15 8 8 0 .013 0 .013 — —

15 12 10 3 .038 2 .012 1 .003 15 8 7 0 .026 — — — —

15 12 9 2 .028 1 .007 1 .007 15 8 6 0 .050 — — — —

15 12 8 1 .018 1 .018 0 .003 15 7 15 4 .023 4 .023 3 .005

15 12 7 1 .038 0 .007 0 .007 15 7 14 3 .021 3 .021 2 .004

15 12 6 0 .017 0 .017 — — 15 7 13 2 .014 2 .014 1 .002

15 12 5 0 .037 — — — — 15 7 12 2 .032 1 .007 1 .007

15 11 15 7 .022 7 .022 6 .007 15 7 11 1 .015 1 .015 0 .002

15 11 14 6 .032 5 .011 4 .003 15 7 10 1 .032 0 .005 0 .005

15 11 13 5 .034 4 .012 3 .003 15 7 9 0 .010 0 .010 — —

15 11 12 4 .032 3 .010 2 .003 15 7 8 0 .020 0 .020 — —

15 11 11 3 .026 2 .008 2 .008 15 7 7 0 .038 — — — —

15 11 10 2 .019 2 .019 1 .004 15 6 15 3 .015 3 .015 2 .003

15 11 9 2 .040 1 .011 0 .002 15 6 14 2 .011 2 .011 1 .002

15 11 8 1 .024 1 .024 0 .004 15 6 13 2 .031 1 .006 1 .006

15 11 7 1 .049 0 .010 0 .010 15 6 12 1 .014 1 .014 0 .002

15 11 6 0 .022 0 .022 — — 15 6 11 1 .029 0 .004 0 .004

15 11 5 0 .046 — — — — 15 6 10 0 .009 0 .009 0 .009

15 10 15 6 .017 6 .017 5 .005 15 6 9 0 .017 0 .017 — —

15 10 14 5 .023 5 .023 4 .007 15 6 8 0 .032 — — — —

15 10 13 4 .022 4 .022 3 .007 15 5 15 2 .009 2 .009 2 .009

15 10 12 3 .018 3 .018 2 .005 15 5 14 2 .032 1 .005 1 .005

15 10 11 3 .042 2 .013 1 .003 15 5 13 1 .014 1 .014 0 .001

15 10 10 2 .029 1 .007 1 .007 15 5 12 1 .031 0 .004 0 .004

15 10 9 1 .016 1 .016 0 .002 15 5 11 0 .008 0 .008 0 .008

15 10 8 1 .034 0 .006 0 .006 15 5 10 0 .016 0 .016 — —

15 10 7 0 .013 0 .013 — — 15 5 9 0 .030 — — — —

15 10 6 0 .028 — — — — 15 4 15 2 .035 1 .004 1 .004

15 9 15 6 .042 5 .012 4 .003 15 4 14 1 .016 1 .016 0 .001

15 9 14 5 .047 4 .015 3 .004 15 4 13 1 .037 0 .004 0 .004

15 9 13 4 .042 3 .013 2 .003 15 4 12 0 .009 0 .009 0 .009

15 9 12 3 .032 2 .009 2 .009 15 4 11 0 .018 0 .018 — —

15 9 11 2 .021 2 .021 1 .005 15 4 10 0 .033 — — — —

15 9 10 2 .045 1 .011 0 .002 15 3 15 1 .020 1 .020 0 .001

15 9 9 1 .024 1 .024 0 .004 15 3 14 0 .005 0 .005 0 .005

15 9 8 1 .048 0 .009 0 .009 15 3 13 0 .012 0 .012 — —

15 9 7 0 .019 0 .019 — — 15 3 12 0 .025 0 .025 — —

15 9 6 0 .037 — — — — 15 3 11 0 .043 — — — —

15 8 15 5 .032 4 .008 4 .008 15 2 15 0 .007 0 .007 0 .007

15 8 14 4 .033 3 .009 3 .009 15 2 14 0 .022 0 .022 — —

15 8 13 3 .026 2 .006 2 .006 15 2 13 0 .044 — — — —

15 8 12 2 .017 2 .017 1 .003

15 8 11 2 .037 1 .008 1 .008 23 10 21 5 .016 5 .016 4 .004

32 13 32 10 .020 10 .020 9 .005
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Table A.8 Sample Sizes for Comparing Two Proportions with a One-Sided Fisher’s Exact Test in

2 × 2 Tables
Let P

A

and P

B

be the true proportions in two populations. The sample size, N , for two equally sized groups is tabulated

for one-sided significance level α and probability β of not rejecting the null hypothesis. Each rectangular portion of

the table contains sample sizes for two pairs of α and β values, one above the diagonal and one below it. The arcsine

approximation was used to estimate N .

P

A

P

B

α = .01 and β = .01

.001 .01 .05 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80 .90

.001 — 2305 288 129 81 58 45 37 26 20 15 12 10 8

.01 1679 — 689 221 123 82 61 48 32 24 18 14 11 9

.05 210 502 — 1169 366 191 122 87 52 35 25 19 14 11

.10 94 161 852 — 1877 538 266 163 83 51 34 25 18 13

.15 59 90 266 1368 — 2489 683 327 132 73 46 31 22 15

.20 43 60 140 392 1814 — 3012 805 222 105 61 39 27 18

.25 33 44 89 194 498 2194 — 3447 417 158 83 50 32 21

.30 27 35 63 119 239 587 2511 — 981 256 116 64 39 25

.40 19 24 38 60 96 162 304 715 — 1068 267 116 61 34

.50 14 17 26 37 53 77 116 187 778 — 1068 256 105 51

.60 11 13 19 25 34 45 61 84 195 778 — 981 222 83

.70 9 10 14 18 23 29 37 47 84 187 715 — 805 163

.80 7 8 11 13 16 20 24 29 45 77 162 587 — 538

.90 6 6 8 10 11 13 15 18 25 37 60 119 392 —

α = .01 and β = .05 (or α = .05 and β = .01)

P

A

P

B

α = .025 and β = .05 (or α = .05 and β = .025)

.001 .01 .05 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80 .90

.001 — 1384 173 78 49 35 27 22 16 12 9 8 6 5

.01 1119 — 414 133 74 50 37 29 20 14 11 9 7 5

.05 140 335 — 702 220 115 74 52 31 21 15 12 9 7

.10 63 108 568 — 1127 323 160 98 50 31 21 15 11 8

.15 40 60 178 911 — 1494 410 197 79 44 28 19 13 9

.20 29 40 93 261 1208 — 1808 483 133 63 37 24 16 11

.25 22 30 60 129 332 1462 — 2069 251 95 50 30 20 13

.30 18 23 42 79 159 391 1673 — 589 154 70 39 24 15

.40 13 16 25 40 64 108 203 476 — 641 161 70 37 21

.50 10 12 17 25 35 51 77 125 519 — 641 154 63 31

.60 8 9 13 17 23 30 40 56 130 519 — 589 133 50

.70 6 7 9 12 15 19 25 32 56 125 476 — 483 98

.80 5 6 7 9 11 13 16 19 30 51 108 391 — 323

.90 4 4 6 7 8 9 10 12 17 25 40 79 261 —

α = .025 and β = .10 (or α = .10 and β = .025)

P

A

P

B

α = .05 and β = .05

.001 .01 .05 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80 .90

.001 — 1152 144 65 41 29 23 19 13 10 8 6 5 4

.01 912 — 345 111 62 41 31 24 16 12 9 7 6 5

.05 114 273 — 585 183 96 61 44 26 18 13 10 7 6

.10 51 88 463 — 939 269 133 82 42 26 17 13 9 7

.15 32 49 145 743 — 1245 342 164 66 36 23 16 11 8

.20 23 33 76 213 985 — 1506 403 111 53 31 20 14 9

.25 18 24 49 106 271 1192 — 1723 209 79 42 25 16 11

.30 15 19 35 65 130 319 1364 — 491 128 58 32 20 13

.40 11 13 21 33 52 88 165 388 — 534 134 58 31 17

.50 8 10 14 20 29 42 63 102 423 — 534 128 53 26

.60 6 7 10 14 18 24 33 46 106 423 — 491 111 42

.70 5 6 8 10 13 16 20 26 46 102 388 — 403 82

.80 4 5 6 7 9 11 13 16 24 42 88 319 — 269

.90 3 4 5 5 6 7 9 10 14 20 33 65 213 —

α = .05 and β = .10 (or α = .10 and β = .05)

(continued overleaf)
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Table A.8 (continued)

P

A

P

B

α = .10 and β = .10

.001 .01 .05 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80 .90

.001 — 700 88 40 25 18 14 11 8 6 5 4 3 3

.01 480 — 210 67 38 25 19 15 10 7 6 5 4 3

.05 60 144 — 355 111 58 37 27 16 11 8 6 5 4

.10 27 46 244 — 570 164 81 50 25 16 11 8 6 4

.15 17 26 77 391 — 756 208 100 40 22 14 10 7 5

.20 13 18 40 112 519 — 914 245 68 32 19 12 8 6

.25 10 13 26 56 143 628 — 1046 127 48 25 16 10 7

.30 8 10 18 34 69 168 718 — 298 78 35 20 12 8

.40 6 7 11 18 28 47 87 205 — 325 82 35 19 11

.50 4 5 8 11 15 22 33 54 223 — 325 78 32 16

.60 4 4 6 8 10 13 18 25 56 223 — 298 68 25

.70 3 3 4 6 7 9 11 14 25 54 205 — 245 50

.80 2 3 3 4 5 6 7 9 13 22 47 168 — 164

.90 2 2 3 3 4 4 5 6 8 11 18 34 112 —

α = .10 and β = .20 (or α = .20 and β = .10)

Table A.9 Critical Values for the Signed Ranks Test

For the given n, critical values for the signed ranks test are tabled corresponding to the upper one- and

two-sided significance levels in the column headings.

One-Sided α

.05 .025 .01 .005 .05 .025 .01 .005 .05 .025 .01 .005

Two-Sided α

.10 .05 .02 .01 .10 .05 .02 .01 .10 .05 .02 .01

n n n

5 1 — — — 20 60 52 43 37 35 214 195 174 160

6 2 1 — — 21 68 59 49 43 36 228 208 186 171

7 4 2 0 — 22 75 66 56 49 37 242 222 198 183

8 6 4 2 0 23 83 73 62 55 38 256 235 211 195

9 8 6 3 2 24 92 81 69 61 39 271 250 224 208

10 11 8 5 3 25 101 90 77 68 40 287 264 238 221

11 14 11 7 5 26 110 98 85 76 41 303 279 252 234

12 17 14 10 7 27 120 107 93 84 42 319 295 267 248

13 21 17 13 10 28 130 117 102 92 43 336 311 281 262

14 26 21 16 13 29 141 127 111 100 44 353 327 297 277

15 30 25 20 16 30 152 137 120 109 45 371 344 313 292

16 36 30 24 19 31 163 148 130 118 46 389 361 329 307

17 41 35 28 23 32 175 159 141 128 47 408 379 345 323

18 47 40 33 28 33 188 171 151 138 48 427 397 362 339

19 54 46 38 32 34 201 183 162 149 49 446 415 380 356

50 466 434 398 373



APPENDIX 835

Table A.10 Critical Values for the Mann–Whitney (Wilcoxon) Statistic
This table presents upper one- and two-sided critical values for the Mann–Whitney U statistic. Lower one-sided critical

values are computed from the upper one-sided critical value (at the same significance level) as (M ·N)−U . The Wilcoxon

two-sample statistic, W , is related to U by the equation W = (M · N) + (M · (M + 1)/2) − U , where W is the sum of

the ranks of the sample of size M in the combined sample.

One-Sided α

.10 .05 .025 .01 .005 .001 .10 .05 .025 .01 .005 .001

Two-Sided α

.20 .10 .05 .02 .01 .002 .20 .10 .05 .02 .01 .002

n m n m

3 2 6 — — — — — 10 1 10 — — — — —

3 3 8 9 — — — — 10 2 17 19 20 — — —

10 3 24 26 27 29 30 —

4 2 8 — — — — — 10 4 30 33 35 37 38 40

4 3 11 12 — — — — 10 5 37 39 42 44 46 49

4 4 13 15 16 — — — 10 6 43 46 49 52 54 57

10 7 49 53 56 59 61 65

5 2 9 10 — — — — 10 8 56 60 63 67 69 74

5 3 13 14 15 — — — 10 9 62 66 70 74 77 82

5 4 16 18 19 20 — — 10 10 68 73 77 81 84 90

5 5 20 21 23 24 25 —

11 1 11 — — — — —

6 2 11 12 — — — — 11 2 19 21 22 — — —

6 3 15 16 17 — — — 11 3 26 28 30 32 33 —

6 4 19 21 22 23 24 — 11 4 33 36 38 40 42 44

6 5 23 25 27 28 29 — 11 5 40 43 46 48 50 53

6 6 27 29 31 33 34 — 11 6 47 50 53 57 59 62

11 7 54 58 61 65 67 71

7 2 13 14 — — — — 11 8 61 65 69 73 75 80

7 3 17 19 20 21 — — 11 9 68 72 76 81 83 89

7 4 22 24 25 27 28 — 11 10 74 79 84 88 92 98

7 5 27 29 30 32 34 — 11 11 81 87 91 96 100 106

7 6 31 34 36 38 39 42

7 7 36 38 41 43 45 48 12 1 12 — — — — —

12 2 20 22 23 — — —

8 2 14 15 16 — — — 12 3 28 31 32 34 35 —

8 3 19 21 22 24 — — 12 4 36 39 41 43 45 48

8 4 25 27 28 30 31 — 12 5 43 47 49 52 54 58

8 5 30 32 34 36 38 40 12 6 51 55 58 61 63 68

8 6 35 38 40 42 44 47 12 7 58 63 66 70 72 77

8 7 40 43 46 49 50 54 12 8 66 70 74 79 81 87

8 8 45 49 51 55 57 60 12 9 73 78 82 87 90 96

12 10 81 86 91 96 99 106

9 1 9 — — — — — 12 11 88 94 99 104 108 115

9 2 16 17 18 — — — 12 12 95 102 107 113 117 124

9 3 22 23 25 26 27 —

9 4 27 30 32 33 35 — 13 1 13 — — — — —

9 5 33 36 38 40 42 44 13 2 22 24 25 26 — —

9 6 39 42 44 47 49 52 13 3 30 33 35 37 38 —

9 7 45 48 51 54 56 60 13 4 39 42 44 47 49 51

9 8 50 54 57 61 63 67 13 5 47 50 53 56 58 62

9 9 56 60 64 67 70 74 13 6 55 59 62 66 68 73

(continued overleaf)
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Table A.10 (continued)

One-Sided α

.10 .05 .025 .01 .005 .001 .10 .05 .025 .01 .005 .001

Two-Sided α

.20 .10 .05 .02 .01 .002 .20 .10 .05 .02 .01 .002

n m n m

13 7 63 67 71 75 78 83 16 12 125 132 139 146 151 161

13 8 71 76 80 84 87 93 16 13 134 143 149 157 163 173

13 9 79 84 89 94 97 103 16 14 144 153 160 168 174 185

13 10 87 93 97 103 106 113 16 15 154 163 170 179 185 197

13 11 95 101 106 112 116 123 16 16 163 173 181 190 196 208

13 12 103 109 115 121 125 133

13 13 111 118 124 130 135 143 17 1 17 — — — — —

17 2 28 31 32 34 — —

14 1 14 — — — — — 17 3 39 42 45 47 49 51

14 2 23 25 27 28 — — 17 4 50 53 57 60 62 66

14 3 32 35 37 40 41 — 17 5 60 65 68 72 75 80

14 4 41 45 47 50 52 55 17 6 71 76 80 84 87 93

14 5 50 54 57 60 63 67 17 7 81 86 91 96 100 106

14 6 59 63 67 71 73 78 17 8 91 97 102 108 112 119

14 7 67 72 76 81 83 89 17 9 101 108 114 120 124 132

14 8 76 81 86 90 94 100 17 10 112 119 125 132 136 145

14 9 85 90 95 100 104 111 17 11 122 130 136 143 148 158

14 10 93 99 104 110 114 121 17 12 132 140 147 155 160 170

14 11 102 108 114 120 124 132 17 13 142 151 158 166 172 183

14 12 110 117 123 130 134 143 17 14 153 161 169 178 184 195

14 13 119 126 132 139 144 153 17 15 163 172 180 189 195 208

14 14 127 135 141 149 154 164 17 16 173 183 191 201 207 220

17 17 183 193 202 212 219 232

15 1 15 — — — — —

15 2 25 27 29 30 — — 18 1 18 — — — — —

15 3 35 38 40 42 43 — 18 2 30 32 34 36 — —

15 4 44 48 50 53 55 59 18 3 41 45 47 50 52 54

15 5 53 57 61 64 67 71 18 4 52 56 60 63 66 69

15 6 63 67 71 75 78 83 18 5 63 68 72 76 79 84

15 7 72 77 81 86 89 95

15 8 81 87 91 96 100 106 18 6 74 80 84 89 92 98

15 9 90 96 101 107 111 118 18 7 85 91 96 102 105 112

15 10 99 106 111 117 121 129 18 8 96 103 108 114 118 126

15 11 108 115 121 128 132 141 18 9 107 114 120 126 131 139

15 12 117 125 131 138 143 152 18 10 118 125 132 139 143 153

15 13 127 134 141 148 153 163

15 14 136 144 151 159 164 174 18 11 129 137 143 151 156 166

15 15 145 153 161 169 174 185 18 12 139 148 155 163 169 179

18 13 150 159 167 175 181 192

16 1 16 — — — — — 18 14 161 170 178 187 194 206

16 2 27 29 31 32 — — 18 15 172 182 190 200 206 219

16 3 37 40 42 45 46 — 18 16 182 193 202 212 218 232

16 4 47 50 53 57 59 62 18 17 193 204 213 224 231 245

16 5 57 61 65 68 71 75 18 18 204 215 225 236 243 258

16 6 67 71 75 80 83 88

16 7 76 82 86 91 94 101 19 1 18 19 — — — —

16 8 86 92 97 102 106 113 19 2 31 34 36 37 38 —

16 9 96 102 107 113 117 125 19 3 43 47 50 53 54 57

16 10 106 112 118 124 129 137 19 4 55 59 63 67 69 73

16 11 115 122 129 135 140 149 19 5 67 72 76 80 83 88
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Table A.10 (continued)

One-Sided α

.10 .05 .025 .01 .005 .001 .10 .05 .025 .01 .005 .001

Two-Sided α

.20 .10 .05 .02 .01 .002 .20 .10 .05 .02 .01 .002

n m n m

19 6 78 84 89 94 97 103 20 4 58 62 66 70 72 77

19 7 90 96 101 107 111 118 20 5 70 75 80 84 87 93

19 8 101 108 114 120 124 132 20 6 82 88 93 98 102 108

19 9 113 120 126 133 138 146 20 7 94 101 106 112 116 124

19 10 124 132 138 146 151 161 20 8 106 113 119 126 130 139

19 11 136 144 151 159 164 175 20 9 118 126 132 140 144 154

19 12 147 156 163 172 177 188 20 10 130 138 145 153 158 168

19 13 158 167 175 184 190 202 20 11 142 151 158 167 172 183

19 14 169 179 188 197 203 216 20 12 154 163 171 180 186 198

19 15 181 191 200 210 216 230 20 13 166 176 184 193 200 212

19 16 192 203 212 222 230 244 20 14 178 188 197 207 213 226

19 17 203 214 224 235 242 257 20 15 190 200 210 220 227 241

19 18 214 226 236 248 255 271 20 16 201 213 222 233 241 255

19 19 226 238 248 260 268 284 20 17 213 225 235 247 254 270

20 1 19 20 — — — — 20 18 225 237 248 260 268 284

20 2 33 36 38 39 40 — 20 19 237 250 261 273 281 298

20 3 45 49 52 55 57 60 20 20 249 262 273 286 295 312

Table A.11 Critical Values of the Bivariate Normal Sample Correlation Coefficient ρ

When ρ = 0, the distribution is symmetric about zero; thus, one-sided lower critical values are −1 times the tabled

one-sided upper critical values. Column headings are also labeled for the corresponding two-sided significance level and

the percentage of the distribution less than the tabled value. N is the number of observations; the degrees of freedom is

two less than this.

Percent Percent

90 95 97.5 99 99.5 99.9 99.95 90 95 97.5 99 99.5 99.9 99.95

One-Sided α One-Sided α

.10 .05 .025 .01 .005 .001 .0005 .10 .05 .025 .01 .005 .001 .0005

Two-Sided α Two-Sided α

.20 .10 .05 .02 .01 .002 .001 .20 .10 .05 .02 .01 .002 .001

N N

3 .951 .988 .997 1.000 1.000 1.000 1.000 20 .299 .378 .444 .516 .562 .648 .679

4 .800 .900 .950 .980 .990 .998 .999 25 .265 .337 .396 .462 .505 .588 .618

5 .687 .805 .878 .934 .959 .986 .991 30 .241 .306 .361 .423 .463 .542 .570

6 .608 .729 .811 .882 .917 .963 .974

7 .551 .669 .755 .833 .875 .935 .951 35 .222 .283 .334 .392 .430 .505 .532

40 .207 .264 .312 .367 .403 .474 .501

8 .507 .622 .707 .789 .834 .905 .925 45 .195 .248 .294 .346 .380 .449 .474

9 .472 .582 .666 .750 .798 .875 .898 50 .184 .235 .279 .328 .361 .427 .451

10 .443 .549 .632 .716 .765 .847 .872 55 .176 .224 .266 .313 .345 .408 .432

11 .419 .522 .602 .685 .735 .820 .847

12 .398 .497 .576 .658 .708 .795 .823 60 .168 .214 .254 .300 .330 .391 .414

65 .161 .206 .244 .288 .317 .376 .399

13 .380 .476 .553 .634 .684 .772 .801 70 .155 .198 .235 .278 .306 .363 .385

14 .365 .458 .533 .612 .661 .750 .780 75 .150 .191 .227 .268 .296 .351 .372

15 .351 .441 .514 .592 .641 .730 .760 80 .145 .185 .220 .260 .286 .341 .361

16 .338 .426 .497 .574 .623 .711 .742

17 .327 .412 .482 .558 .606 .694 .725 85 .140 .180 .213 .252 .278 .331 .351

90 .136 .175 .207 .245 .270 .322 .341

18 .317 .400 .468 .543 .590 .678 .708 95 .133 .170 .202 .238 .263 .313 .332

19 .308 .389 .456 .529 .575 .662 .693 100 .129 .165 .197 .232 .257 .305 .324
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Table A.12 Critical Values for Spearman’s

Rank Correlation Coefficient

For a sample of size n, two-sided critical values are

given for significance levels .10, .05, and .01. Reject

the null hypothesis of independence if the absolute

value of the sample Spearman correlation coefficient

exceeds the tabled value.

Two-Sided α

.10 .05 .01

n

5 .900 — —

6 .829 .886 —

7 .714 .786 .929

8 .643 .738 .881

9 .600 .700 .833

10 .564 .648 .794

11 .536 .618 .818

12 .497 .591 .780

13 .475 .566 .745

14 .457 .545 .716

15 .441 .525 .689

16 .425 .507 .666

17 .412 .490 .645

18 .399 .476 .625

19 .388 .462 .608

20 .377 .450 .591

21 .368 .438 .576

22 .359 .428 .562

23 .351 .418 .549

24 .343 .409 .537

25 .336 .400 .526

26 .329 .392 .515

27 .323 .385 .505

28 .317 .377 .496

29 .311 .370 .487

30 .305 .364 .478
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Bias, 20

incomplete data, 729

vs precision, 104

Bias in RCTs and blinding, 776

Bills of Mortality, 151

Binary response, 151

Binomial, 151

confidence interval, 157

continuity correction, 156

hypothesis testing, 155

large sample confidence interval, 157

large sample test, 156

mean, 154

model, 153

normal approximation, 156

p-value, 156

probability, 154

significance test, 155

trial, 153

variance, 154

Binomial coefficient, 153

Binomial distribution:

and McNemar procedure, 180

and rate, 641

extra-binomial variation, 653

Binormamin rotation, 610

Bins, 44

Bioequivalence, 782

Biomedical ethics:

human experimentation, 766

principles of, 767

standards and declarations, 767

Biquartimin rotation, 610

Bivariate normal distribution, 318

equation for, 335

Blinding, 776

Block, 380

Blocking, 23

Bonferroni inequality, 534

Bonferroni method, 534

Bonferroni methods, improved, 535

Bootstrap, 274, 473

Box plot, 40, 41, 54, 58

Box-and-whiskers plot, 40

Box–Cox transformation, 399

Carcinogenicity, 781

CART algorithm, 566

Case-control study:

definition, 13

example, 4

frequency matching, 14

matched, 13

paired, 179

Categorical, data, 208, 200

Categorical variable, 29

cross-classified, 224

Causal effect, 447

average, 448

average under random sampling, 449

Causal inference:

and counterfactual outcome, 447

and potential outcomes, 447

concepts, 447

potential outcomes framework, 447

Causal models, 482

Causation:

vs association, 168

and correlation, 332

Censoring, 662, 668, 670

competing risks, 698
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independent, 671

informative, 673, 698, 776

noninformative, 671, 698

See also Survival analysis

Central limit theorem, 83–85

Change, and association, 329

Change analysis, 741

discrete variable, 743

Chebyshev’s inequality, 100

Chi-square, 226, 227, 232, 233

goodness of fit, 223

likelihood ratio, 226, 227, 229

multinomial model, 187

Chi-square distribution, 95

large sample, 190

mean and variance, 189

relation to F -distribution, 140, 141

relation to the normal distribution, 140, 141

Chi-square statistic, 211, 212

Chi-square test:

comparing two proportions, 160

contingency table, 160

continuity correction, 160

correction for continuity, 193

Chi-square test for trend, 214–216

Child Asthma Management Program (CAMP), 729

Cigarette smoke, 152

Classes, prediction, 550, 551

Classification, 550, 551, 556

black-box, 563

neural network, 566

noiseless, 551

underlying continuous variable, 571

Classification tree, 564–566

CART algorithm, 566

rpart software, 566

Classification variable, 357

ANOVA, 370

Clinical study, definition, 12

Clinical trial, 766. See also Randomized trial

Cluster analysis, 550, 570, 571

Clustered data, correlation, 745

Coefficient of correlation, 314

Coefficient of variation, 57, 193

Coefficients, in linear equation, 428

Cohort, 729

definition, 12

Cohort scale, 729

Collinear, 437

Collinearity, 434

Column percent, 213

Combining 2 x 2 tables, 170

Communality, 602

Comparative experiment:

definition, 11

similarity, 20

Comparative study:

identical twins, 21

matched pairs, 21

randomization, 21

similarity, 20

validity, 21

Comparing two proportions, 157

chi-square test, 160

confidence interval, 159

Fisher’s exact test, 157

flow chart for sample size, 162

graph for sample size, 163

large sample test, 159

sample size, 161

standardized difference, 162

Comparison group, 4

Competing risks, 698

Competing treatments, 798

Compound symmetry, 391

Concordance, 808

precision and accuracy, 808

Conditional independence, 226

Conditional normal distribution, 318

Conditional probability, 67, 177

Conditioning plot, 37, 38

Confidence interval, 86, 87

binomial, 157

for correlation, 322

for odds ratio, 169, 170

for odds ratio from matched pair study, 180

Poisson mean, 194

vs hypothesis test, 93–95

Confounder, 170

Confounding:

adjustment for measured confounders, 451

definition, 451

stratified adjustment, 451

Consent, informed, 767

Consistency check, 18

Constrained factor analysis, 611

Constraint, linear, 363

Constraints, linear, 49

Contingency table, 208, 210, 224, 225, 232, 233

association, 231

chi-square test, 160

multidimensional, 234

Contingency tables, simultaneous contrasts, 540

Continuity correction, 160

binomial, 156

Continuous, variable, 34

Contrast, 525

Contrasts:

orthogonal, 542

orthonormal, 542

Control, 4

definition, 13

historical, 22

Controlled trial, 766. See also Randomized trial

Coronary artery surgery, 787

Correction for continuity, 193
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Correlated data, 729

Correlation:

and attenuation, 326

and causality, 332

and covariance, 312

and regression, 306, 317

and t test, 323

as measure of agreement, 323

autoregressive, 745

banded, 745

clustered data, 745

coefficient, 314

compound symmetric, 745

confidence interval, 322

exchangeable, 745

Kendall rank, 327

longitudinal, 734, 736, 745, 754

matrix, 736

misapplications 330. See also Regression and

correlation

nonparametric, 327

Pearson product moment, 314

population, 316

sample, 314

sample size, 322

serial, 745

Spearman rank, 327

spurious, 330

test of significance, 318

variance inflation factor, 746

within-person, 731

working, 754, 759

Correlation coefficient, 219

Correlation structure in longitudinal data:

autoregressive correlation, 745

banded correlation, 754

exchangeable model, 745

Cost-complexity penalty, 564

Counterfactual outcome, and causal inference, 447

Counting data, 151

Covariance:

and correlation, 312

longitudinal, 734

matrix, 734

Covariance matrix in longitudinal analysis, 734

Covariate, 298

time-varying, 762

Covariates:

or covariate variables, 429

time-varying, 729

Covariate variables, 429

Cox model, 679

stratification in the Cox model, 693

time dependent covariates, 691

Cox proportional hazard regression analysis, 679

Cox proportional hazards model, 679–689

checking, 687, 688

for adjustment, 688, 689

interpretation, 686, 687

stratified, 693

time-dependent covariates, 691

time-varying covariates, 692

time-varying effects, 692, 693

Cox regression, 680

checking proportional hazards, 687

See also Cox proportional hazards model

Cox regression model, 684

Cramer’s V, 232

Critical value, 89

Cross-classified categorical variables,

224

Cross-product ratio, 165

Cross-sectional study, 166

definition, 14

Cross-validation, 561, 564–566

10-fold, 561

for classification tree, 564, 565

Crossed design, ANOVA, 392

Crossover experiment, definition, 12

Cumulative frequency polygon, 35

Cumulative normal distribution, 557

Cystic Fibrosis Foundation Registry, 730

Data collection, 16

clarity of questions, 17

consistency checks, 18

editing and verification, 18

forms, 16

missing forms, 19

pilot test, 17

pre-testing, 17

range checks, 18

validity checks, 18

Data handling:

backup, 19

coding, 19

computers, 19

Data management, 779

Data, multivariate, 35

Death rate:

age-specific, 671

instantaneous, 671

See also Hazard rate

Decile, 40

Declaration of Helsinki, 767

Degrees of freedom, 49, 50, 227

ANOVA, 373

Demographic data, sources, 653

Density, 70

Dependent variable, 298

Derived variable analysis, 737

average, 737

slope, 737, 739, 740

Descriptive statistics, 25, 39

Design, data collection forms, 16

Design of experiment, and predictor variable, 334
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Deviation:

average, 44–46

median absolute, 44–46

standard, 42, 46

Direct standardization, 642

Discrete variable, 208

Discriminant function, 557, 558

Discrimination, 550

linear, 552, 556, 557

linear vs logistic, 557, 558

logistic, 552–555

noiseless, 557

sample size, 715–720

underlying continuous variable, 571

Disease duration, 652

Disease, prevalence, 177

Distribution:

binomial, 154

bivariate normal, 335

chi-square, 95

frequency, 25

hypergeometric, 158

multivariate normal, 557

normal, 73

Poisson, 181

sampling, 82

Distribution-free, 255

asymptotically, 255

Double blind, example, 5

Double blind study, definition, 14

Double-blind trial, 773

Dropout, 650, 729, 747, 759

Drug development, 780

animal studies, 780, 781

phase I, 781

phase II, 781

phase III, 781

phase IV, 781

preclinical, 780

Drug development paradigm, 780

carcinogenicity testing, 781

mutagenicity studies, 781

noninferiority studies, 781

open label extensions, 781

phase I studies, 781

phase II studies, 781

phase III studies, 781

phase IV, or post-marketing, studies, 781

preclinical phase, 780

teratogenicity studies, 781

Dummy variable, 476

Duration, and incidence, prevalence, 652

Duration of disease, 652

Durbin–Watson statistic, 406

Editing data, 18

Element, 25

Ellipsoid of concentration, 587

Empirical, 30

Empirical cumulative distribution, 32, 34

(ECD), 32

Empirical cumulative distribution function, 54

Empirical frequency, 45

Empirical frequency distribution, 30, 47

(EFD), 30

Empirical relative frequency, 42, 45

Empirical relative frequency distribution, 31, 42

(ERFD), 31

Empirical standard errors in GEE, 756

Endpoint, definition, 12

Epidemiology, 22, 640

Error rate:

apparent, 560

in-sample, 560

internal, 560

prediction, 552

training, 560

Error, rounding, 49

Errors in both variables, 324

attenuation, 326

Estimate:

interval, 63

point, 63

Estimation, 62, 63

Huber–White, 337

maximum likelihood, 194, 333

minimum chi-square criterion, 191

robust regression, 337

sandwich, 337

Ethics, 15

animal welfare, 16

Helsinki Accord, 15

human experimentation, 766, 767

informed consent, 15

Nuremberg Code, 15

principles of, 767

Ethics of randomized clinical trials, 766

Event, 640

and Poisson model, 646

multiple events per subject, 652

Event data, 661

Event history analysis, 661

Expected, 211

Expected value, 71, 212

Experimental unit, definition, 12

Experiment, definition, 11

Explanatory variables, in multiple regression, 429

Exploratory analysis, 37

Exploratory data analysis:

group means over time, 731

variation among subjects, 733

Exponential survival, 690

constant hazard rate, 690

Exposure time, 648

Extra-binomial variation, 653

Extrapolation, beyond range, 331



856 SUBJECT INDEX

F -distribution, 132, 360

degrees of freedom, 132

relation to chi-square distribution, 140, 141

F -test, for partial multiple correlation coefficient,

444

F to enter, in stepwise multiple regression, 461

Factor analysis, 571, 599

analytic rotation, 609

binormamin rotation, 610

biquartimin rotation, 610

common part of the variance, 602

communality, 602

constrained factor analysis, 611

eigenvalues or roots of the correlation

matrix, 615

factor loadings, 602

factors, 599

general factor, 609

indeterminacy of the factor space, 608

interpretation of factors, 616

maxplane rotation, 610

number of factors, 614

oblimax rotation, 610

quartimax method of rotation, 609

residual correlation, 602

scree plot of variances, 615

unique or specific part of the variance, 602

uniqueness, 602

varimax method of rotation, 609

visual rotation, 609

Factor loadings, 602

Factorial design, ANOVA, 391

Factorial experiment, 23

Factorial study, 23

False discovery rate (FDR), 538

False negative, 551

False negative test, 176

False positive, 551

False positive test, 176

FDA, 792

FDR, 538

First principal component, 589

Fisher, R. A., F -distribution, 132

Fisher’s exact test, 157

Fisher’s linear discrimination, 557

Fisher Z-transformation, 321, 399, 400

Fitted value, 226

Fixed effect, 384, 385

ANOVA, 384–386

Fixed effects, 749

Force of mortality, 648, 671. See also Hazard rate

Forms:

design, 16

layout, 18

Frequency, 28–30

empirical, 31

relative, 31, 34

Frequency distribution, 25, 39, 53, 54

Friedman, ANOVA, 411

Friedman statistics, 383

Gaussian, 46

Gaussian distribution, 73. See also Normal

distribution

GEE, 754, 758

correlation model, 756, 757, 759

empirical standard errors, 756, 757, 759

model-based standard errors, 756, 759

robustness, 754

GEE with logistic regression, 756

Generalized estimating equations, 734, 754. See also
GEE

Generic drugs, 782

Geometric mean, 44, 46, 53, 59

Goodness-of-fit:

chi-square, 194, 223

in multiple regression, 468

normal probability plots, 468

residual plots, 468

Goodness-of-fit test:

cell probabilities known, 186

cell probabilities unknown, 190

large sample property, 191

minimum chi-square estimate, 191

Gram–Schmidt orthogonalizaton process,

543

Grand mean, 364

Graph, 33, 36

histogram, 33

Graphics, color, 48

Graunt, Bills of Mortality, 151

Greenwood’s formula, 662, 668

for Kaplan–Meier estimate, 674

Hazard rate, 648, 671

actuarial, 672

and dropout, 650

and Poisson model, 651

comparison of two rates, 651

definition in actuarial life tables, 672

estimate of, 649

interval, 672

mathematical details, 695

standard error of, 672

standard error of estimate, 650

Health Insurance Portability and Accountability Act

(HIPAA), 767

Helsinki Accord, 15

Hemolytic disease, 153

Heterogeneity test, for odds ratios, 173

Heteroscedasticity, 134

Hierarchical design, ANOVA, 391, 392

Hierachical hypothesis, 225

Histogram, 33, 34, 54

Historical control, 22

HIVNET Informed Consent Substudy, 730
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Homogeneity of variance:

Cochran’s test, 402

Hartley’s test, 402

testing, 400

Homogeniety of variance, ANOVA, 397

Homogeneity test:

for odds ratios, 173

Poisson, 186

Homoscedasticity, 134

Huber–White standard error in regression, 337

Hypergeometric distribution, 158

Hypothesis:

alternative, 89

choosing null, 107

hierarchical, 225

null, 89

Hypothesis testing, 62, 63, 87–89

binomial, 155

vs confidence intervals, 93–95

Improved Bonferroni methods, 535

Imputation, 777

Imputation of missing data, 761

Incidence, 641

and duration, prevalence, 652

Incident events, 728

Identical twin study, 21

Independence, 64

assumption for ANOVA, 397

conditional, 226

row and column, 211

testing, 229

Independent censoring, 671

Independent random variables:

mean, 127

variance, 127

Independent variables, in multiple regression, 429

Indication for a drug, 782

Indicator variable, 476

Indirect standardization, 642, 645

Inference, 22

and random sampling, 22

Poisson, 184

regression, 301

Information:

predictive, 802

synthesis, 798

Information criterion:

Akaike, 561

See also AIC

Informative censoring, 776

Informed consent, 15, 767

Instantaneous death rate, 648

Instantaneous relative risk, 686

Institutional Review Boards, 767

Intent-to-treat analyses, 775

Intent-to-treat analysis, 775, 790

Interaction, 225

ANOVA, 370, 372, 374, 376

antagonistic, 374

logistic regression, 557

synergistic, 374

Intercept, 298, 429

sample, 430

Interim analysis, 779, 780

Interim analysis of a randomized clinical

trial, 779

Interquartile range, 40, 43, 46, 53

(IQR), 40

Interval, 52

Interval estimate, 63

Jack-knife procedures, 274, 471

Kaplan–Meier estimator, 672–674

standard error of, 674

Kaplan–Meier survival curve, 672

definition, 673

Greenwood’s formula, 675

Kappa, 217–219

Kendall rank correlation, 327, 328

adjustment for ties, 336

expected value, 328

KM estimate, 673. See also Kaplan–Meier estimator

Kolmogorov-Smirnov test, 265–268

is a rank test, 279

one sample, 279

one-sided, 279

Kruskal–Wallis, ANOVA, 411

Kruskal-Wallis statistic, 368, 369

Kurtosis, 51

Laboratory experiment, definition, 11

Laboratory test, 5

Large sample test, binomial, 156

Last observation carried forward (LOCF), 776

Least squares fit, 430

in multiple regression, 483

Least squares, principle, 298

Left truncation, 694

Leptokurtic, 51

Life table, 664, 671

probability density estimate and its standard error,

696

See also Survival curve

Likelihood principle, 544

Likelihood ratio, 223, 226, 227, 229

Linear combination of parameters, 525

Linear constraint, 49, 363

Linear discriminant, 557

Linear discrimination, 552, 557, 558

using linear regression software, 570

Linear equation, 428

Linearity, ANOVA, 397, 406

Linear mixed models, 748

Linear model, 357, 362
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Linear regression, 299

in multiple regression, 429

Location, 44, 46

Logarithm, 47, 55

natural, 47, 220

Logistic discrimination, 552

more than two groups, 569

Logistic model, 552, 558

Logistic regression, 552–555

maximum likelihood, 567–569

polytomous, 569, 570

Logit, 552, 554, 556

Log likelihood, 561, 562, 568

Log-linear model, 208, 220–229, 233, 234

Log rank test, 674–677

approximation, 676

mathematical details, 695, 696

stratified, 678, 679

Longitudinal data, 728, 762

derived variable analysis, 737

individual change, 729

missing data, 759

mixed models, 747

Longitudinal data analysis:

age, 729

AUC (area under the curve), 737

autoregressive correlation structure, 745

average or slope analysis, 737

banded correlation structure, 745

between-subject variation, 734, 749

cohort scale, 729

derived variable analysis, 737

empirical standard errors in GEE, 756

exchangeable correlation structure, 745

exploratory data analysis, 731

fixed effects, 749

GEE with logistic regression, 756

generalized estimating equations (GEE), 754

group means over time, 731

imputation of missing data, 761

linear mixed models, 748

line plots for individual study participants, 734

marginal mean, 754

missing at random (MAR) data, 760

missing completely at random (MCAR)

data, 760

missing data mechanisms, 760

missing data, monotone missing data, 759

mixed models, 747

mixed models: population residuals, 752

mixed models: residual plots, 752

mixed models: within-subject residuals, 752

nested model and likelihood ratio test, 751

nonignorable (NI) missing data, 760

period, 729

pre-post analysis, 741

pre-post analysis: average change, 741

pre-post analysis: covariance adjustment, 741

pre-post analysis: mean response at follow-up, 741

pre-post binary data, 742

random effects, 749

random intercept model, 749

regression methods, 747

time-varying covariates, 729

variability within and between subjects, 733

variance inflation factor, 746

within-subject correlation, 745

within-subject covariance matrix, 734

within-subject variation, 734, 749

Longitudinal mixed models:

empirical Bayes’ estimation of individual random

effects, 752

population residuals, 752

residual plots, 752

within-subject residuals, 752

Longitudinal study, 728

definition, 14

Loss function, 551

defining, 570

Lost to follow-up, 667

Lower quartile, 40, 53

Lowess, 44

Main effect, 363

Mallow’s Cp, 456, 561

plot, 459

Mann–Whitney U test, 262, 265. See also Wilcoxon

rank sum test

Mantel-Haenszel test, 193

Marginal mean, 754

Marginal table, 225, 226

Markov inequality, 100

Matched case-control study, 13

frequency matching, 14

Matched pair, 179

Matched pair study, 21, 194

confidence interval for odds ratio, 180

Maximum likelihood, 194, 554, 557, 568

logistic regression, 567–569

mixed model, 751

Maximum likelihood estimation, 333

Maxplane rotation, 610

McNemar procedure, 179

Mean, 44, 45, 47, 52–54, 56

arithmetic, 41, 42, 46, 53, 55

confidence interval with known variance, 87

geometric, 44, 46, 53, 59

hypothesis testing, 87, 90–93

inference about, 85

interval estimate, 86

point estimate, 85

Mean square error, 105

Mean squares, 360

Measures of association, 231, 233

Median, 40, 44, 46, 47, 52, 53, 55, 56

confidence interval, 269
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Median absolute deviation, 44–46

Mesokurtic, 51

Meta-analysis, 803

Minimum chi-square estimate, 191

Missing at random (MAR) data, 760

Missing completely at random (MCAR) data, 760

Missing data, 759–761

ANOVA, 394–396

imputation, 761, 777

in randomized trial, 776

missing at random (MAR), 760, 761

missing completely at random (MCAR), 760

nonignorable (NI), 760, 761

nonresponse weighting, 761

Missing data analysis by data modeling,

761

Missing data in longitudinal analysis, 759

Missing data mechanisms, 760

Missing form, 19

Mixed effect, 385

ANOVA, 385

Mixed model:

categorical data, 753

count data, 753

linear, 750, 754

missing data, 761

random effect, 749

random intercept, 749–751

random slope, 751

variance components, 750, 754

Mixed models:

linear, 748

longitudinal data, 747

nonlinear, 762

Mixed models for longitudinal data, 747

Model:

additive, 371

animal, 22

binomial, 153

Cox, 679

linear, 357

linear regression, 297, 301

log-linear, 208, 220–229, 233, 234

logistic, 552, 558

multinomial, 187

multivariate, 208, 220

Poisson, 183

testing goodness-of-fit, 186

Model selection, stepwise, 562, 563

Model-robust regression standard error, 337

Modified intent-to-treat analyses, 775

Moment, 39, 43, 50

Moments, 41

Monotone missing data in longitudinal analysis,

759

Monte Carlo tests, 272, 273

Multicenter AIDS Cohort Study, 730

Multicenter clinica trial, see Randomized trial

Multicenter clinical trial, 778

Multinomial model, 187

Multiple comparison problem, 520

Multiple comparisons, 213

Multiple correlation, 437

Multiple correlation coefficient, 437

adjusted, 438

Multiple correlation coefficient, with covariates

specified, 440

Multiple logistic model, and adjusted rates, 651

Multiple partial correlation coefficient,

see Partial multiple correlation coefficient

Multiple regression:

model, 432

stepwise procedures, 460

Multiplication rule:

expectations, 104

probability, 67

Multivariate data, 35, 36

Multivariate model, 220

Multivariate normal, 557

Multivariate normal distribution, 318, 483

Multivariate statistical model, 208

Mutagenicity studies, 781

Mutually exclusive, 65

Negative predictive value, 559

Nested design, ANOVA, 391, 392

Nested hypotheses, 228, 229, 442

definition, 442

Network meta-analysis, 803

Neural network, 566

software, 567

Neural networks, 566

Newman–Keuls test, 543

Nominal, 52

Nontransitivity of rank tests, 279

Nonignorable (NI) missing data, 760

Noninferiority drug studies, 781

Noninformative censoring, 671

Nonlinear, mixed models, 762

Nonlinear regression models, 482

Nonparametric, 254, 255, 278

confidence intervals, 268

Nonparametric correlation, 327

Normal, 46

Normal approximation, to binomial, 156

Normal distribution, 73

ANOVA, 361

bivariate, 318

calculating areas, 74

conditional, 318

formula for density, 106

multivariate, 318, 557

relation to chi-square distribution, 140, 141

standard, 76

standard score, 75

Z score, 75
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Normal random variables:

distribution of linear combination, 127

mean of linear combination, 127

variance of linear combination, 127

Normal scores, transformation, 399, 400

Normality of residual, ANOVA, 397

Null hypothesis, 89

Null value of a parameter, 138

Nuremberg Code, 15, 767

Oblimax rotation, 610

Observational and experimental studies in humans,

767

Observational study, definition, 11

Observations, paired, 179

Observed, 211

Occam’s razor, 227

Odds ratio, 164, 208, 219, 555

as approximation to relative risk, 165, 168

confidence interval, 169, 170

cross-product ratio, 165

from matched pair study, 179

limitations, 193

log odds, 169

standard error, 169, 193

Odds ratios:

pooling, 172

test for heterogeneity, 173

test for homogeneity of, 173

Off-label, 782

Off-label use of a drug, 782

One-sided confidence intervals, 141

One-sided tests, 141

One-way analysis of variance, 357, 359, 366. See
also ANOVA

One-way ANOVA:

and Bonferroni simultaneous contrasts, 535

and simultaneous S-method confidence intervals,

527

and T-method simultaneous confidence intervals,

532

Open label extensions of drug studies, 781

Ordered alternatives, ANOVA, 411

Ordered categorical variable, 231

Ordering, 26

partial, 26

Order statistics, 269

Ordinal, 52

Orthogonal contrasts, 389, 390, 542

Orthogonal design, ANOVA, 372

Outcomes, 26

Outliers, 140

in regression, 333

Over-the-counter (OTC) drugs, 777

p-value, 90

binomial, 156

Parameter, 61

Parametric, 254, 255

Partial correlation coefficient, 440

definition, 441

relation to linear multiple regression, 444

Partial F -statistic, definition, 444

Partial multiple correlation coefficient, 442

definition, 442

F -test, 444

relation to regression sums of squares, 444

Path analysis, 482

Pearson product moment correlation, 314

properties, 315

Pearson’s contingency coefficient, 232

Per comparison error rate, 521

Per experiment error rate, 521

Percent:

column, 213

row, 213

total, 213

Percentage, 213

Percentile, 39, 40, 46, 56

Perceptron capacity bound, 560

Period, 729

Permutation test, 270–272

PFDR, 538

Pharmacodynamics of drugs, 781

Pharmacokinetics of drugs, 781

Phase I drug studies, 781

Phase II drug studies, 781

Phase III drug studies, 781

Phase IV, or post-marketing, studies, 781

Pilot test, 17

Pivotal variable, 117, 138

comparing two proportions, 160

confidence interval, 120

definition, 118

regression, 301

rejection region, non-rejection

region, 120

Placebo, 14, 153

effect, 14

Placebo control, 773

Placebo effect, example, 5

Placebo, inactive, medication, 773

Platykurtic, 51

Plot:

box, 40, 41, 54, 58

box-and-whiskers, 40

conditioning, 37

quantile-quantile, 80

residual from mixed model, 752

Point estimate, 63

Poisson:

homogeneity test, 186

model, 183

normal approximation, 184

rule of threes, 194

square root transformation, 184
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Poisson distribution, 181

and hazard, 651

and rate, 646

assumptions, 181

Poisson mean, confidence interval, 194

Polynomial regression, 465

Polytomous logistic regression, 569, 570

Pooling 2 x 2 tables, 170

Pooling odds ratios, 172

by chi-square, 173

Mantel–Haenszel approach, 175

test of significance of pooled estimate, 173

Population, 27, 61

Population parameter values, in multiple regression,

429

Positive false discovery rate, pFDR, 538

Positive predictive value, 194, 559

Post hoc analysis, 539

data driven, 539

subgroup analysis, 539

Posterior probability, 177

Potential outcomes, and causal inference, 447

Potential outcomes framework, and causal inference,

447

Power, 89, 135

and multiple comparisons, 711

by simulation, 275

calculation of, 709

cost of sampling, 711–714

for testing discrimination, 718, 719

relation to sample size, 724

Pre-post analysis, 741

Pre-post data, 728

Precision, 22, 808

vs accuracy, 104

Prediction:

accuracy, 551, 558

classification tree, 564

cost-complexity penalty, 564

error rates, 552

neural networks, 566

recursive partitioning, 564

Predictive value:

negative, 559

positive, 559

Predictor variables, 298

in multiple regression, 429

Prevalence, 177, 641

and duration, incidence, 652

effect on positive predictive value, 194

Principal component analysis, 571

Principal components, 588

first principal component, 589

k-th principal component, 589

percent of variability explained by first m

principle components, 590

percent of variability explained by k-th principle

component, 590

Pythagorean theorem, 591

sample total variance, 590

statistical results, 595

total variance, 590

use of covariance or correlation matrix, 594

Prior probability, 177, 551

Probability, 63

addition rule, 66

Bayesian, 98

binomial, 154

conditional, 67, 177

posterior, 177

prior, 177

relative frequency, 63

subjective, 98

Probability density function, 33, 34, 70

estimating from life table, 696

Probability distribution:

chi-square, 95

Gaussian, 73

multivariate normal, 557

normal, 73

Probability function, 69

Probability plot, normal, 405

Probability theory, randomization, 21

Product limit survival curve, 672

definition, 673

Greenwood’s formula, 675

Product-limit estimator, 672. See also Kaplan–Meier

estimator

Projection, 586

Propensity score, 452

Proportion, 35

Proportional hazard regression model, 679

instantaneous relative risk, 686

stratification in the Cox model, 693

Proportional hazards, checking, 687, 688

Prospective ascertainment of exposure, 728

Prospective study, 166

definition, 13

Protected health information (PHI), 767

Pseudorandom number generators, 280, 778

Pure error, 484

Pythagorean theorem, 591

Quality of care, 5

Quantification of uncertainty, 23

Quantile-quantile plot, 80

Quantile test, 263

Quartile:

lower, 40, 53

upper, 40, 53

Quartimax method of rotation, 609

Random assignment, example, 5

Random effect, 384, 385, 749

ANOVA, 384–386

Random effects, 749



862 SUBJECT INDEX

Random intercept, 749–751

Random intercept model, 749

Random number generators, 280

Random sample, 64

simple, 64

Random sampling, and representativeness, 22

Random slope, 751

Randomization, 21, 775

adaptive, 779

block, 778

effect of, 21

practical considerations, 778

reasons for, 775

Randomization distribution, 775

Randomization test, 270, 272, 775

Randomized block design, 23

ANOVA, 380–382

ranks, 382

and simultaneous S-method confidence intervals,

531

and T-method simultaneous confidence intervals,

533

Randomized clinical trials:

adaptive randomization, 779

blinding, 776

case report forms (CRFs), 779

clinical, 766

consistency checks on data, 779

data and safety monitoring boards (DSMBs), 779

data management and processing, 779

Declaration of Helsinki, 767

double-blind trial, 773

ethics, 766

ethics: principle of autonomy, 767

ethics: principle of beneficence, 767

ethics: principle of justice, 767

ethics: principle of nonmaleficence, 767

informed consent, 767

Institutional Review Boards, 767

intent-to-treat analyses, 775

interim analysis, 779

last observation carried forward (LOCF), 776

modified intent-to-treat analyses, 775

Nuremberg Code, 767

planning: multicenter clinical trials, 778

planning: special populations, 777

planning: study population, 777

preservation of type I error, importance, 779

pseudorandom treatment assignments, 778

randomization, 775

randomization distribution, 775

remote data entry, 779

sensitivity analysis for missing data, 777

single-blind trial, 773

wash out period, 773

worst case analysis with missing data, 777

Randomized controlled trials, 766

Randomized experiment, 775

Randomized trial, 766, 775

analysis, 779

avoiding bias in assignment, 768

blinding, 776

cautionary examples, 767–774

cluster, 782

composite endpoints, 780

conflict of interests, 779

data and safety monitoring, 779

data management, 779

double-blind, 773

intent-to-treat, 775

interim analysis, 779, 780

missing data, 776

multicenter, 778

multiple endpoints, 780

noncompliance, 768, 769

phase I, 781

phase II, 781

phase III, 781

phase IV, 781

placebo control, 773

placebo effect, 774

run-in period, 773

sequential analysis, 780

single-blind, 773

special populations, 777

study population, 777

surrogate outcomes, 769–772

Random variable, 68

binomial, 151

Range, 40, 46

Range check, 18

Rank, 39

Rank analysis, ANOVA, 412

Ranking, 26

Ranks, 257, 258

ANOVA, 383, 384

randomized block design, 382

Rank tests, general theory, 280

Rate, 640

adjusted, 644

binomial assumption, 653

comparison of two rates, 645

crude, 642

hazard, 648

incidence, 641

instantaneous death rate, 648

multiple logistic model, 651

standard error, 641

standardized mortality ratio, 646

total, 642

Rate of decline, 752

Ratio, scale, 52

RCT, 767

randomized clinical trial, 766

randomized controlled trial, 766

See also Randomized trial
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Receiver operating characteristic curve, 559. See
also ROC curve

Recursive partitioning, 564–566. See also
Classification tree

Regression:

analysis of variance, 304

and correlation, 306, 317

coefficients, 301

covariate, 298

Cox model, 680, 682–686

dependent variable, 298

error, 300

errors in both variables, 324

estimated line, 300

estimate of error, 301

extrapolation beyond range, 331

homogeneity of variance, 307

inference, 301

inference about future observation, 303

inference about population mean, 302

interpretation of slope, 332, 334

least squares, 298

linear, 297, 299

linearity, 307

logistic, 552–555

main effect, 363

normality, 307

origin of the term, 333

outliers, 333

partitioning of variation, 305

population line, 300

population parameters, 300

predictor variable, 298

proportional hazards, 680, 682–686

residual from, 301

response variable, 298

robust, 337

robust model, 333

test of model, 307

t-test, 309

through the origin, 335

to the mean, 330

variance of intercept, 334

variance of predicted value, 334

weighted, 335, 336

Regression analysis in longitudinal data, 747

Regression and correlation, misapplications,

330

Regression coefficient:

as intercept, 298

as slope, 298

Regression coefficients, 429

sample, 430

Regression to the mean, 330

Regulatory statistics and game theory, 541

Rejection region, 89

Relative efficiency, 255, 278

Relative frequency, 54

Relative risk, 164, 208

as approximated by odds ratio, 165, 168

Reliability theory, 661

Repeated measures, 728, 762

ANOVA, 387, 391

Representative sample, 100

Representativeness, 22, 152

Residual:

adjusted, 213

population, 752, 753

within-subject, 752–754

Residual correlation, factor analysis, 602

Residual plot, 752

Residuals, in multiple regression, 429

Response, binary, 151

Retrospective study, 4, 166

definition, 13

Risk, 809

classification scheme, 813

comparing risks, 810

Richter-like scale for, 810

risk unit, 810

safety unit, 811

Risk factor, 4

Robust, 253, 276

Robust regression model, 333

Robustness, 46

ROC curve, 559, 560, 564

area under, 560

Rounding, 48

Rounding error, 49

Row percent, 213

Rule of threes, 194

S-method, 525

Sample, 25

Berkson’s fallacy, 102

cluster, 102

length-biased, 102

multivariate, 100

pitfalls in drawing, 101

random, 64

representative, 100

simple random, 64

stratified, 102

survey, 102

two-phase, 103

unequal probability, 102

without replacement, 101

Sample size, 161, 709

and multiple comparisons, 711

and power, 724

calculations, 134

comparing two proportions, 161

confidence, 20

controls per case, 714, 715

cost of sampling, 711–714

critical value for correlation, 322
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Sample size (Continued)
diminishing returns, 714

figure for measurement data, 137

flow chart for comparing two proportions, 162

for case-control studies, 722, 723

for cohort studies, 721

for discrimination, 715–718

graph for comparing two proportions, 163

one normal sample for mean zero, 136

per group, 2 normal samples for equal means, 135

power for testing discrimination, 718, 719

precision, 20

purpose of study, 19

quantifying discrimination, 720

relation to coefficient of variation, 724

two normal populations, equal variances, 134

Sample space, 27

Sample variances:

heterogeneous, 134

homogenous, 134

Sampling distribution, 82

Sampling variability, 49

Scatter diagram, see Scatterplot

Scattergram, see Scatterplot

Scatterplot, 291

Scatterplot smoother, 44

Scheffe method, 525

Schoenfeld residuals, 687

Science and regulation, 792

Science and stock market, 792

Screening, 176

logit model, 194

sensitivity, 176

specificity, 176

Screening study, 709

power, 710

sample size, 710

Semiparametric, 254, 255

Sensitivity, 176, 558, 559

Sensitivity analysis, 777

Sensititivity, effect on positive predictive

value, 194

Sequential analysis, 780

Shift, 31

Sign test, 256

Signed-rank test, 258

Significance level, 92

nominal vs actual, 254

Significant digits, 48

Simple contrast, 525

Simple linear regression, 430

Simple random sample, 64

Simultaneous comparison, 367

Simultaneous confidence intervals, 523

in tests for linear models, 524

Single blind study, 14, 773

Skewed, 54

Skewness, 51

Slope, 298

variance of estimate, 310

Spearman rank correlation, 327

Specificity, 176, 558, 559

effect on positive predictive value, 194

factor analysis, 602

Split sampling, 471

Split-plot design, ANOVA, 392, 393

Spread, 44, 46

Spurious correlation, 330

Squared multiple correlation coefficient, proportion

of variability explained, 437

Standard deviation, 42, 46, 53, 54, 56

confidence interval for ratio, 134

Standard error, 83

difference in hazard rates, 651

estimate of hazard rate, 650

for odds ratio in matched pair study, 180

of adjusted rate, 645

standardized rate, 647

Standardization:

direct and indirect, 642

indirect, 645

Standardized distance, 135

Standardized rate:

drawbacks of, 648

incidence ratio, 646

mortality ratio, 646

standard error, 647

standard error and Poisson, 646

varying observation time, 652

Standard normal distribution, 76

Statistic, 39

Statistical inference, 22

Statistically independent, 64

Statistics:

basic ideas, 151

definition, 8

descriptive, 25, 39

goals of the book, 2

levels of knowledge, 2

origin of word, 151

the field, 1

Stem-and-leaf diagram, 48, 54, 56

Step-down stepwise procedure, 465

Step function, 34

Step-up stepwise procedure, 465

Stepwise model selection, 562, 563

Stepwise procedures in multiple regression, 460

Stratified life table analysis, direct adjustment, 698

Structural models, 482

Student–Newman–Keuls test, 543

Studentized range, 531

Student’s t-distribution, 121

Study:

bias, 20

inference, 20

steps in a study, 15
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Study type:

and odds ratio, 167

and relative risk, 167

case-control, 13

comparisons, 167, 168

cross-sectional, 165

double blind, 14

factorial design, 23

matched case-control, 13

matched pair, 179, 194

prospective, 13, 166

randomized block design, 23

retrospective, 13, 166

single blind, 14

Study unit, definition, 12

Sum of squares:

ANOVA, 358

between-groups, 364

partitioning, 364, 373

Supervised learning, 550

Surrogate endpoint for antiarrhythmic drugs, 770

Survival analysis, 661

adjustment by stratification, 678

censored, 662, 668

censoring, 670

competing risks, 698

constant hazard and exponential survival, 690

counting process notation, 699

Cox model, 679

Cox model with time dependent covariates, 691

Cox regression model, 684

cumulative hazard, 695

delayed entry, 694

direct adjustment of stratified life table analysis,

698

exponential regression, 690

Greenwood’s formula, 662

independent censoring, 671

Kaplan–Meier survival curve, 672

left truncation, 694

lognormal distribution, 691

log-rank statistic; stratified log-rank statistic, 695

lost to follow-up, 667

multiple event types, 698

noninformative censoring, 671, 698

parametric regression, 690, 691

product limit survival curve, 672

proportional hazards model, 670

recurrent events, 694

recurrent events; intensity, 694

Schoenfeld residuals, 687

stratification in the Cox model, 693

Weibull distribution, 691

Survival curve, 661–669, 671–679

actuarial method, 664

after last observed time, 673

better confidence intervals, 696

comparison of, 674–677

confounding in comparisons, 678, 679

definition, 662

Greenwood’s formula, 668

individual vs group, 696, 697

Kaplan–Meier estimate, 672–674

life table method, 664–669, 671

log rank test, 674–677

related to cumulative distribution, 661, 663

standard error, 668

stratified comparison, 678, 679

Survivorship function, 661, 662

definition, 662

See also Survival curve

t-distribution, 121

‘Student’, 121

and correlation, 323

degrees of freedom, 121

Gossett, W. S., 121

heavy-tailed, 122

mean, 121

percentiles, 121

variance, 121

T-method of multiple comparisons, 531

t-test:

and regression, 309

for partial correlation, 444

heterogeneous variances, 139

on ranks, 139

one-sample inference, 122

paired-data inference, 123

unequal variances, Behrens–Fisher

problem, 139

Taxonomy of data, 51

Teratogenicity, 781

Test:

positive predictive value, 176

true and false negative, 176

true and false positive, 176

Test of significance, correlation, 318

Test:negative predictive value, 176

Testing for symmetry, 233

Testing independence, 229

Time dependent covariates, 691

Time scales:

age, 729

cohort, 729

period, 729

Time series analysis, 481

Time varying covariates, in longitudinal data

analysis, 729

Time-series, and air pollution, 804

Time-varying covariate, 729, 762

Total percent, 213

Total variance, 590

sample, 590

Total variation, partitioning, 357

t-PA, 792
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Training data, 550, 551

Training set, 550

Transformation:

Box–Cox, 399

correlation coefficient, 321

Fisher-Z, 399, 400

linearizing, 406

normal scores, 399, 400

power, 413

square root for Poisson, 185

variable, 398, 400

variance stabilizing, 398

Transition model, 743

Treatment, placebo, 14

Trial, 153, 766

ethics, 766, 767

informed consent, 767

randomized clinical, 766

randomized controlled, 766

Trimmed mean, 276

True negative test, 176

True positive test, 176

Tshuprow’s T, 232

Tukey method of multiple comparisons,

531

extensions, 543

Tukey test, additivity in ANOVA, 407–410

Two-sample inference, 124

independent samples, 124

known variances, 128

scale, variances, 132

unknown variances, 131

Two sample test, proportions, 157

Two-way ANOVA, 357, 370

and simultaneous S-method confidence intervals,

529

and T-method simultaneous confidence intervals,

533

Two-way table, 210, 221, 224

Type I error, 89

Type II error, 89

Unbalanced design:

ANOVA, 393

causes, 393

Uncertainty, 23

and variation, 23

reduction of, 23

Uniqueness, factor analysis, 602

Unsupervised learning, 550

Upper quartile, 40, 53

Validity, 22

Validity check, 18

Variability:

background, 380

sampling, 49

Variable, 25, 28, 29

categorical, 26, 29

class, 550

classification, 357

continuous, 27, 34

discrete, 27, 208

ordered categorical, 231

precision, 741

qualitative, 26, 52

quantitative, 26, 27, 52

transformation, 398

Variance, 43, 53, 72

between-group, 362

inference about, 96

of predicted value in regression, 334

within-group, 361, 362

Variance components, 385, 750

Variance inflation factor, 746

Variances, sample:

heterogeneous, 134

homogenous, 134

Variation, 43

between-group, 366

between-subject, 734

precision, 22

validity, 22

within-group, 366

within-subject, 734

Varimax method of rotation, 609

Vitamin C, 153

Von Bortkiewitz, 182

Wash out period, 773

Wilcoxon rank-sum, 368

Wilcoxon rank sum test, 262, 263

as permutation test, 272

large samples, 264

nontransitivity, 279

relative power, 263

Wilcoxon signed-rank test, 258–261

large samples, 260, 261

Winsorized mean, 276

Within-group variance, 361

Within-subject variation, 734, 749

Zero cells, 234



Symbol Index

A, 362
A

i

, 385
A

m

, 675
A (accuracy), 809
â, 410
a, b1, b2, . . . , b

k

, 428
a3, 51
a4, 51
a

i

, 373
a (sample intercept), 298
a

x

, 317
a

y

, 317

B, 362
B

j

, 385
B

i

, 648
b (sample slope), 298
b(k; n, pi), 154
b21, 334
b

ij

, 334
b

xy

, 317
b

yx

, 317
b

j

, 373, 430
b

i,0, 749

C

i

, 648
C, 232, 402
C

p

, 456, 457, 458, 459, 561
CFR, 411
CKW, 411

D00, 748
D01, 748
D11, 748

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.

D

ij

, 392
D

i

, 648
D1�

, 393
D2�

, 393
D, 266
D

+, 279
D

m

, 675
d

i

, 327
d

x

, 667
d

ij

, 675
d.f., 305, 360, 362

e (error in regression), 298
E(Y | X1, . . . , X

k

), 429
E(Y

i

| X

i1, . . . , X

ik

), 432
E(Y

i

| X

i

), 431
E(Y

ij

| β

i

), 748
E(Y | X,Z), 452
E(MS), 365
E[Y ], 71
E

i

, 675
E (expected rate), 646
e

ijk

, 373, 385

F , 444
FMAX, 402
F

i

, 601
F1,ν

, 307
f

X

(x), 336
f

Y

(y), 336
f

X,Y

(x, y), 335

g

ij

, 373
G

ij

, 385

867
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g

ijk

, 224, 225
g

IJ

ij

, 221, 222

h

I

i

, 221, 222

h

J

j

, 221, 222
h0(t), 679
h

x

, 672

[I ], 225, 226
[IJK], 225, 226
[IJ ], 225, 226
[IK], 225, 226

[J ], 225, 226
[JK], 225, 226

[K], 225, 226

L

A

, 650
L(j, k), 551
LRX2, 223, 227
l (estimate of λ), 184
ℓ

′

x

, 668
ℓ

x

, 667
logit, 552
logit(p), 194

M

i

, 643
̂

M1�

, 396
̂

M2�

, 396
̂

M

��
, 396

MS, 305, 360, 362
MS

α

, 365, 374, 375
MS

β

, 374, 375, 382, 409
MS

ǫ

, 365, 374, 375, 382, 409
MS

γ

, 374, 375
MS

λ

, 409
MSREG, 432
MSRESID, 432, 433
MS

µ

, 365, 374, 375, 382, 409
MS

τ

, 382, 409
m

∗

r

, 50

N(µ

x

, µ

y

, σ

2
x

, σ

2
y

, ρ), 318
N

i

, 643
N

i

(t), 699
NUM, 162
ñ, 396
n, 358
[n1x], 215
n!, 154
n (sample size), 161
n

∗

i

, 643

n

a

st , 163
n1.

, 158
n

i

, 362
n

���
, 226

n

��
, 158, 211, 212, 222, 358, 371

n

�j

, 211, 212, 222, 358, 371
n

i�

, 211, 212, 222, 371
n

ijk

, 358
n

ij

, 210, 222, 371

O (observed number of events), 646
O

′

i

, 650
O

i

, 648, 675

P

A

, 218
P

C

, 218
PREV, 194
PV+, 194
P [C], 64
P [C|D], 67
P

x(i)

, 668
P [B

i

|A] (Bayes’ theorem), 178
p̂, 155
p

�j

, 230
p

i�

, 230
p

ij

, 230
p

k

, 551

Q

k,m

, 531
q

k,m,1=α

, 532

R

��
, 368, 383

R

�j

, 383
R

i�

, 368
R

2, 437
R

2
a

, 439
R

Y (X1,... ,Xk

)�Z1,... ,Zp

, 442
R

Y (X1,... ,Xk

)

, 440
R

�j

, 383
R

i�

, 368
R

ij

, 368, 383, 760
R

W

ij

, 752
RU(E) (Risk Unit), 810
R

P

ij

, 752
R

i

, 280
r

2, 437, 306
r (adjusted rate), 644
r (precision), 809
r

s

(Spearman rank correlation), 327
rREF, 646
rSTUDY, 646
r

X,Y �Z

, 441
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S, 260
S(t), 663
S(t |X), 682

S

exp(α+β1X1+···+β

p

X

p

)

0,pop , 682
SENS, 194
SE(

̂

λ), 650
SPEC, 194
SU(E) (Safety Unit), 812
SE(b

j

), 433
S

2
Y �X1,... ,Xk

, 433
SSMODEL FIT, 484
SSPURE ERROR, 484
SSREG, 462
SSREG(X1, . . . , X

j

), 443
SSREG(X

j+1, . . . , X

k

| X1, . . . , X

j

), 443
SSREG(γ | X), 478
SSRESID, 462
SSRESID(X1, . . . , X

j

), 443
SSRESID(γ | X), 478
SS

α

, 365, 366, 373, 374, 375
SS

β

, 373, 374, 375, 382, 396, 409
SS

ǫ

, 365, 366, 373, 374, 375, 382, 409
SS

γ

, 373, 374, 375, 396
SS

λ

, 408, 409
SSREG, 432, 437
SSRESID, 432
SSTOTAL, 366, 373, 437
SSnonadditivity, 408
SS

µ

, 365, 366, 375, 382, 396, 409
SS

τ

, 382, 409
SE(r), 645
SS, 305
s, 42
s (standardized rate), 646
s

2
x

, 313
s

2
y

, 313

s

2
y.x

, 301
s1 , 299
s2, 299
s3, 299
s

b

, 307
s

b

yx

, 318
s

xy

, 314
s

2
p

, 359, 360

s

2
Y

, 359, 360

s

2
i

, 361, 362

T , 232
T 1�

, 393
T 2�

, 393
T

m

, 675

T

ij

, 392
TFR, 383
TKW, 368, 369
TPAGE, 412
TTJ, 412
t

2, 444
t0, 648
t1, 648
t

ij

, 730
t

ν,α

, 121

U , 265
u, 223, 224, 225
u

i

, 370
u

I

i

, 221, 222, 223, 224, 225

u

J

j

, 221, 222, 223, 224, 225

u

K

k

, 224, 225

u

IJK

ijk

, 224, 225

u

IJ

ij

, 224, 225

u

IK

ik

, 224, 225

u

JK

jk

, 224, 225
u (location shift), 808
U

i

, 406

V , 232
v (scale shift), 808
v

j

, 370
V

j

, 406

W , 262
w

k

, 451
w

x

, 667
[wx

2], 337
[wxy], 337

[xy], 298
X

2, 160, 211, 212, 223, 675
X

2
trend, 215

X

ij

, 429
X

2
c

, 160
X

y

, 320
̂

X

j

, 442
[x2], 215, 298

̂

Y , 442
̂

Y

i

, 298, 430
̂

Y

ij

, 393
Y 0, 449

Y

(k)

0 , 451
Y 1, 449

Y

(k)

1 , 451



870 SYMBOL INDEX

Y

��
, 362

Y

�j �

, 358
Y

i�

, 362
Y

ij �

, 358
y, 41, 42
Y

i

− ̂

Y

i

, 430
Y

i

, 429
Y

i

(0), 447
Y

i

(1), 447
Y

M

i

, 760

Y

O

i

, 760
Y

�jk

, 358
Y

���
, 373

Y

��
, 358

Y

�j �

, 358
Y

i�

, 358
Y

ijk

, 358, 370, 372, 385, 475, 803
Y

ij

, 358, 361, 362, 730
Y

i

(t), 699
ŷ

i

, 298
[y2], 298

Z

i

(t), 699
Z

X

, 335
Z

Y

, 335
Z

c

(Z statistic with continuity correction),
156

Z

r

(Fisher Z transform), 321
Z

(i)

, 402
z

ij

, 213

α (population intercept), 301
α1 = α2 = . . . = α

I

= 0, 363
α

i

, 362, 363, 370, 372, 475
α̂

i

, 366

β (population slope), 301
β1 = β2 = . . . = β

k

= 0, 433
β

j

, 370, 372, 429, 475
β

X

, 444
̂

β

i

, 739
β

i,0, 739
β

i,1, 739
β

j+1 = . . . = β

k

= 0, 443

χ

2, 95, 211, 212
χ

2
A

, 173
χ

2
H

, 173

δ, 413, 715
δ

(k), 451
, 448

 (effect size), 162
, 557


i

, 447


x

, 672

ǫ

i

, 430, 431
ǫ

ijk

, 370, 372, 803
ǫ

ij

, 361, 362

γ , 232
γ

ij

, 372

κ (in Kendall τ ), 328
κ , 217, 218

λ (hazard rate), 648
λ (Poisson mean), 183
̂

λ, 407, 649
λ, 231, 407
̂

λ

A

, 650
̂

λ

D

, 651
λ

C

, 231
λ

R

, 232
λ

ij

, 601

µ, 71, 359, 362, 372
µ1 = µ2 = . . . = µ

I

= µ, 361, 363, 368
µ1, µ2, µ3, µ4, 359
µ

i

, 361
µ

ij

, 370, 754

ω, 165
ω̂, 168
ω̂

paired

, 180

� (cumulative normal), 190
�, 232
�

2, 232

π

0
i

, 187
π0, 155
π1 ≤ π2 ≤ . . . π

k

, 214
π

i

, 666
π

j

, 214
π

k

, 551
π

i�

, 211, 221, 229
π

ij

, 210, 221
π̂

ijk

, 226
π

�j

, 211, 221, 229

ψ

i

, 601

ρ (population correlation), 316
ρ, 164, 714



SYMBOL INDEX 871

ρ̂, 168
ρ

|t
j

−t

k

|, 745
ρ0, 320
ρ

jk

, 736
ρ̂

jk

, 736
ρ

V W

, 326
ρ

X,Y �X1,... ,Xk

, 441
ρ

X,Y �Z

, 441
ρ

XY

, 326

σ

2, 359, 360, 361
σ

2, 72
σ

2
1 , 301

σ

2
2 , 303

σ

2
α

, 385
σ̂

2, 366, 433

σ

2
β

, 385

σ

2
γ

, 385
σ

x

, 316
σ

y

, 316
σ

xy

, 316

τ (Kendall), 328
τ , 328
τ

j

, 381, 383

�, 191
̂

�1, 191

ξ

ij

, 804

∏

i

, 666
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