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Figure 9.1 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white

males by state and latitude of the center of the state for the period 1950–1959.

Example 9.2. To assess physical conditioning in normal subjects, it is useful to know how

much energy they are capable of expending. Since the process of expending energy requires

oxygen, one way to evaluate this is to look at the rate at which they use oxygen at peak physical

activity. To examine the peak physical activity, tests have been designed where a person runs on

a treadmill. At specified time intervals, the speed at which the treadmill moves and the grade of

the treadmill both increase. The person is then run systematically to maximum physical capacity.

The maximum capacity is determined by the person, who stops when unable to go further. Data

from Bruce et al. [1973] are discussed.

The oxygen consumption was measured in the following way. The patient’s nose was blocked

off by a clip. Expired air was collected from a silicone rubber mouthpiece fitted with a very low

resistance valve. The valve was connected by plastic tubes into a series of evacuated neoprene

balloons. The inlet valve for each balloon was opened for 60 seconds to sample the expired air.

Measurements were made of the volumes of expired air, and the oxygen content was obtained

using a paramagnetic analyzer capable of measuring the oxygen. From this, the rate at which

oxygen was used in mm/min was calculated. Physical conditioning, however, is relative to the

size of the person involved. Smaller people need less oxygen to perform at the same speed. On

the other hand, smaller people have smaller hearts, so relatively, the same level of effort may be

exerted. For this reason, the maximum oxygen content is normalized by body weight; a quantity,

VO2 MAX, is computed by looking at the volume of oxygen used per minute per kilogram of

body weight. Of course, the effort expended to go further on the treadmill increases with the

duration of time on the treadmill, so there should be some relationship between VO2 MAX and

duration on the treadmill. This relationship is presented below.

Other pertinent variables that are used in the problems and in additional chapters are recorded

in Table 9.2, including the maximum heart rate during exercise, the subject’s age, height, and

weight. The 44 subjects listed in Table 9.2 were all healthy. They were classified as active if

they usually participated at least three times per week in activities vigorous enough to raise a

sweat.
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Table 9.2 Exercise Data for Healthy Active Males

Case Duration (s) VO2 MAX Heart Rate (beats/min) Age Height (cm) Weight (kg)

1 706 41.5 192 46 165 57

2 732 45.9 190 25 193 95

3 930 54.5 190 25 187 82

4 900 60.3 174 31 191 84

5 903 60.5 194 30 171 67

6 976 64.6 168 36 177 78

7 819 47.4 185 29 174 70

8 922 57.0 200 27 185 76

9 600 40.2 164 56 180 78

10 540 35.2 175 47 180 80

11 560 33.8 175 46 180 81

12 637 38.8 162 55 180 79

13 593 38.9 190 50 161 66

14 719 49.5 175 52 174 76

15 615 37.1 164 46 173 84

16 589 32.2 156 60 169 69

17 478 31.3 174 49 178 78

18 620 33.8 166 54 181 101

19 710 43.7 184 57 179 74

20 600 41.7 160 50 170 66

21 660 41.0 186 41 175 75

22 644 45.9 175 58 173 79

23 582 35.8 175 55 160 79

24 503 29.1 175 46 164 65

25 747 47.2 174 47 180 81

26 600 30.0 174 56 183 100

27 491 34.1 168 82 183 82

28 694 38.1 164 48 181 77

29 586 28.7 146 68 166 65

30 612 37.1 156 54 177 80

31 610 34.5 180 56 179 82

32 539 34.4 164 50 182 87

33 559 35.1 166 48 174 72

34 653 40.9 184 56 176 75

35 733 45.4 186 45 179 75

36 596 36.9 174 45 179 79

37 580 41.6 188 43 179 73

38 550 22.7 180 54 180 75

39 497 31.9 168 55 172 71

40 605 42.5 174 41 187 84

41 552 37.4 166 44 185 81

42 640 48.2 174 41 186 83

43 500 33.6 180 50 175 78

44 603 45.0 182 42 176 85

Source: Data from Bruce et al. [1973].

The duration of the treadmill exercise and VO2 MAX data are presented in Figure 9.2. In this

scattergram, we see that as the treadmill time increases, by and large, the VO2 MAX increases.

There is, however, some variability. The increase is not an infallible rule. There are subjects

who run longer but have less oxygen consumption than someone else who has exercised for a

shorter time period. Because of the expense and difficulty in collecting the expired air volumes,
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Figure 9.2 Oxygen consumption vs. treadmill duration.

it is useful to evaluate oxygen consumption and conditioning by having the subjects run on the

treadmill and recording the duration. As we can see from Figure 9.2, this would not be a perfect

solution to the problem. Duration would not totally determine the VO2 MAX level. Nevertheless,

it would give us considerable information. When we do this, how should we predict what the

VO2 MAX level would be from the duration? Clearly, such a predictive equation should be

developed from the data at hand. When we do this, we want to characterize the accuracy of

such predictions and succinctly summarize the relationship between the two variables.

Example 9.3. Dern and Wiorkowski [1969] collected data dealing with the erythrocyte

adenosine triphosphate (ATP) levels in youngest and older sons in 17 families. The purpose of

the study was to determine the effect of storage of the red blood cells on the ATP level. The

level is important because it determines the ability of the blood to carry energy to the cells of

the body. The study found considerable variation in the ATP levels, even before storage. Some

of the variation could be explained on the basis of variation by family (genetic variation). The

data for the oldest and youngest sons are extracted from the more complete data set in the paper.

Table 9.3 presents the data for 17 pairs of brothers along with the ages of the brothers.

Figure 9.3 is a scattergram of the values in Table 9.3. Again, there appears to be some

relationship between the two values, with both brothers tending to have high or low values at

the same time. Again, we would like to consider whether or not such variability might occur by

chance. If chance is not the explanation, how could we summarize the pattern of variation for

the pairs of numbers?

The three scattergrams have certain features in common:

1. Each scattergram refers to a situation where two quantities are associated with each

experimental unit. In the first example, the melanoma rate for the state and the latitude

of the state are plotted. The state is the individual unit. In the second example, for each

person studied on the treadmill, VO2 MAX vs. the treadmill time in seconds was plotted.

In the third example, the experimental unit was the family, and the ATP values of the

youngest and oldest sons were plotted.
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Table 9.3 Erythrocyte Adenosine Triphosphate

(ATP) Levelsa in Youngest and Oldest Sons in 17

Families Together with Age (Before Storage)

Youngest Oldest

Family Age ATP Level Age ATP Level

1 24 4.18 41 4.81

2 25 5.16 26 4.98

3 19 4.85 27 4.48

4 28 3.43 32 4.19

5 22 4.53 25 4.27

6 7 5.13 23 4.87

7 21 4.10 24 4.74

8 17 4.77 25 4.53

9 25 4.12 26 3.72

10 24 4.65 25 4.62

11 12 6.03 25 5.83

12 16 5.94 24 4.40

13 9 5.99 22 4.87

14 18 5.43 24 5.44

15 14 5.00 26 4.70

16 24 4.82 26 4.14

17 20 5.25 24 5.30

Source: Data from Dern and Wiorkowski [1969].
aATP levels expressed as micromoles per gram of hemoglobin.

Figure 9.3 ATP levels (µmol/g of hemoglobin) of youngest and oldest sons in 17 families. (Data from

Dern and Wiorkowski [1969].)
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2. In each of the three diagrams, there appears to be a rough trend or association between the

variables. In the melanoma rate date, as the latitude increases, the melanoma rate tends to

decrease. In the treadmill data, as the duration on the treadmill increased, the VO2 MAX

also increased. In the ATP data, both brothers tended to have either a high or a low value

for ATP.

3. Although increasing and decreasing trends were evident, there was not a one-to-one rela-

tionship between the two quantities. It was not true that every state with a higher latitude

had a lower melanoma rate in comparison with a state at a lower latitude. It was not

true that in each case when individual A ran on the treadmill a longer time than individ-

ual B that individual A had a higher VO2 MAX value. There were some pairs of brothers

for which one pair did not have the two highest values when compared to the other

pair. This is in contrast to certain physical relationships. For example, if one plotted the

volume of a cube as a function of the length of a side, there is the one-to-one rela-

tionship: the volume increases as the length of the side increases. In the data we are

considering, there is a rough relationship, but there is still considerable variability or

scatter.

4. To effectively use and summarize such scattergrams, there is a need for a method to

quantitate how much of a change the trends represent. For example, if we consider two

states where one has a latitude 5◦ south of the other, how much difference is expected

in the melanoma rates? Suppose that we train a person to increase the duration of tread-

mill exercise by 70 seconds; how much of a change in VO2 MAX capacity is likely to

occur?

5. Suppose that we have some method of quantitating the overall relationship between the

two variables in the scattergram. Since the relationship is not precisely one to one, there

is a need to summarize how much of the variability the relationship explains. Another

way of putting this is that we need a summary quantity which tells us how closely the

two variables are related in the scattergram.

6. If we have methods of quantifying these things, we need to know whether or not any

estimated relationships might occur by chance. If not, we still want to be able to quantify

the uncertainty in our estimated relationships.

The remainder of this chapter deals with the issues we have just raised. In the next section

we use a linear equation (a straight line) to summarize the relationship between two variables

in a scattergram.

9.2 SIMPLE LINEAR REGRESSION MODEL

9.2.1 Summarizing the Data by a Linear Relationship

The three scattergrams above have a feature in common: the overall relationship is roughly

linear; that is, a straight line that characterizes the relationships between the two variables could

be placed through the data. In this and subsequent chapters, we look at linear relationships.

A linear relationship is one expressed by a linear equation. For variables U, V,W, . . . , and

constants a, b, c, . . . , a linear equation for Y is given by

Y = a + bU + cV + dW + · · ·

In the scattergrams for the melanoma data and the exercise data, let X denote the variable

on the horizontal axis (abscissa) and Y be the notation for the variable on the vertical axis

(ordinate). Let us summarize the data by fitting the straight-line equation Y = a + bX to the

data. In each case, let us think of the X variable as predicting a value for Y . In the first two
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examples, that would mean that given the latitude of the state, we would predict a value for the

melanoma rate; given the duration of the exercise test, we would predict the VO2 MAX value

for each subject.

There is terminology associated with this procedure. The variable being predicted is called

the dependent variable or response variable; the variable we are using to predict is called the

independent variable, the predictor variable, or the covariate. For a particular value, say, X

i

of

the predictor variable, our value predicted for Y is given by

̂

Y

i

= a + bX

i

(1)

The fit of the values predicted to the values observed (X

i

, Y

i

) may be summarized by the

difference between the value Y

i

observed and the value ̂

Y

i

predicted. This difference is called a

residual value:

residual value = y

i

− ŷ

i

= value observed − value predicted (2)

It is reasonable to fit the line by trying to make the residual values as small as possible. The

principle of least squares chooses a and b to minimize the sum of squares of the residual values.

This is given in the following definition:

Definition 9.2. Given data (x

i

, y

i

), i = 1, 2, . . . , n, the least squares fit to the data chooses

a and b to minimize
n

∑

i=1

(y

i

− ŷ

i

)

2

where ŷ

i

= a + bx

i

.

The values a and b that minimize the sum of squares are described below. At this point, we

introduce some notation similar to that of Section 7.3:

[y2] =

∑

i

(y

i

− y)

2

[x2] =

∑

i

(x

i

− x)

2

[xy] =

∑

i

(x

i

− x)(y

i

− y)

We decided to choose values a and b so that the quantity

∑

i

(y

i

− ŷ

i

)

2
=

∑

i

(y

i

− a − bx

i

)

2

is minimized. It can be shown that the values for a and b that minimize the quantity are given by

b =

∑

(x

i

− x)(y

i

− y)

∑

(x

i

− x)

2
=

[xy]

[x2]

and

a = y − bx

Note 9.4 gives another equivalent formula for b that emphasizes its role as a summary statistic

of the slope of the X–Y relationship.
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Table 9.4 Predicted Mortality Rates by Latitude for the

Data of Table 9.1a

Latitude (x) Predicted Mortality (y) s1 s2 s3

30 209.9 19.12 6.32 20.13

35 180.0 19.12 3.85 19.50

39.5 (mean) 152.9 (mean) 19.12 2.73 19.31

40 150.1 19.12 2.74 19.31

45 120.2 19.12 4.26 19.58

50 90.3 19.12 6.83 20.30

aFor the quantities s2 and s3, see Section 9.2.3.

For the melanoma data, we have the following quantities:

x = 39.533, y = 152.878
∑

i

(x

i

− x)(y

i

− y) = [xy] = −6100.171

∑

i

(x

i

− x)

2
= [x2] = 1020.499

∑

i

(y

i

− y)

2
= [y2] = 53, 637.265

The least squares slope b is

b =

−6100.171

1020.499
= −5.9776

and the least squares intercept a is

a = 152.878 − (−5.9776 × 39.533) = 389.190

Figure 9.4 presents the melanoma data with the line of least squares fit drawn in. Because of

the method of selecting the line, the line goes through the data, of course. The least squares

line always has the property that it goes through the point in the scattergram corresponding

to the sample mean of the two variables. The sample means of the variables are located by

the intersection of dotted lines. Further, the point for Tennessee is detailed in the box in the

lower left-hand corner. The value predicted from the equation was 174, whereas the actual

melanoma rate for this state was 186. Thus, the residual value is the difference, 12. We see

that the value predicted, 174, is closer to the value observed than to the overall Y mean, which

is 152.9.

For the melanoma data, the line of least squares fit is Y = 389.19 − 5.9776X. For each

state’s observed mortality rate, there is then a predicted mortality rate based on knowledge of

the latitude. Some predicted values are listed in Table 9.4. The farther north the state, the lower

the mortality due to malignant melanoma; but now we have quantified the change.

Note that the predicted mortality at the mean latitude (39.5◦
) is exactly the mean value of

the mortalities observed ; as noted above, the regression line goes through the point (x, y).

9.2.2 Linear Regression Models

With the line of least squares fit, we shall associate a mathematical model. This linear regression

model takes the predictor or covariate observation as being fixed. Even if it is sampled at random,
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Figure 9.4 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white

males by state and latitude of the center of the state for the period 1950–1959 (least squares regression line

is given).

the analysis is conditional upon knowing the value of X. In the first example above, the latitude

of each state is fixed. In the second example, the healthy people may be considered to be a

representative—although not random—sample of a larger population; in this case, the duration

may be considered a random quantity. In the linear regression analysis of this chapter, we know

X and are interested in predicting the value of Y . The regression model assumes that for a

fixed value of X, the expected value of Y is some function. In addition to this expected value,

a random error term is added. It is assumed that the error has a mean value of zero. We shall

restrict ourselves to situations where the expected value of Y for known X is a linear function.

Thus, our linear regression model is the following:

expected value of Y knowing X = E(Y |X) = α + βX

Y = α + βX + e, where e (error) has E(e) = 0

The parameters α and β are population parameters. Given a sample of observations, the

estimates a and b that we found above are estimates of the population parameters. In the

mortality rates of the states, the random variability arises both because of the randomness

of the rates in a given year and random factors associated with the state, other than lati-

tude. These factors make the observations during a particular time period reasonably mod-

eled as a random quantity. For the exercise test data, we may consider the normal subjects

tested as a random sample from a population of active normal males who might have been

tested.

Definition 9.3. The line E(Y |X) = α + βX is called the population regression line. Here,

E(Y |X) is the expected value of Y at X (assumed known). The coefficients α and β are called

population regression coefficients. The line Y = a + bX is called the estimated regression line,
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and a and b are called estimated regression coefficients. The term estimated is often dropped,

and regression line and regression coefficients are used for these estimated quantities.

For each X, E(Y |X) is the mean of a population of observations. On the left of Figure is

shown a linear regression situation; on the right, the regression E(Y |X) is not linear.

To simplify statistical inference, another assumption is often added: that the error term is

normally distributed with mean zero and variance σ

2
1 . As we saw with the t-test, the assumption

of normality is important for testing and confidence interval estimation only in fairly small sam-

ples. In larger samples the central limit theorem replaces the need for distributional assumptions.

Note that the variance of the error term is not the variance of the Y variable. It is the variance

of the Y variable when the value of the X variable is known.

Given data, the variance σ

2
1 is estimated by the quantity s

2
y·x

, where this quantity is defined as

s

2
y·x

=

∑

(Y

i

− ̂

Y

i

)

2

n − 2

Recall that the usual sample variance was divided by n − 1. The n − 2 occurs because two

parameters, α and β, are estimated in fitting the data rather than one parameter, the sample

mean, that was estimated before.

9.2.3 Inference

We have the model

Y = α + βX + e, where e ∼ N(0, σ

2
1 )

On the basis of n pairs of observations we presented estimates a and b of α and β, respectively.

To test hypotheses regarding α and β, we need to assume the normality of the term e.

The left panel of Figure 9.5 shows a situation where these assumptions are satisfied. Note

that:

1. E(Y |X) is linear.

2. For each X, the normal Y -distribution has the same variance.

3. For each X, the Y -distribution is normal (less important as the sample size is large).

The right panel of Figure 9.5 shows a situation where all these assumptions don’t hold.

1. E(Y |X) is not a straight line; it curves.

2. The variance of Y increases as X increases.

3. The distribution becomes more highly skewed as X increases.

It can be shown, under the correct normal model or in large samples, that

b ∼ N

(

β,

σ

2
1

[x2]

)

and a ∼ N

(

α, σ

2
1

[

1

n

+

x

2

[x2]

])

Recall that σ

2
1 is estimated by s

2
y.x

=

∑

(Y

i

− ̂

Y

i

)

2
/(n − 2). Note that the divisor is n − 2: the

number of degrees of freedom. The reason, as just mentioned, is that now two parameters are

estimated: α and β. Given these facts, we can now either construct confidence intervals or tests

of hypotheses after constructing appropriate pivotal variables:

b − β

σ1/

√

[x2]
∼ N(0, 1),

b − β

s

y.x

/

√

[x2]
∼ t

n−2

and similar terms involving the intercept a are discussed below.
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Figure 9.5 Linear regression assumptions and violations. On the left, the expected values of Y for given

X values fall on a straight line. The variation about the line has the same variance at each X. On the right,

the expected values fall on a curve, not a straight line. The distribution of Y is different for different X

values, with variance and skewness increasing with X.

Returning to Example 9.1, the melanoma data by state, the following quantities are known

or can be calculated:

a = 389.190, s

2
y·x

=

∑

i

(Y

i

− ̂

Y

i

)

2

n − 2
=

17,173.1

47
= 365.3844

b = −5.9776, [x2] = 1020.499, s

y.x

= 19.1150

On the assumption that there is no relationship between latitude and mortality, that is, β = 0,

the variable b has mean zero. A t-test yields

t47
.

=

−5.9776

19.1150/

√

1020.499

.

=

−5.9776

0.59837

.

= −9.99

From Table A.4, the critical value for a t-variable with 47 degrees of freedom, at the 0.0001

level (two-tailed) is approximately 4.25; hence, the hypothesis is rejected and we conclude

that there is a relationship between latitude and mortality; the mortality increases about 6.0

persons per 10,000,000 for every degree farther south. This, of course, comes from the value of

b = −5.9776
.

= −6.0. Similarly, a 95% confidence interval for β can be constructed using the

t-value of 2.01, and the standard error of the slope, 0.59837 = s

y·x/

√

[x2].

A 95% confidence interval is −5.9776± (2.01×0.59837), producing lower and upper limits

of −7.18 and −4.77, respectively. Again, the confidence interval does not include zero, and the

same conclusion is reached as in the case of the hypothesis test.

The inference has been concerned with the slope β and intercept α up to now. We now want

to consider two additional situations:

1. Inference about population means, α + βX, for a fixed value of X

2. Inference about a future observation at a fixed value of X

To distinguish between the two cases, let µ̂

x

and ŷ

x

be the predicted mean and a new random

single observation at the point x, respectively. It is important to note that for inference about a

future observation the normality assumption is critical even in large samples. This is in contrast

to inference about the predicted mean or about a and b, where normal distributions are required

only in small samples and the central limit theorem substitutes in large samples.



SIMPLE LINEAR REGRESSION MODEL 303

First, then, inference about the population mean at a fixed X value: It is natural to estimate

α + βX by a + bx; the predicted value of Y at the value of X = x. Rewrite this quantity as

µ̂

x

= y + b(x − x)

It can be shown that y and b are statistically independent so that the variance of the quantity is

var[y + b(x − x)] = var(y) + (x − x)

2 var(b)

=

σ

2
1

n

+ (x − x)

2 σ

2
1

[x2]

= σ

2
1

[

1

n

+

(x − x)

2

[x2]

]

= σ

2
2 , say

Tests and confidence intervals for E(Y |X) at a fixed value of x may be based on the t-

distribution.

The quantity σ

2
2 reduces to the variance for the intercept, a, at X = 0. It is useful to study

this quantity carefully; there are important implications for design (see Note 9.3). The variance,

σ

2
2 , is not constant but depends on the value of x. The more x differs from x, the greater the

contribution of (x − x)

2
/[x2] to the variance of a + bx. The contribution is zero at x = x. At

x = x, y = y the slope is not used. Regardless of the slope the line goes through mean point

(X, Y ). Consider Example 9.1 again. We need the following information:

s

y·x = 19.1150

n = 49

x = 39.533

[x2] = 1020.499

Let

s

2
2 = s

2
y·x

[

1

n

+

(x − x)

2

[x2]

]

That is, s

2
2 estimates σ

2
2 . Values of s2 as related to latitude are given in Table 9.4. Confidence

interval bands for the mean, α +βX (at the 95% level), are given in Figure 9.6 by the narrower

bands. The curvature is slight due to the large value of [x2] and the relatively narrow range of

prediction.

We now turn to the second problem: predicting a future observation on the basis of the

observed data. The variance is given by

s

2
3 = s

2
y·x

[

1 +

1

n

+

(x − x)

2

[x2]

]

This is reasonable in view of the following argument: At the point α + βX an observation

has variance σ

2
2 (estimated by s

2
y·x

). In addition, there is uncertainty in the true value α + βX.

This adds variability to the estimate. A future observation is assumed to be independent of past

observations. Hence the variance can be added and the quantity s

2
3 results when σ

2
1 is estimated

by s

2
y·x

. Confidence interval bands for future observations (95% level) are represented by outer

lines in Figure 9.6. This band means that we are 95% certain that the next observation at the

fixed point x will be within the given bands. Note that the curvature is not nearly as marked.
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Figure 9.6 Data of Figure 9.1: 95% confidence bands for population means (solid) and 95% confidence

bands for a future observation (dashed).

9.2.4 Analysis of Variance

Consider Example 9.1 and the data for Tennessee, as graphed in Figure 9.4. The basic data for

this state are (omitting subscripts)

y = 186.0 = observed mortality

x = 36.0 = latitude of center of state

ŷ = 174.0 = predicted mortality using latitude of 36.0

y = 152.9 = average mortality for United States

Partition the data as follows:

(y − y) = (ŷ − y) + (y − ŷ)

total variation = attributable to regression + residual from regression

186.0 − 152.9 = (174.0 − 152.9) + (186.0 − 174.0)

33.1 = 21.1 + 12.0

Note that the quantity

ŷ − y = a + bx − y

= y − bx + bx − y

= b(x − x)

The quantity is zero if b = 0, that is, if there is no regression relationship between Y and X. In

addition, it is zero if prediction is made at the point x = x.

These quantities can be calculated for each state, as indicated in abbreviated form in Table 9.5.

The sums of squares of these quantities are given at the bottom of the table. The remarkable

fact is that
∑

(y

i

− y)

2
=

∑

(ŷ

i

− y)

2
+

∑

(y

i

− ŷ

i

)

2

53,637.3 = 36,464.2 + 17,173.1
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Table 9.5 Deviations from Mean and Regression Based on Data of Table 9.1

Variation

Observed

Mortality Latitude Predicted Total = Regression + Residual

Case State (y) (x) Mortalitya

y − y = ŷ − y + y − ŷ

1 Alabama 219.0 33.0 191.9 66.1 = 39.0 + 27.1

2 Arizona 160.0 34.5 183.0 7.1 = 30.1 + −23.0

.

.

.

.

.

.

.

.

.

.

.

.

41 Tennessee 186.0 36.0 174.0 33.1 = 21.1 + 12.0

.

.

.

.

.

.

.

.

.

.

.

.

48 Wisconsin 110.0 44.5 123.2 −42.9 = −29.7 + −13.2

49 Wyoming 134.0 43.0 132.2 −18.9 = −20.7 + 1.8

Total 0 = 0 + 0

Mean 152.9 39.5 152.9 0 = 0 + 0

Sum of squares 53,637.3 = 36,464.2 + 17,173.1

aPredicted mortality based on regression line y = 389.19 − 5.9776x, where x is the latitude at the center of the state.

that is, the total variation as measured by
∑

(y

i

− y)

2 has been partitioned additively into a

part attributable to regression and the residual from regression. The quantity
∑

(ŷ

i

− y)

2
=

∑

b

2
(x

i

− x)

2
= b

2[x2]. (But since b = [xy]/[x2], this becomes
∑

(ŷ

i

− y)

2
= [xy]2

/[x2].)

Associated with each sum of squares is a degree of freedom (d.f.) which can also be partitioned

as follows:

total variation = attributable to regression + residual variation

d.f. = n − 1 = 1 + n − 2

49 = 1 + 48

The total variation has n−1 d.f., not n, since we adjusted Y about the mean Y . These quantities

are commonly entered into an analysis of variance table as follows:

Source of Variation d.f. SS MS F -Ratio

Regression 1 36,464.2 36,464.2 99.80

Residual 47 17,173.1 365.384

Total 48 53,637.3

The quantity 365.384 is precisely s

2
y·x

. The F -ratio is discussed below. The mean square is

the sum of squares divided by the degrees of freedom. The analysis of variance table of any set

of n pairs of observations (x

i

, y

i

), i = 1, . . . , n, is

Source of Variation d.f. SS MS F -Ratio

Regression 1 [xy]2
/[x2] [xy]2

/[x2]
[xy]2

/[x2]

s

2
y·x

Residual n - 2 By subtraction s

2
y·x

Total n - 1 [y2]
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Several points should be noted about this table and the regression procedure:

1. Only five quantities need to be calculated from the raw data to completely determine the

regression line and sums of squares:
∑

x

i

,

∑

y

i

,

∑

x

2
i

,

∑

y

2
i

, and
∑

x

i

y

i

. From these

quantities one can calculate

[x2] =

∑

(x

i

− x)

2
=

∑

x

2
i

−

(
∑

x

i

)2

n

[y2] =

∑

(y

i

− y)

2
=

∑

y

2
i

−

(
∑

y

i

)2

n

[xy] =

∑

(x

i

− x)(y

i

− y) =

∑

x

i

y

i

−

∑

y

i

∑

x

i

n

.

2. The greater the slope, the greater the SS due to regression. That is,

SS(regression) = b

2
∑

(x

i

− x)

2
=

[xy]2

[x2]

If the slope is “negligible,” SS(regression) will tend to be “small.”

3. The proportion of the total variation attributable to regression is usually denoted by r

2;

that is,

r

2
=

variation attributable to regression

total variation

=

[xy]2
/[x2]

[y2]

=

[xy]2

[x2][y2]

It is clear that 0 ≤ r

2
≤ 1 (why?). If b = 0, then [xy]2

/[x2] = 0 and the variation

attributable to regression is zero. If [xy]2
/[x2] is equal to [y2], all of the variation can be

attributed to regression; to be more precise, to linear regression; that is, all the observations

fall on the line a + bx. Thus, r

2 measures the degree of linear relationship between X

and Y . The correlation coefficient, r , is studied in Section 9.3. For the data in Table 9.4,

r

2
=

36,464.2

53,637.3
= 0.67983

That is, approximately 68% of the variation in mortality can be attributed to variation in

latitude. Equivalently, the variation in mortality can be reduced 68% knowing the latitude.

4. Now consider the ratio

F =

[xy]2
/[x2]

s

2
y·x

Under the assumption of the model [i.e., y ∼ N(α + βX, σ

2
1 )], the ratio F tends to be

near 1 if β = 0 and tends to be larger than 1 if β �= 0 (either positively or negatively).

F has the F -distribution, as introduced in Chapter 5. In the example F1,47 = 99.80, the

critical value at the 0.05 level is F1,47 = 4.03 (by interpolation). The critical value at

the 0.001 level is F1,47 = 12.4 (by interpolation). Hence, we reject the hypotheses that

β = 0. We tested the significance of the slope using a t-test given the value

t47 = −9.9898
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The F -value we obtained was

F1,47 = 99.80

In fact,

(−9.9898)

2
= 99.80

That is,

t

2
47 = F1,47

Recall that

t

2
v

= F1,v

Thus, the t-test and the F -test for the significance of the slope are equivalent.

9.2.5 Appropriateness of the Model

In Chapter 5 we considered the appropriateness of the model y ∼ N(µ, σ

2
) for a set of data

and discussed briefly some ways of verifying the appropriateness of this model. In this section

we have the model

y ∼ N(α + βX, σ

2
1 )

and want to consider its validity. At least three questions can be asked:

1. Is the relationship between Y and X linear?

2. The variance σ

2
1 is assumed to be constant for all values of X (homogeneity of variable).

Is this so?

3. Does the normal model hold?

Two very simple graphical procedures, both utilizing the residuals from regression y

i

− ŷ

i

,

can be used to verify the assumptions above. Also, one computation on the residuals is useful.

The two graphical procedures are considered first.

To Check for: Graphical Procedure

1. Linearity of regression and

homogeneity of variance

Plot (y

i

− ŷ

i

) against ŷ

i

,

i = 1, . . . , n

2. Normality Normal probability plot of

y

i

− ŷ

i

, i = 1, . . . , n

We illustrate these with data created by Anscombe [1973]. As we noted above, just five

summaries of the data specify everything about the linear regression model. Anscombe created

four data sets in which these five summaries, and thus the fitted model, were identical, but where

the data were very different. Only one of these sets of data is appropriate for linear regression.

Linearity of Regression and Homogeneity of Variance

Given only one predictor variable, X, the graph of Y vs. X will suggest nonlinearity or hetero-

geneity of variance, see the top row of regression patterns in Figure 9.7. But if there is more than

one predictor variable, as in Chapter 11, the simple two-dimensional graph is not possible. But

there is a way of detecting such patterns by considering residual plots y − ŷ against a variety of

variables. A common practice is to plot y − ŷ against ŷ; this graph is usually referred to as a

residual plot. The advantage is, of course, that no matter how many predictor variables are used,
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it is always possible to plot y − ŷ. The second row of graphs in Figure 9.7 indicate the residual

patterns associated with the regression patterns of the top row. Pattern 1 indicates a reasonable

linear trend, pattern 2 shows a very strong pattern in the residuals. Pattern 3 has a single very

large residual, and in pattern 4 it is the distribution of X rather than Y that is suspicious.

Before turning to the questions of normality of the data, consider the same kind of analysis

carried out on the melanoma data. The residuals are plotted in the left panel of Figure 9.8. There

is no evidence that there is nonlinearity or heterogeneity of variance.

Normality

One way of detecting gross deviations from normality is to graph the residuals from regression

against the expected quantiles of a normal distribution as introduced in Chapter 4. The last row

of patterns in Figure 9.6 are the normal probability plots of the deviations from linear regression.

The last row in Figure 9.6 indicates that a normal probability plot indicates outliers clearly but

is not useful in detecting heterogeneity of variance or curvilinearity.

Of particular concern are points not fit closely by the data. The upper right and lower left

points often tail in toward the center in least squares plot. Points on the top far to the right and

on the bottom far to the left (as in pattern 2) are of particular concern.

The normal probability plot associated with the residuals of the melanoma are plotted in the

right panel of Figure 9.8. There is no evidence against the normality assumption.

9.2.6 Two-Sample t-Test as a Regression Problem

In this section we show the usefulness of the linear model approach by illustrating how the two

sample t-test can be considered a special kind of linear model. For an example, we again return

to the data on mortality rates due to melanoma contained in Table 9.1. This time we consider the

rates in relationship to contiguity to an ocean; there are two groups of states: those that border

on an ocean and those that do not. The question is whether the average mortality rate for the first

group differs from that of the second group. The t-test and analysis are contained in Table 9.6.

The mean difference, y1 −y2 = 31.486, has a standard error of 8.5468 so that the calculated

t-value is t = 3.684 with 47 degrees of freedom, which exceeds the largest value in the t-table

at 40 or 60 degrees of freedom and consequently, p < 0.001. The conclusion then is that the

mortality rate due to malignant melanoma is appreciably higher in states contiguous to an ocean

as compared to “inland” states, the difference being approximately 31 deaths per 107 population

per year.
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Figure 9.8 Melanoma data (left) residuals (y − ŷ) from regression lines Y = 389.19 − 589.8X plotted

against ŷ and (right) normal quantile plot of residuals, y − ŷ.
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Table 9.6 Comparison by Two-Sample t-Test of Mortality Rates Due to Melanoma (Y ) by

Contiguity to Ocean

Contiguity to ocean No = 0 Yes = 1

Number of states n1 = 27 n2 = 22

Mean mortality y1 = 138.741 y2 = 170.227

Variancea

s

2
1 = 697.97 s

2
2 = 1117.70

Pooled variance s

2
p

= 885.51

Standard error of difference s

p

√

1

n1

+

1

n2

= 8.5468

Mean difference y2 − y1 = 31.487

t-Value t = 3.684

Degrees of freedom d.f. = 47

p-Value p < 0.001

aSubscripts on variances denote group membership in this table.

Now consider the following (equivalent) regression problem. Let Y be the mortality rate and

X the predictor variable; “X = contiguity to ocean” and X takes on only two values, 0, 1. (For

simplicity, we again label all the variables and parameters, Y,X, α, β, and σ

2
1 , but except for Y ,

they obviously are different from the way they were defined in earlier sections.) The model is

Y ∼ N(α + βX, σ

2
1 )

The data are graphed in Figure 9.9. The calculations for the regression line are as follows:

n = 49, b =

[xy]

[x2]
= 31.487

[y2] = 53637.265, a = 138.741

[xy] = 381.6939, Regression line

[x2] = 12.12245, Y = 138.741 + 31.487X

y = 152.8776, (n − 2)s

2
y·x

= [y2] −

[xy]2

[x2]

x = 0.44898, = 41,619.0488

s

2
y·x

= 885.51

The similarity to the t-test becomes obvious, the intercept a = 138.741 is precisely the mean

mortality for the “inland” states. The “slope,” b = 31.487, is the mean difference between the

two groups of states, and s

2
y·x

, the residual variance, is the pooled variance. The t-test for the

slope is equivalent to the t-test for the difference in the two means.

variance of slope = s

2
b

=

s

2
y·x

[x2]

=

885.51

12.12245

= 73.0471
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Figure 9.9 Melanoma data: regression of mortality rate on contiguity to ocean, coded 0 if not contiguous

to ocean, 1 if contiguous to ocean.

s

b

= 8.5468

t =

31.487

8.5468

= 3.684

The t-test for the slope has 47 degrees of freedom, as does the two-sample t-test. Note also

that s

b

is the standard error of the differences in the two-sample t-test.

Finally, the regression analysis can be put into analysis of variance form as displayed in

Table 9.7:

SS(regression) =

[xy]2

[x2]

=

(381.6939)

2

12.12245

= 12,018.22

SS(residual) = [y2] −

[xy]2

[x2]

= 53,637.26 − 12,018.22

= 41,619.04

We note that the proportion of variation in mortality rates attributable to “contiguity to

ocean” is

r

2
=

[xy]2
/[x2]

[y2]

=

12,018.22

53,637.06

= 0.2241
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Table 9.7 Regression Analysis of Mortality and Contiguity

to Ocean

Source of Variation d.f. SS MS F -Ratio

Regression 1 12,018.22 12,018.22 13.57a

Residual 47 41,619.04 885.51

Total 48 53,637.26

aSignificant at the 0.001 level.

Approximately 22% of the variation in mortality can be attributed to the predictor variable:

“contiguity to ocean.”

In Chapter 11 we deal with the relationships among the three variables: mortality, latitude,

and contiguity to an ocean. The predictor variable “contiguity to ocean,” which takes on only

two values, 0 and 1 in this case, is called a dummy variable or indicator variable. In Chapter 11

more use is made of such variables.

9.3 CORRELATION AND COVARIANCE

In Section 9.2 the method of least squares was used to find a line for predicting one variable from

the other. The response variable Y , or dependent variable Y , was random for given X. Even if X

and Y were jointly distributed so that X was a random variable, the model only had assumptions

about the distribution of Y given the value of X. There are cases, however, where both variables

vary jointly, and there is a considerable amount of symmetry. In particular, there does not seem

to be a reason to predict one variable from the other. Example 9.3 is of that type. As another

example, we may want to characterize the length and weight relationship of newborn infants.

The basic sampling unit is an infant, and two measurements are made, both of which vary. There

is a certain symmetry in this situation: There is no “causal direction”—length does not cause

weight, or vice versa. Both variables vary together in some way and are probably related to each

other through several other underlying variables which determine (cause) length and weight. In

this section we provide a quantitative measure of the strength of the relationship between the

two variables and discuss some of the properties of this measure. The measure (the correlation

coefficient) is a measure of the strength of the linear relationship between two variables.

9.3.1 Correlation and Covariance

We would like to develop a measure (preferable one number) that summarizes the strength of

any linear relationship between two variables X and Y . Consider Example 9.2, the exercise test

data. The X variable is measured in seconds and the Y variable is measured in milliliters per

minute per kilogram. When totally different units are used on the two axes, one can change the

units for one of the variables, and the picture seems to change. For example, if we went from

seconds to minutes where 1 minute was graphed over the interval of 1 second in Figure 9.2, the

data of Figure 9.2 would go almost straight up in the air. Whatever measure we use should not

depend on the choice of units for the two variables. We already have one technique of adjusting

for or removing the units involved: to standardize the variables. We have done this for the t-test,

and we often had to do it for the construction of test statistics in earlier chapters. Further, since

we are just concerned with how closely the family of points is related, if we shift our picture

(i.e., change the means of the X and Y variables), the strength of the relationship between the

two variables should not change. For that reason, we subtract the mean of each variable, so that

the pictures will be centered about zero. In order that we have a solution that does not depend
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Figure 9.10 Scatter diagrams for the standardized variables.

on units, we standardize each variable by dividing by the standard deviation. Thus, we are now

working with two new variables, say U and V , which are related to X and Y as follows:

U

i

=

X

i

− X

s

x

, V

i

=

Y

i

− Y

s

y

where

s

2
x

=

∑

(X

i

− X)

2

n − 1
and s

2
y

=

∑

(Y

i

− Y )

2

n − 1

Let us consider how the variables U

i

and V

i

vary together. In Figure 9.10 we see three

possible types of association. Part (a) presents a positive relationship, or association between,

the variables. As one increases, the other tends to increase. Part (b) represents a tighter, negative

relationship. As one decreases, the other tends to increase, and vice versa. By the word tighter,

we mean that the variability about a fitted regression line would not be as large. Part (c)

represents little or no association, with a somewhat circular distribution of points.

One mathematical function that would capture these aspects of the data results from mul-

tiplying U

i

and V

i

. If the variables tend to be positive or negative together, the product will

always be positive. If we add up those multiples, we would get a positive number. On the other

hand, if one variable tends to be negative when the other is positive, and vice versa, when we

multiply the U

i

and V

i

together, the product will be negative; when we add them, we will get

a negative number of substantial absolute value.

On the other hand, if there is no relationship between U and V , when we multiply them,

half the time the product will be positive and half the time the product will be negative; if we
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sum them, the positive and negative terms will tend to cancel out and we will get something

close to zero. Thus, adding the products of the standardized variables seems to be a reasonable

method of characterizing the association between the variables. This gives us our definition of

the correlation coefficient.

Definition 9.4. The sample Pearson product moment correlation coefficient, denoted by r ,

or r

XY

, is defined to be

r =

[xy]
√

[x2][y2]
=

∑

(x

i

− x)(y

i

− y)

√

∑

(x

i

− x)

2
∑

(y

i

− y)

2
=

1

n − 1

∑

u

i

v

i

This quantity is usually called the correlation coefficient.

Note that the denominator looks like the product of the sample standard deviations of X and

Y except for a factor of n − 1. If we define the sample covariance by the following equation,

we could define the correlation coefficient according to the second alternative definition.

Definition 9.5. The sample covariance, s

xy

, is defined by

s

xy

=

∑

i

(x

i

− x)(y

i

− y)

n − 1

Alternative Definition 9.4. The sample Pearson product moment correlation coefficient is

defined by

r =

[xy]
√

[x2][y2]
=

s

xy

s

x

s

y

The prefix co- is a prefix meaning “with,” “together,” and “in association,” occurring in words

derived from Latin: thus, the co-talks about the two variables varying together or in association.

The term covariance has the same meaning as the variance of one variable: how spread out

or variable things are. It is hard to interpret the value of the covariance alone because it is

composed of two parts; the variability of the individual variables and their linear association. A

small covariance can occur because X and/or Y has small variability. It can also occur because

the two variables are not associated. Thus, in interpreting the covariance, one usually needs to

have some idea of the variability in both variables. A large covariance, however, does imply

that at least one of the two variables has a large variance.

The correlation coefficient is a rescaling of the covariance by the standard deviations of X

and Y . The motivation for the construction of the covariance and correlation coefficient is the

following: s

xy

is the average of the product of the deviations about the means of X and Y . If

X tends to be large when Y is large, both deviations will be positive and the product will be

positive. Similarly, if X is small when Y is small, both deviations will be negative but their

products will still be positive. Hence, the average of the products for all the cases will tend to

be positive. If there is no relationship between X and Y , a positive deviation in X may be paired

with a positive or negative deviation in Y and the product will either be positive or negative,

and on the average will tend to center around zero. In the first case X and Y are said to be

positively correlated, in the second case there is no correlation between X and Y . A third case

results when large values of X tend to be associated with small values of Y , and vice versa. In

this situation, the product of deviations will tend to be negative and the variables are said to be

negatively correlated. The statistic r rescales the average of the product of the deviations about

the means by the standard deviations of X and Y .
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The statistic r has the following properties:

1. r has value between −1 and 1.

2. r = 1 if and only if all the observations are on a straight line with positive slope.

3. r = −1 if and only if all observations are on a straight line with negative slope.

4. r takes on the same value if X, or Y , changes units or has a constant added or subtracted.

5. r measures the extent of linear association between two variables.

6. r tends to be close to zero if there is no linear association between X and Y .

Some typical scattergrams and associated values of r are given in Figure 9.11. Figure 9.11(a)

and (b) indicate perfect linear relationships between two variables. Figure 9.11(c) indicates no

correlation. Figure 9.11(d) and (e) indicate typical patterns representing less than perfect cor-

relation. Figure 9.11(f ) to (j ) portray various pathological situations. Figure 9.11(f ) indicates

that although there is an explicit relationship between X and Y , the linear relationship is zero;

thus r = 0 does not imply that there is no relationship between X and Y . In statistical ter-

minology, r = 0 does not imply that the variables are statistically independent. There is one

important exception to this statement that is discussed in Section 9.3.3. Figure 9.11(g) indicates

that except for the one extreme point there is no correlation. The coefficient of correlation is very

sensitive to such outliers, and in Section 9.3.7 we discuss correlations that are not as sensitive,

that is, more robust. Figure 9.11(h) indicates that an explicit relationship between X and Y is not

identified by the correlation coefficient if the relationship is not linear. Finally, Figure 9.11(j )

Figure 9.11 Some patterns of association.
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suggests that there are three subgroups of cases; within each subgroup there is a positive cor-

relation, but the correlation is negative when the subgroups are combined. The reason is that

the subgroups have different means and care must be taken when combining data. For example,

natural subgroups defined by gender or race may differ in their means in a direction opposite

to the correlation within each subgroup.

Now consider Example 9.3. The scattergram in Figure 9.3 suggests a positive association

between the ATP level of the youngest son (X) and that of the oldest son (Y ). The data for

this example produce the following summary statistics (the subscripts on the values of X and

Y have been suppressed: for example,
∑

x

i

=

∑

x).

n = 17,
∑

x = 83.38, x = 4.90,
∑

y = 79.89, y = 4.70,
∑

x

2
= 417.1874,

∑

(x − x)

2
= 8.233024, s

x

= 0.717331
∑

y

2
= 379.6631,

∑

(y − y)

2
= 4.227094, s

y

= 0.513997
∑

xy = 395.3612,
∑

(x − x)(y − y) = 3.524247, s

xy

= 0.220265

r =

0.220265

(0.717331)(0.513997)

= 0.597

In practice, r will simply be calculated from the equivalent formula

r =

[xy]
√

[x2][y2]
=

3.524247
√

(8.233024)(4.227094)

=

3.524247

5.899302
= 0.597

The sample correlation coefficient and covariance estimate the population parameters. The

expected value of the covariance is

E(S

xy

) = E((X − µ

x

)(Y − µ

y

))

= σ

xy

where

µ

x

= E(X) and µ

y

= E(Y )

The population covariance is the average of the product of X about its mean times Y about its

mean.

The sample correlation coefficient estimates the population correlation coefficient ρ, defined

as follows:

Definition 9.6. Let (X, Y ) be two jointly distributed random variables. The (population)

correlation coefficient is

ρ =

σ

xy

σ

x

σ

y

=

E((X − µ

x

)(Y − µ

y

))

√

var(X)var(Y )

where σ

xy

is the covariance of X and Y , σ

x

the standard deviation of X, and σ

y

the standard

deviation of Y . ρ is zero if X and Y are statistically independent variables.

There is now a question about the statistical “significance” of a value r . In practical terms,

suppose that we have sampled 17 families and calculated the correlation coefficient in ATP
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levels between the youngest son and the oldest son. How much variation could we have expected

relative to the value observed for this set? Could the population correlation coefficient ρ = 0?

In the next two sections we deal with this question.

9.3.2 Relationship between Correlation and Regression

In Section 9.2.4, r

2 was presented, indicating a close connection between correlation and regres-

sion. In this section, the connection will be made explicit in several ways. Formally, one of the

variables X, Y could be considered the dependent variable and the other the predictor variable

and the techniques of Section 9.2 applied. It is easy to see that in most cases the slope of the

regression of Y on X will not be the same as that of X on Y . To keep the distinction clear, the

following notation will be used:

b

yx

= slope of the regression of the “dependent” variable Y on the “predictor” variable X

a

y

= intercept of the regression of Y on X

Similarly,

b

xy

= slope of the regression of the “dependent” variable X on the “predictor” variable Y

a

x

= intercept of the regression of X on Y

These quantities are calculated as follows:

Regress Y on X Regress X on Y

Slope b

yx

=

[xy]

[x2]
b

xy

=

[xy]

[y2]

Intercept a

y

= y − b

yx

x a

x

= x − b

xy

y

Residual variance S

2
y·x

=

[y2] − [xy]2
/[x2]

n − 2
S

2
x.y

=

[x2] − [xy]2
/[y2]

n − 2

From these quantities, the following relationships can be derived:

1. Consider the product

b

yx

b

xy

=

[xy]2

[x2][y2]

= r

2

Hence

r = ±

√

b

yx

b

xy

In words, r is the geometric mean of the slope of the regression of Y on X and the slope

of the regression of X on Y .

2.

b

yx

= r

S

y

S

x

, b

xy

= r

S

x

S

y

where S

x

and S

y

are the sample standard deviations of X and Y , respectively.
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3. Using the relationships in (2), the regression line of Y on X,

̂

Y = a

y

+ b

yx

X

can be transformed to

̂

Y = a

y

+

rS

y

S

x

X

= y +

rS

y

S

x

(X − x)

4. Finally, the t-test for the slope, in the regression of Y on X,

t

n−2 =

b

yx

S

b

yx

=

b

yx

S

y·x/

√

[x2]

is algebraically equivalent to

r

/

√

1 − r

2

n − 2

Hence, testing the significance of the slope is equivalent to testing the significance of the

correlation.

Consider Example 9.3 again. The data are summarized in Table 9.8. This table indicates that

the two regression lines are not the same but that the t-tests for testing the significance of the

slopes produce the same observed value, and this value is identical to the test of significance of

the correlation coefficient. If the corresponding analyses of variance are carried out, it will be

found that the F -ratio in the two analyses are identical and give an equivalent statistical test.

9.3.3 Bivariate Normal Distribution

The statement that a random variable Y has a normal distribution with mean µ and variance σ

2

is a statement about the distribution of the values of Y and is written in a shorthand way as

Y ∼ N(µ, σ

2
)

Such a distribution is called a univariate distribution.

Definition 9.7. A specification of the distribution of two (or more) variables is called a

bivariate (or multivariate) distribution.

The definition of such a distribution will require the specification of the numerical character-

istics of each of the variables separately as well as the relationships among the variables. The

most common bivariate distribution is the normal distribution. The equation for the density of

this distribution as well as additional properties are given in Note 9.6.

We write that (X, Y ) have a bivariate normal distribution as

(X, Y ) ∼ N(µ

x

, µ

y

, σ

2
x

, σ

2
y

, ρ)
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Table 9.8 Regression Analyses of ATP Levels of Oldest and Youngest Sons

Dependent variable Y

a

X

a

Predictor variable X

b

Y

b

Slope b

yx

= 0.42806 b

xy

= 0.83373

Intercept a

y

= 2.59989 a

x

= 0.98668

Regression line ̂

Y = 2.600 + 0.428X

̂

X = 0.987 + 0.834Y

Variance about mean s

2
y

= 0.26419 s

2
x

= 0.51456

Residual variance s

2
y·x

= 0.18123 s

2
x.y

= 0.35298

Standard error of slope s

b

y·x
= 0.14837 s

b

x.y

= 0.28897

Test of significance t15 =

0.42806

0.14837
= 2.885 t15 =

0.83373

0.28897
= 2.885

Correlation r

xy

= r

yx

= r = 0.597401

Test of significance t15 =

0.597401
√

1 − (0.597401)

2

17 − 2

=

0.597401

0.20706

= 2.885

Source: Data from Dern and Wiorkowski [1969].
aATP level of oldest son.
bATP level of youngest son.

Here µ

x

, µ

y

, σ

2
x

, and σ

2
y

are the means and variances of X and Y , respectively. The quantity ρ

is the (population) correlation coefficient. If we assume this model, it is this quantity, ρ, that is

estimated by the sample correlation, r .

The following considerations may help to give you some feeling for the bivariate normal

distribution. A continuous distribution of two variables, X and Y , may be modeled as follows.

Pour 1 pound of sand on a floor (the X–Y plane). The probability that a pair (X, Y ) falls into

an area, say A, on the floor is the weight of the sand on the area A. For a bivariate normal

distribution, the sand forms one mountain, or pile, sloping down from its peak at (µ

x

, µ

y

), the

mean of (X, Y ). Cross sections of the sand at constant heights are all ellipses. Figure 9.12 shows

a bivariate normal distribution. On the left is shown a view of the sand pile; on the right, a

topographical map of the terrain.

The bivariate normal distribution has the property that at every fixed value of X (or Y ) the

variable Y (or X) has a univariate normal distribution. In particular, write

Y

x

= random variable Y at a fixed value of X = x

It can be shown that at this fixed value of X = x,

Y

x

∼ N

(

α

y

+

σ

y

σ

x

ρx, σ

2
y

(1 − ρ

2
)

)

This is the regression model discussed previously:

Y

x

∼ N(α + βx, σ

2
1 )

where

α = µ

y

− βµ

x

, β =

σ

y

σ

x

ρ, σ

2
1 = σ

2
y

(1 − ρ

2
)
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Figure 9.12 Bivariate normal distribution.

Similarly, for

X

y

= random variable X at a fixed value of Y = y

it can be shown that

X

y

∼ N

(

α

x

+

σ

x

σ

y

ρy, σ

2
x

(1 − ρ

2
)

)

The null hypothesis β

yx

= 0 (or, β

xy

= 0) is equivalent then to the hypothesis ρ = 0, and the

t-test for β = 0 can be applied.

Suppose now that the null hypothesis is

ρ = ρ0
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where ρ0 is an arbitrary but specified value. The sample correlation coefficient r does not have

a normal distribution and the usual normal theory cannot be applied. However, R. A. Fisher

showed that the quantity

Z

r

=

1

2
log

e

1 + r

1 − r

has the following approximate normal distribution:

Z

r

∼ N

(

1

2
log

e

1 + ρ

1 − ρ

,

1

n − 3

)

where n is the number of pairs of values of X and Y from which r is computed. Not only does

Z

r

have approximately a normal distribution, but the variance of this normal distribution does

not depend on the true value ρ; that is, Z

r

− Z

ρ

is a pivotal quantity (5.2). This is illustrated

graphically in Figure 9.13, which shows the distribution of 1000 simulated values of r and Z

r

from distributions with ρ = 0 and ρ = 1/

√

2 ≈ 0.71. The distribution of r has a different

variance and different shape for the two values of ρ, but the distribution of Z

r

has the same

shape and same variance, differing only in location.
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Figure 9.13 Sampling distribution of correlation coefficient, r , before and after transformation, for

ρ = 0, 1/

√

2. Estimated from 1000 samples of size 10.
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Although the approximate distribution of Z

r

was derived under the assumption of a bivariate

normal distribution for X and Y , it is not very sensitive to this assumption and is useful quite

broadly. Z

r

may be used to test hypotheses about ρ and to construct a confidence interval for

ρ. This is illustrated below. The inverse, or reverse, function to r is (e

2Z

− 1)/(e

2Z

+ 1). Z

r

is

also the inverse of the hyperbolic tangent, tanh. To “undo” the operation, tanh is used.

Consider again Example 9.3 involving the ATP levels of youngest and oldest sons in the 17

families. The correlation coefficient was calculated to be

r = 0.5974

This value was significantly different from zero; that is, the null hypothesis ρ = 0 was rejected.

However, the authors show in the paper that genetic theory predicts the correlation to be ρ = 0.5.

Does the observed value differ significantly from this value? To test this hypothesis we use the

Fisher Z

r

transformation. Under the genetic theory, the null hypothesis stated in terms of Z

r

is

Z

r

∼ N

(

1

2
log

e

(

1 + 0.5

1 − 0.5

)

,

1

17 − 3

)

∼ N(0.5493, 0.07143)

The value observed is

Z

r

=

1

2
log

e

(

1 + 0.5974

1 − 0.5974

)

= 0.6891

The corresponding standard normal deviate is

z =

0.6891 − 0.5493
√

0.07143
=

0.1398

0.2673
= 0.5231

This value does not exceed the critical values at, say, the 0.05 level, and there is no evidence

to reject this null hypothesis.

Confidence intervals for ρ may be formed by first using Z

r

to find a confidence interval for

1/2 log
e

[(1 + ρ)/(1 − ρ)]. We then transform back to find the confidence interval for ρ. To

illustrate: a 100(1 − α)% confidence interval for 1/2 log
e

[(1 + ρ)/(1 − ρ)] is given by

Z

r

± z1−α/2

√

1

n − 3

For a 90% confidence interval with these data, the interval is (0 : 6891−1.645
√

1/14, 0.6891+

1.645
√

1/14) = (0.249, 1.13). When Z

r

= 0.249, r = 0.244, and when Z

r

= 0.811. Thus the

90% confidence interval for ρ is (0.244, 0.811). This value straddles 0.5.

9.3.4 Critical Values and Sample Size

We discussed the t-test for testing the hypothesis ρ = 0. The formula was

t

n−2 =

r

√

(1 − r

2
)/(n − 2)

This formula is very simple and can be used for finding critical values and for sample size

calculations: Given that the number of observation pairs is specified, the critical value for t with
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n − 2 degrees of freedom is determined, and hence the r critical value can be calculated. For

simplicity, write t

n−1 = t ; solving the equation above for r

2 yields

r

2
=

t

2

t

2
+ n − 2

For example, suppose that n = 20, the corresponding t-value with 18 degrees of freedom at the

0.05 level is t18 = 2.101. Hence,

r

2
=

(2.101)

2

(2.101)

2
+ 18

= 0.1969

and the corresponding value for r is r ± 0.444; that is, with 20 observations the value of r must

exceed 0.444 or be less than −0.444 to be significant at the 0.05 level. Table A.11 lists critical

values for r , as a function of sample size.

Another approach is to determine the sample size needed to “make” an observed value of r

significant. Algebraic manipulation of the formula gives

n =

t

2

r

2
− t

2
+ 2

A useful approximation can be derived if it is assumed that we are interested in reasonably

small values of r , say r < 0.5; in this case, t

.

= 2 at the 0.05 level and the formula becomes

n =

(

2

r

)2

− 2

For example, suppose that r = 0.3; the sample size needed to make this value significant is

n =

(

2

0.3

)2

− 2 = 44 − 2 = 42

A somewhat more refined calculation yields n = 43, so the approximation works reason-

ably well.

9.3.5 Using the Correlation Coefficient as a Measure of Agreement for Two Methods of

Measuring the Same Quantity

We have seen that for X and Y jointly distributed random variables, the correlation coefficient ρ

is a population parameter value: ρ is a measure of how closely X and Y have a linear association,

ρ

2 is the proportion of the Y variance that can be explained by linear prediction from X, and

vice versa.

Suppose that the regression holds and we may choose X. Figure 9.14 shows data from a

regression model with three different patterns of X variables chosen. The same errors were

added in each figure. The X values were spread out over larger and larger intervals. Since the

spread about the regression line remains the same and the range of Y increases as the X range

increases, the proportion of Y variability explained by X increases: 0.50 to 0.68 to 0.79. For

the same random errors and population regression line, r can be anywhere between 0 and 1,

depending on which X values are used! In this case the correlation coefficient depends not only

on the model, but also on experimental design, where the X’s are taken. For this reason some

authors say that the r should never be used unless one has a bivariate sample: Otherwise, we

do not know what r means; another experimenter with the same regression model could choose

different X values and obtain a radically different result.
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We discuss these ideas in the context of the exercise data of Example 9.2. Suppose that we

were strong supporters of maximal treadmill stress testing and wanted to show how closely

treadmill duration and VO2 MAX are related. Our strategy for obtaining a large correlation

coefficient will be to obtain a large spread of X values, duration. We may know that some of

the largest duration and VO2 MAX values were obtained by world-class cross-country skiers; so

we would recruit some. For low values we might search for elderly overweight and deconditioned

persons. Taking a combined group of these two types of subjects should result in a large value

of r . If the same experiment is run using only very old, very overweight, and very deconditioned

subjects, the small range will produce a small, statistically insignificant r value.

Since the same treadmill test procedure is associated with large and small r values, what does

r mean? A preferable summary indicator is the estimate, s

y·x of the residual standard deviation

σ1. If the linear regression model holds, this would be estimated to be the same in each case.

Is it wrong to calculate or present r when a bivariate sample is not obtained? Our answer is

a qualified no; that is, it is all right to present r in regression situations provided that:

1. The limitations are kept in mind and discussed. Possible comments on the situation for

other sorts of X values might be appropriate.

2. The standard deviation of the residuals should be estimated and presented.

In Chapter 7, the kappa statistic was presented. This was a measure of the amount of

agreement when two categorical measurements of the same objects were available. If the two

measurements were continuous, the correlation coefficient r is often used as a measure of the

agreement of the two techniques. Such use of r is subject to the comments above.

9.3.6 Errors in Both Variables

An assumption in the linear regression model has been that the predictor variable could be

measured without error and that the variation in the dependent variable was of one kind only

Figure 9.14 The regression model Y = 0.5X + e was used. Twenty-one random N (0, 1) errors were

generated by computer. The same errors were used in each panel.
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Figure 9.14 (continued)

and could be modeled completely if the value of the predictor variable was fixed. In almost all

cases, these assumptions do not hold. For example, in measuring psychological characteristics

of individuals, there is (1) variation in the characteristics from person to person; and (2) error

in the measurement of these psychological characteristics. It is almost certainly true that this

problem is present in all scientific work. However, it may be that the measurement error is

“small” relative to the variation of the individuals, and hence the former can be neglected.
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Another context where the error is unimportant is where the scientific interest is in the variable

as measured, not some underlying quantity. For example, in examining how well blood pressure

predicts stroke, we are interested in practical prediction, not in what might hypothetically be

possible with perfect measurements.

The problem is difficult and we will not discuss it beyond the effect of errors on the corre-

lation coefficient. For a more complete treatment, consult Acton [1984] or Kendall and Stuart

[1967, Vol. 2], and for a discussion of measurement error in more complex models, see Carrol

et al. [1995].

Suppose that we are interested in the correlation between two random variables X and Y

which are measured with errors so that instead of X and Y , we observe that

W = X + d, V = Y + e

where d and e are errors. The sampling we have in mind is the following: a “case” is selected

at random from the population of interest. The characteristics X and Y are measured but with

random independent errors d and e. It is assumed that these errors have mean zero and variances

σ

2
1 and σ

2
2 , respectively. Another “case” is then selected and the measurement process is repeated

with error. Of interest is the correlation ρ

XY

between X and Y , but the correlation ρ

V W

is

estimated. What is the relationship between these two correlations? The correlation ρ

XY

can be

written

ρ

XY

=

σ

XY

√

σ

2
X

σ

2
Y

The reason for writing the correlation this way can be understood when the correlation between

V and W is considered:

ρ

V W

=

σ

XY

√

(σ

2
X

+ σ

2
1 )(σ

2
Y

+ σ

2
2 )

=

σ

XY

σ

X

σ

Y

√

(

1 + σ

2
1 /σ

2
X

) (

1 + σ

2
2 /σ

2
Y

)

=

ρ

XY

√

(

1 + σ

2
1 /σ

2
X

) (

1 + σ

2
2 /σ

2
Y

)

The last two formulas indicate that the correlation between V and W is smaller in absolute value

than the correlation between X and Y by an amount determined by the ratio of the measurement

errors to the variance in the population. Table 9.9 gives the effect on ρ

XY

as related to the ratios

of σ

2
1 /σ

2
X

and σ

2
2 /σ

2
Y

.

A 10% error of measurement in the variables X and Y produces a 9% reduction in the

correlation coefficient. The conclusion is that errors of measurement reduce the correlation

between two variables; this phenomenon is called attenuation.

Table 9.9 Effect of Errors of Measurement on

the Correlation between Two Random Variables

σ

2
1

σ

2
X

σ

2
2

σ

2
Y

ρ

V W

σ

2
1

σ

2
X

σ

2
2

σ

2
Y

ρ

V W

0 0 1 ρ

XY

0.20 0.10 0.87ρ

XY

0.05 0.05 0.95ρ

XY

0.20 0.20 0.83ρ

XY

0.10 0.10 0.91ρ

XY

0.30 0.30 0.77ρ

XY
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Table 9.10 Schema for Spearman Rank Correlation

Case X Rank(X) Y Rank(Y ) d = Rank(X) − Rank(Y )

1 x1 R

x1
y1 R

y1
d1 = R

x1
− R

y1

2 x2 R

x2
y2 R

y2
d2 = R

x2
− R

y2

3 x3 R

x3
y3 R

y3
d3 = R

x3
− R

y3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n x

n

R

x

n

y

n

R

y

n

d

n

= R

x

n

− R

y

n

9.3.7 Nonparametric Estimates of Correlation

As indicated earlier, the correlation coefficient is quite sensitive to outliers. There are many

ways of getting estimates of correlation that are more robust; the paper by Devlin et al. [1975]

contains a description of some of these methods. In this section we want to discuss two methods

of testing correlations derived from the ranks of observations.

The procedure leading to the Spearman rank correlation is as follows: Given a set of n

observations on the variables X, Y , the values for X are replaced by their ranks, and similarly,

the values for Y . Ties are simply assigned the average of the ranks associated with the tied

observations. The scheme shown in Table 9.10 illustrates the procedure.

The correlation is then calculated between R

x

and R

y

. In practice, the Spearman rank cor-

relation formula is used:

r

s

= r

R

x

R

y

= 1 −

6
∑

d

2
i

n

3
− n

It can be shown that the usual Pearson product-moment correlation formula reduces to this

formula when the calculations are made on the ranks, if there are no ties. Note: For one or two

ties, the results are virtually the same. It is possible to correct the Spearman formula for ties,

but a simpler procedure is to calculate r

s

by application of the usual product-moment formula

to the ranks. Table A.12 gives percentile points for testing the hypothesis that X and Y are

independent.

Example 9.4. Consider again the data in Table 9.3 dealing with the ATP levels of the oldest

and youngest sons. These data are reproduced in Table 9.11 together with the ranks, the ATP

levels being ranked from lowest to highest.

Note that the oldest sons in families 6 and 13 had the same ATP levels; they would have

been assigned ranks 12 and 13 if the values had been recorded more accurately; consequently,

they are both assigned a rank of 12.5. For this example,

n = 17
∑

d

2
i

= 298.5

r

s

= 1 −

(6)(298.5)

173
− 17

= 1 − 0.3658 = 0.6342

This value compares reasonably well with the value r

xy

= 0.597 calculated on the actual data.

If the usual Pearson product-moment formula is applied to the ranks, the value r

s

= 0.6340 is

obtained. The reader may verify that this is the case. The reason for the slight difference is due

to the tie in values for two of the oldest sons. Table A.12 shows the statistical significance at

the two-sided 0.05 level since r

s

= 0.6342 > 0.490.

The second nonparametric correlation coefficient is the Kendall rank correlation coefficient.

Recall our motivation for the correlation coefficient r . If there is positive association, increase in
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Table 9.11 Rank Correlation Analysis of ATP Levels in

Youngest and Oldest Sons in 17 Families

Youngest Oldest

Family ATP Level Rank ATP Level Rank d

a

(X) (Y )

1 4.18 4 4.81 11 −7

2 5.16 12 4.98 14 −2

3 4.85 9 4.48 6 3

4 3.43 1 4.19 3 −2

5 4.53 5 4.27 4 1

6 5.13 11 4.87 12.5 −1.51

7 4.10 2 4.74 10 −8

8 4.77 7 4.53 7 0

9 4.12 3 3.72 1 2

10 4.65 6 4.62 8 −2

11 6.03 17 5.83 17 0

12 5.94 15 4.40 5 10

13 5.99 16 4.87 12.5 3.5

14 5.43 14 5.44 16 −2

15 5.00 10 4.70 9 1

16 4.82 8 4.14 2 6

17 5.25 13 5.30 15 −2
∑

d = 0
∑

d

2
= 298.5

aRank(X) − rank(Y ).

X will tend to correspond to increase in Y . That is, given two data points (X1, Y1) and (X2, Y2),

if X1 − X2 is positive, Y1 − Y2 is positive. In this case, (X1 − X2)(Y1 − Y2) is usually positive.

If there is negative association, (X1 − X2)(Y1 − Y2) will usually be negative. If X and Y are

independent, the expected value is zero. Kendall’s rank correlation coefficient is based on this

observation.

Definition 9.8. Consider a bivariate sample of size n, (X1, Y1), . . . , (X

n

, Y

n

). For each

pair, count 1 if (X

i

− X

j

)(Y

i

− Y

j

) > 0. Count −1 if (X

i

− X

j

)(Y

i

− Y

j

) < 0. Count zero if

(X

i

− X

j

)(Y

i

− Y

j

) = 0. Let κ be the sum of these n(n − 1)/2 counts. (Note that this κ is not

related to the kappa of Chapter 7.) Kendall’s τ is

τ =

κ

n(n − 1)/2

1. The value of τ is between −1 and 1. Under the null hypothesis of independence, τ is

symmetric about zero.

2. Note that (R

X

i

− R

X

j

)(R

Y

i

− R

Y

j

) has the same sign as (X

i

− X

j

)(Y

i

− Y

j

). That is,

both are positive or both are negative or both are zero. If we calculated τ from the ranks

of the (X

i

, Y

i

), we get the same number. Thus, τ is a nonparametric quantity based on

ranks; it does not depend on the distributions of X and Y .

3. The expected value of τ is

P [(X
i

− X

j

)(Y

i

− Y

j

) > 0] − P [(X
i

− X

j

)(Y

i

− Y

j

) < 0]
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Table 9.12 Data for Example 9.4a

j

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1

3 −1 1

4 1 1 1

5 −1 1 1 1

6 1 1 1 1 1

7 1 1 −1 1 −1 1

8 −1 1 −1 1 1 1 −1

9 1 1 1 −1 1 1 −1 1

10 −1 1 −1 1 1 1 −1 −1 1

11 1 1 1 1 1 1 1 1 1 1

12 −1 −1 −1 1 1 −1 −1 −1 1 −1 1

13 1 −1 1 1 1 0 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 −1 −1

15 −1 1 1 1 1 1 −1 1 1 1 1 −1 1 1

16 −1 1 1 −1 −1 1 −1 −1 1 −1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 −1 −1 1 1 1

aConsider (X

i

− X

j

)(Y

i

− Y

j

): the entries are 1 if this is positive, 0 if this equals 0, and −1 if this is negative.

4. For moderate to large n and no or few ties, an approximate standard normal test statistic is

Z =

κ

√

n(n − 1)(2n + 5)/18

More information where there are ties is given in Note 9.7.

5. If (X

i

−X

j

)(Y

i

−Y

j

) > 0, the pairs are said to be concordant. If (X

i

−X

j

)(Y

i

−Y

j

) < 0,

the pairs are discordant.

Return to the ATP data of Table 9.11. (X1 −X2)(Y1 −Y2) = (4.18−5.16)(4.81−4.98) > 0,

so we count +1. Comparing each of the 17 × 16/2 = 136 pairs gives the +1’s, 0’s and −1’s in

Table 9.12. Adding these numbers, κ = 67, and τ = 67/(17 × 16/2) = 0.493. The asymptotic

Z-value is

Z =

67
√

17 × 16 × 39/18
= 2.67

with p = 0.0076 (two-sided).

9.3.8 Change and Association

Consider two continuous measurements of the same quantity on the same subjects at different

times or under different circumstances. The two times might be before and after some treatment.

They might be for a person taking a drug and not taking a drug. If we want to see if there is

a difference in the means at the two times or under the two circumstances, we have several

statistical tests: the paired t-test, the signed rank test, and the sign test. Note that we have

observed pairs of numbers on each subject.

We now have new methods when pairs of numbers are observed: linear regression and corre-

lation. Which technique should be used in a given circumstance? The first set of techniques looks

for changes between the two measurements. The second set of techniques look for association

and sometimes the ability to predict. The two concepts are different ideas:
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1. Consider two independent length measurements from the same x-rays of a sample of

patients. Presumably there is a “true” length. The measurements should fluctuate about the

true length. Since the true length will fluctuate from patient to patient, the two readings

should be associated, hopefully highly correlated. Since both measurements are of the

same quantity, there should be little or no change. This would be a case where one

expects association, but no change.

2. Consider cardiac measurements on patients before and after a heart transplant. The initial

measurements refer to a failing heart. After heart transplant the measurements refer to the

donor heart. There will be little or no association because the measurements of output,

and so on, refer to different (somewhat randomly paired) hearts.

There are situations where both change and prediction or association are relevant. After

observing a change, one might like to investigate how the new changed values relate to the

original values.

9.4 COMMON MISAPPLICATION OF REGRESSION AND CORRELATION

METHODS

In this section we discuss some of the pitfalls of regression and correlation methods.

9.4.1 Regression to the Mean

Consider Figure 9.15, which has data points with approximately zero correlation or association,

considered as measurements before and after some intervention. On the left we see that the

before and after measurements have no association. The solid line indicates before = 0, and the

dashed line indicates before = after. On the right we plot the change against the value before

intervention. Again, the two lines are before = 0 and before = after (i.e., change = 0), and we

can see how selecting based on the value of the measurement before intervention distorts the

average change.

Cases with low initial values (circles on the graph) tend to have positive changes; those

with high initial values (triangles) have negative changes. If we admitted to our study only the

subjects with low values, it would appear that the intervention led to an increase. In fact, the

change would be due to random variability and the case selection. This phenomenon is called

regression to the mean.

As another example, consider subjects in a quantitative measurement of the amount of rash

due to an allergy. Persons will have considerable variability due to biology and environment.

Over time, in a random fashion, perhaps related to the season, the severity of rash will ebb and

flow. Such people will naturally tend to seek medical help when things are in a particularly

bad state. Following the soliciting of help, biological variability will give improvement with

or without treatment. Thus, if the treatment is evaluated (using before and after values), there

would be a natural drop in the amount of rash simply because medical help was solicited during

particularly bad times. This phenomenon again is regression to the mean. The phenomenon of

regression to the mean is one reason that control groups are used in clinical studies. Some

approaches to addressing it are given by Yanez et al. [1998].

9.4.2 Spurious Correlation

Consider a series of population units, for example, states. Suppose that we wish to relate the

occurrence of death from two distinct causes, for example, cancer at two different sites on the

body. If we take all the states and plot a scatter diagram of the number of deaths from the

two causes, there will be a relationship simply because states with many more people, such as
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Figure 9.15 Regression to the mean in variables with no association: Before vs. after and before vs.

change.

California or New York, will have a large number of deaths, compared to a smaller state such

as Wyoming or New Hampshire.

It is necessary to somehow adjust for or take the population into account. The most natural

thing to do is to take the death rate from certain causes, that is, to divide the number of deaths

by the population of the state. This would appear to be a good solution to the problem. This

introduces another problem, however. If we have two variables, X and Y , which are not related

and we divide them by a third variable, Z, which is random, the two ratios X/Z and Y/Z will

be related. Suppose that Z is the true denominator measured with error. The reason for the

relationship is that when Z is on the low side, since we are dividing by Z, we will increase

both numbers at the same time; when Z is larger than it should be and we divide X and Y

by Z, we decrease both numbers. The introduction of correlation due to computing rates using

the same denominator is called spurious correlation. For further discussion on this, see Neyman

[1952] and Kronmal [1993], who gives a superb, readable review. A preferable way to adjust for

population size is to use the techniques of multiple regression, which is discussed in Chapter 11.

9.4.3 Extrapolation beyond the Range of the Data

For many data sets, including the three of this chapter, the linear relationship does a reasonable

job of summarizing the association between two variables. In other situations, the relationship

may be reasonably well modeled as linear over a part of the range of X but not over the entire

range of X. Suppose, however, that data had been collected on only a small range of X. Then

a linear model might fit the accumulated data quite well. If one takes the regression line and

uses it as an indication of what would happen for data values outside the range covered by the

actual data, trouble can result. To have confidence in such extrapolation, one needs to know

that indeed the linear relationship holds over a broader range than the range associated with the

actual data. Sometimes this assumption is valid, but often, it is quite wrong. There is no way of

knowing in general to what extent extrapolation beyond the data gives problems. Some of the

possibilities are indicated graphically in Figure 9.16. Note that virtually any of these patterns of

curves, when data are observed over a short range, can reasonably be approximated by a linear

function. Over a wider range, a linear approximation is not adequate. But if one does not have

data over the wide range, this cannot be seen.

Sometimes it is necessary to extrapolate beyond the range of the data. For example, there is

substantial concern in Britain over the scale of transmission of “mad cow disease” to humans,

causing variant Creutzfeld–Jakob disease (vCJD). Forecasting the number of future cases is
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Figure 9.16 Danger of extrapolating beyond observed data.

important for public health, and intrinsically, requires extrapolation. A responsible approach to

this type of problem is to consider carefully what models (linear or otherwise) are consistent

with the data available and more important, with other existing knowledge. The result is a range

of predictions that acknowledge both the statistical uncertainty within each model and the (often

much greater) uncertainty about which model to use.

9.4.4 Inferring Causality from Correlation

Because two variables are associated does not necessarily mean that there is any causal con-

nection between them. For example, if one recorded two numbers for each year—the numbers

of hospital beds and the total attendance at major league baseball games—there would be a

positive association because both of these variables have increased as the population increased.

The direct connection is undoubtedly slight at best. Thus, regression and correlation approaches

show observed relationships, which may or may not represent a causal relationship. In general,

the strongest inference for causality comes from experimental data; in this case, factors are

changed by the experimenter to observe change in a response. Regression and correlation from

observational data may be very suggestive but do not definitively establish causal relationships.

9.4.5 Interpretation of the Slope of the Regression Line

During the discussion, we have noted that the regression equation implies that if the predictor

or independent variable X is higher by an amount �X, then on the average, Y is higher by an

amount �Y = b �X. This is sometimes interpreted to mean that if we can modify a situation

such that the X variable is changed by �X, the Y variable will change correspondingly; this

may or may not be the case. For example, if we look at a scatter diagram of adults’ height and

weight, it does not follow if we induce a change in a person’s weight, either by dieting or by

excess calories that the person’s height will change correspondingly. Nevertheless, there is an

association between height and weight. Thus, the particular inference depends on the science

involved. Earlier in this chapter, it was noted that from the relation between VO2 MAX and

the duration of the exercise test that if a person is trained to have an increased duration, the

VO2 MAX will also increase. This particular inference is correct and has been documented by
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serial studies recording both variables. It follows from other data and scientific understanding.

It is not a logical consequence of the observed association.

9.4.6 Outlying Observations

As noted above, outlying observations can have a large effect on the actual regression line (see

Figure 9.7, for example). If one examines these scattergrams or residual plots, the problem should

be recognized. In many situations, however, people look at large numbers of correlations and do

not have the time, the wherewithal, or possibly the knowledge to examine all of the necessary

visual presentations. In such a case, an outlier can be missed and data may be interpreted

inappropriately.

9.4.7 Robust Regression Models

The least squares regression coefficients result from minimizing

n

∑

i=1

g(Y

i

− a − bX

i

)

where the function g(z) = z

2. For large z (large residuals) this term is very large. In the

second column of figures in Figure 9.7 we saw that one outlying value could heavily modify an

otherwise nice fit.

One way to give less importance to large residuals is to choose the function g to put less

weight on outlying values. Many robust regression techniques take this approach. We can choose

g so that for most z, g(z) = z

2, as in the least squares estimates, but for very large |z|, g(z) is

less than z

2, even zero for extreme z! See Draper and Smith [1998, Chap. 25] and Huber [2003,

Chap. 7]. These resistant M–estimators protect against outlying Y but not against outlying X,

for which even more complex estimators are needed. It is also important to note that protection

against outliers is not always desirable. Consider the situation of a managed care organization

trying to determine if exercise reduces medical costs. A resistant regression estimator would

effectively ignore information on occasional very expensive subjects, who may be precisely the

most important in managing costs. See Chapter 8 and Lumley et al. [2002] for more discussion

of these issues.

NOTES

9.1 Origin of the Term Regression

Sir Francis Galton first used the term in 1885. He studied the heights of parents and offspring.

He found (on the average) that children of tall parents were closer to the average height (were

shorter); children of short parents were taller and closer to the average height. The children’s

height regressed to the average.

9.2 Maximum Likelihood Estimation of Regression and Correlation Parameters

For a data set from a continuous probability density, the probability of observing the data is

proportional to the probability density function. It makes sense to estimate the parameters by

choosing parameters to make the probability of the observed data as large as possible. Such esti-

mates are called maximum likelihood estimates (MLEs). Knowing X1, . . . , X

n

in the regression
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problem, the likelihood function for the observed Y1, . . . , Y

n

is (assuming normality)

n

∏

i=1

1
√

2πσ

exp

{

−

1

2σ

2
[Y

i

− (α + βX

i

)]2

}

The maximum likelihood estimates of α and β are the least squares estimates a and b. For the

bivariate normal distribution, the MLE of ρ is r .

9.3 Notes on the Variance of a, Variance of a + bx, and Choice of x for Small Variance
(Experimental Design)

1. The variance of a in the regression equation y = a + bx can be derived as follows:

a = y + bx; it is true that y and b are statistically independent; hence,

var(a) = var(y + bx)

= var(y) + x

2var(b)

=

σ

2
1

n

+ x

2 σ

2
1

[x2]

= σ

2
1

(

1

n

+

x

2

[x2]

)

2. Consider the variance of the estimate of the mean of y at some arbitrary fixed point X:

σ

2
1

(

1

n

+

(x − x)

2

[x2]

)

a. Given a choice of x, the quantity is minimized at x = x.

b. For values of x close to x the contribution to the variance is minimal.

c. The contribution increase as the square of the distance the predictor variable x is from

x.

d. If there was a choice in the selection of the predictor variables, the quantity [x2] =
∑

(x

i

− x)

2 is maximized if the predictor variables are spaced as far apart as possible.

If X can have a range of values, say, Xmin to Xmax, the quantity [x2] is maximized

if half the observations are placed at Xmin and the other half at Xmax. The quantity

(x − x)

2
/[x2] will then be as small as possible. Of course, a price is paid for this

design: it is not possible to check the linearity of the relationship between Y and X.

9.4 Average-Slope Formula for b

An alternative formula for the slope estimate b emphasizes the interpretation as an average

difference in Y for each unit difference in X. Suppose that we had just two points (X1, Y1) and

(X2, Y2). The obvious estimate of the slope comes from simply joining the points with a line:

b21 =

Y2 − Y1

X2 − X1

With more than two points we could calculate all the pairwise slope estimates

b

ij

=

Y

i

− Y

j

X

i

− X

j
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and then take some summary of these as the overall slope. More weight should be give to

estimates b

ij

where X

i

− X

j

is larger, as the expected difference in Y , β(X

i

− X

j

) is larger

relative to the residual error in Y

i

and Y

j

. If we assign weights w

ij

= (X

i

−X

j

)

2, a little algebra

shows that an alternative formula for the least squares estimate b is

b =

∑

i,j

w

ij

b

ij

∑

i,j

w

ij

a weighted average of the pairwise slopes.

This formulation makes it clear that b estimates the average slope of Y with respect to X

under essentially no assumptions. Of course, if the relationship is not at least roughly linear, the

average slope may be of little practical interest, and in any case some further assumptions are

needed for statistical inference.

9.5 Regression Lines through the Origin

Suppose that we want to fit the model Y ∼ N(βX, σ

2
), that is, the line goes through the

origin. In many situations this is an appropriate model (e.g., in relating body weight to height,

it is reasonable to assume that the regression line must go through the origin). However, the

regression relationship may not be linear over the entire range, and often, the interval of interest

is quite far removed from the origin.

Given n pairs of observation (x

i

, y

i

), i = 1, . . . , n, and a regression line through the origin

is desired, it can be shown that the least squares estimate, b, of β is

b =

∑

x

i

y

i

∑

x

2
i

The residual sum of squares is based on the quantity

∑

(y

i

− ŷ

i

)

2
=

∑

(y

i

− bx

i

)

2

and has associated with it, n − 1 degrees of freedom, since only one parameter, β, is estimated.

9.6 Bivariate Normal Density Function

The formula for the density of the bivariate normal distribution is

f

X,Y

(x, y) =

1

2πσ

X

σ

Y

√

1 − p

2
exp

[

−

1

2(1 − ρ

2
)

(Z

2
X

− 2ρZ

X

Z

Y

+ Z

2
Y

)

]

where

Z

X

=

x − µ

X

σ

X

and Z

Y

=

y − µ

Y

σ

Y

The quantities µ

X

, µ

Y

, σ

X

, and σ

Y

are, as usual, the means and standard deviations of X and

Y , respectively. Several characteristics of this distribution can be deduced from this formula:

1. If ρ = 0, the equation becomes

f

X,Y

(x, y) =

1

2πσ

X

σ

Y

exp

[

−

1

2
(Z

2
X

+ Z

2
Y

)

]
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and can be written as

=

1
√

2πσ

X

exp

(

−

1

2
Z

2
X

)

1
√

2πσ

Y

exp

(

−

1

2
Z

2
Y

)

= f

X

(x)f

Y

(y)

Thus in the case of the bivariate normal distribution, ρ = 0 (i.e., the correlation is zero),

implies that the random variables X and Y are statistically independent.

2. Suppose that f

X,Y

(x, y) is fixed at some specified value; this implies that the expression

in the exponent of the density f

X,Y

(x, y) has a fixed value, say, K:

K =

−1

2(1 − ρ

2
)

[

(

x − µ

X

σ

X

)2

− 2ρ

x − µ

X

σ

X

y − µ

Y

σ

Y

+

(

y − µ

Y

σ

Y

)2
]

This is the equation of an ellipse centered at (µ

X

, µ

Y

).

9.7 Ties in Kendall’s Tau

When there are ties in the X

i

and/or Y

i

values for Kendall’s tau, the variability is reduced. The

asymptotic formula needs to be adjusted accordingly [Hollander and Wolfe, 1999]. Let the X

i

values have g distinct values with ties with t

j

tied observations at the j th tied value. Let the

Y

i

values have h distinct tied values with u

k

tied observations at the kth tied value. Under the

null hypothesis of independence between the X and Y values, the variance of K is

var(K) =

n(n − 1)(2n + 5)

18

−

g

∑

j=1

t

j

(t

j

− 1)(2t

j

+ 5)

18

−

h

∑

j=1

u

k

(u

k

− 1)(2u

k

+ 5)

18

+

[

∑

g

j=1 t

j

(t

j

− 1)(t

j

− 2)

] [

∑

h

k=1 u

k

(u

k

− 1)(u

k

− 2)

]

9n(n − 1)(n − 2)

+

[

∑

g

j=1 t

j

(t

j

− 1)

] [

∑

h

k=1 u

k

(u

k

− 1)

]

2n(n − 1)

The asymptotic normal Z value is

Z =

K

√

var(K)

Note that the null hypothesis is independence, not τ = 0. If the data are not independent but

nevertheless have τ = 0 (e.g., a U-shaped relationship), the test will be incorrect.

9.8 Weighted Regression Analysis

In certain cases the assumption of homogeneity of variance of the dependent variable, Y , at all

levels of X is not tenable. Suppose that the precision of value Y = y is proportional to a value
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W , the weight. Usually, the precision is the reciprocal of the variance at X

i

. The data can then

be modeled as follows:

Case X Y W

1 x1 y1 w1

2 x2 y2 w2

.

.

.

.

.

.

.

.

.

.

.

.

i x

i

y

i

w

i

.

.

.

.

.

.

.

.

.

.

.

.

n x

n

y

n

w

n

Define
∑

w

i

(x

i

− x

i

)

2
= [wx

2],
∑

w(x

i

− x)(y

i

− y) = [wxy]. It can be shown that the

weighted least squares line has slope and intercept,

b =

[wxy]

[wx

2]
and a = y − bx

where

y =

∑

w

i

y

i

∑

w

i

and x =

∑

w

i

x

i

∑

w

i

It is a weighted least squares solution in that the quantity
∑

w

i

(y

i

− ŷ

i

)

2 is minimized. If all

the weights are the same, say equal to 1, the ordinary least squares solutions are obtained.

9.9 Model-Robust Standard Error Estimates

We showed that Student’s t-test can be formulated as a regression problem. This raises the

question of whether we can also find a regression formulation of the Z-test or the unequal-

variance approximate t-test of Note 5.2. The answer is in the affirmative. Standard error estimates

are available that remove subsidiary assumptions such as equality of variance for a wide range

of statistical estimators. These model-robust or “sandwich” standard errors were discovered

independently in different fields of statistics and are typically attributed to Huber in biostatistics

and to White in econometrics. The Huber–White standard error estimates are available for linear

models in SAS and for nearly all regression models in State. In the case of linear regression

with a binary X variable, they are equivalent to the unequal-variance t-test except that there is

not complete agreement on whether n or n − 1 should be used as a denominator in computing

variances. See Huber [2003] for further discussion.

PROBLEMS

In most of the problems below, you are asked to perform some subset of the following tasks:

(a) Plot the scatter diagram for the data.

(b) Compute for X, Y , [x2], [y2], and [ xy] those quantities not given.
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(c) Find the regression coefficients a and b.

(d) Place the regression line on the scatter diagram.

(e) Give s

2
y·x

and s

y·x .

(f) Compute the missing predicted values, residuals, and normal deviates for the given

portion of the table.

(g) Plot the residual plot.

(h) Interpret the residual plot.

(i) Plot the residual normal probability plot.

(j) Interpret the residual normal probability plot.

(k) i. Construct the 90% confidence interval for β.

ii. Construct the 95% confidence interval for β.

iii. Construct the 99% confidence interval for β.

iv. Compute the t-statistic for testing β = 0. What can you say about its p-

value?

(l) i. Construct the 90% confidence interval for α.

ii. Construct the 95% confidence interval for α.

iii. Construct the 99% confidence interval for α.

(m) Construct the anova table and use Table A.7 to give information about the p-

value.

(n) Construct the 95% confidence interval for α + βX at the X value(s) specified.

(o) Construct the interval such that one is 95% certain that a new observation at the

specified X value(s) will fall into the interval.

(p) Compute the correlation coefficient r .

(q) i. Construct the 90% confidence interval for ρ.

ii. Construct the 95% confidence interval for ρ.

iii. Construct the 99% confidence interval for ρ.

(r) Test the independence of X and Y using Spearman’s rank correlation coefficient.

Compute the coefficient.

(s) Test the independence of X and Y using Kendall’s rank correlation coefficient.

Compute the value of the coefficient.

(t) Compute Student’s paired t-test for the data, if not given; in any case, inter-

pret.

(u) Compute the signed rank statistic, if not given; in any case, interpret.

The first set of problems, 9.1 to 9.4, come from the exercise data in Example 9.2.

9.1 Suppose that we use duration, X, to predict VO2 MAX, Y . The scatter diagram is shown

in Figure 9.2. X = 647.4, Y = 40.57, [x2] = 673,496.4, [y2] = 3506.2, and [xy] =

43,352.5. Do tasks (c), (e), (f), (h), (k-ii), (k-iv), (l-ii), (m), (n) at x = 650, (p), and (q-ii)

(the residual plot is Figure 9.17). All the data are listed in Table 9.13. What proportion

of the Y variance is explained by X? (In practice, duration is used as a reasonable

approximation to VO2 MAX.)



PROBLEMS 339

Figure 9.17 Residual plot for the data of Example 9.2; VO2 MAX predicted from duration.

Table 9.13 Oxygen Data for Problem 9.1

X Y

̂

Y Y − ̂

Y Normal Deviate

706 41.5 44.5 −3.0 −0.80

732 45.9 46.13 −0.23 −0.06

930 54.5 ? ? ?

900 60.3 ? 3.59 0.96

903 60.5 56.90 3.60 0.97

976 64.6 61.50 3.10 0.83

819 47.4 ? −4.21 −1.13

922 57.0 58.10 −1.10 −0.29

600 40.2 37.82 ? 0.64

540 35.2 ? 1.16 0.31

560 33.8 35.30 −1.50 ?

637 38.8 40.15 −1.35 −0.36

593 38.9 ? 1.52 0.41

719 49.5 45.31 ? 1.23

615 37.1 38.77 −1.67 −0.45

589 32.2 37.13 ? −1.32

478 31.3 30.14 1.16 0.31

620 33.8 39.08 −5.28 ?

710 43.7 44.75 −1.05 −0.28

600 41.7 37.82 3.88 1.04

660 41.0 41.60 −0.60 −0.16

9.2 One expects exercise performance to reduce with age. In this problem, X = age and

Y = duration. X = 47.2, Y = 647.4, [x2] = 4303.2, [y2] = 673, 496.4, and [xy] =

−36, 538.5. Do tasks (c), (e), (k-i), (l-i), (p), and (q-i).



340 ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

9.3 To see if maximum heart rate changes with age, the following numbers are found where

X = age and Y = maximum heart rate. X = 47.2, Y = 174.8, [x2] = 4303.2, [y2] =

5608.5, and [xy] = −2915.4. Do tasks (c), (e), (k-iii), (k-iv), (m), (p), and (p-iii).

9.4 The relationship between height and weight was examined in these active healthy males.

X = height, Y = weight, X = 177.7, Y = 77.8, [x2] = 1985.2, [y2] = 3154.5, and

[xy] = 1845.6. Do tasks (c), (e), (m), (p), and (q-i). How do the p-values for the F -

test [in part (m)] and for the transformed Z for r compare? There were two normal

deviates of values 3.44 and 2.95. If these two people were removed from the calculation,

X = 177.5, Y = 76.7, [x2] = 1944.5, [y2] = 2076.12, and [xy] = 1642.5. How much

do the regression coefficients a and b, and correlation coefficient r , change?

Problems 9.5 to 9.8 also refer to the Bruce et al. [1973] paper, as did Example 9.2 and

Problems 9.1 to 9.4. The data for 43 active females are given in Table 9.14.

9.5 The duration and VO2 MAX relationship for the active females is studied in this problem.

X = 514.9, Y = 29.1, [x2] = 251, 260.4, [y2] = 1028.7, and [xy] = 12, 636.5. Do tasks

(c), (e), (f), (g), (h), (i), (j), (k-iv), (m), (p), and (q-ii). Table 9.15 contains the residuals.

If the data are rerun with the sixth case omitted, the values of X, Y , [x2], [y2], and [xy]

are changed to 512.9, 29.2, 243,843.1, 1001.5, and 13,085.6, respectively. Find the new

estimates a, b, and r . By what percent are they changed?

9.6 With X = age and Y = duration, X = 45.1, Y = 514.9, [x2] = 4399.2, [y2] =

251, 260.4, and [xy] = −22, 911.3. For each 10-year increase in age, how much does

duration tend to change? What proportion of the variability in VO2 MAX is accounted

for by age? Do tasks (m) and (q-ii).

9.7 With X = age and Y = maximum heart rate, X = 45.1, Y = 180.6, [x2] = 4399.2, [y2] =

5474.6, and [xy] = −2017.3. Do tasks (c), (e), (k-i), (k-iv), (l-i), (m), (n) at X = 30 and

X = 50, (o) at X = 45, (p), and (q-ii).

9.8 X = height and Y = weight, X = 164.7, Y = 61.3, [x2] = 1667.1, [y2] = 2607.4,

and [xy] = 1006.2. Do tasks (c), (e), (h), (k-iv), (m), and (p). Check that t

2
= F . The

residual plot is shown in Figure 9.18.

For Problems 9.9 to 9.12, additional Bruce et al. [1973] data are used. Table 9.16 presents

the data for 94 sedentary males.

9.9 The duration, X, and VO2 MAX, Y , give X = 577.1, Y = 35.6, [x2] = 1, 425, 990.9,

[y2] = 5245.3, and [xy] = 78, 280.1. Do tasks (c), (e), (j), (k-i), (k-iv), (l-i), (m),

and (p). The normal probability plot is shown in Figure 9.19.

9.10 X = age is related to Y = duration. X = 49.8, Y = 577.1, [x2] = 11, 395.7, [y2] =

1, 425, 990.9, and [xy] = −87, 611.9. Do tasks (c), (e), (m), (p), and (q-ii).

9.11 The prediction of age by maximal heart rate for sedentary males is considered here.

X = 49.8, Y = 18.6, [x2] = 11, 395.7, [y2] = 32, 146.4, and [xy] = −12, 064.1.

Do tasks (c), (m), and (p). Verify (to accuracy given) that (X, Y ) lies on the regres-

sion line.

9.12 The height and weight data give X = 177.3, Y = 79.0, [x2] = 4030.1, [y2] = 7060.0,

and [xy] = 2857.0. Do tasks (c), (e), (k-iv), (n) at X = 160, 170, and 180, and (p).
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Table 9.14 Exercise Data for Healthy Active Females

Duration VO2 MAX Heart Rate Age Height Weight

660 38.1 184 23 177 83

628 38.4 183 21 163 52

637 41.7 200 21 174 61

575 33.5 170 42 160 50

590 28.6 188 34 170 68

600 23.9 190 43 171 68

562 29.6 190 30 172 63

495 27.3 180 49 157 53

540 33.2 184 30 178 63

470 26.6 162 57 161 63

408 23.6 188 58 159 54

387 23.1 170 51 162 55

564 36.6 184 32 165 57

603 35.8 175 42 170 53

420 28.0 180 51 158 47

573 33.8 200 46 161 60

602 33.6 190 37 173 56

430 21.0 170 50 161 62

508 31.2 158 65 165 58

565 31.2 186 40 154 69

464 23.7 166 52 166 67

495 24.5 170 40 160 58

461 30.5 188 52 162 64

540 25.9 190 47 161 72

588 32.7 194 43 164 56

498 26.9 190 48 176 82

483 24.6 190 43 165 61

554 28.8 188 45 166 62

521 25.9 184 52 167 62

436 24.4 170 52 168 62

398 26.3 168 56 162 66

366 23.2 175 56 159 56

439 24.6 156 51 161 61

549 28.8 184 44 154 56

360 19.6 180 56 167 79

566 31.4 184 40 165 56

407 26.6 156 53 157 52

602 30.6 194 52 161 65

488 27.5 190 40 178 64

526 30.9 188 55 162 61

524 33.9 164 39 166 59

562 32.3 185 57 168 68

496 26.9 178 46 156 53

Source: Data from Bruce et al. [1973].

Mehta et al. [1981] studied the effect of the drug dipyridamole on blood platelet function in

eight patients with at least 50% narrowing of one or more coronary arteries. Active platelets

are sequestered in the coronary arteries, giving reduced platelet function in the coronary venous

blood, that is, in blood leaving the heart muscle after delivering oxygen and nutrients. More

active platelets in the coronary arteries can lead to thrombosis, blood clots, and a heart attack.

Drugs lessening the chance of thrombosis may be useful in treatment.
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Table 9.15 Data for Problem 9.5

X Y

̂

Y Residual Normal Deviate

660 38.1 36.35 1.75 0.56

628 38.4 34.74 3.66 1.18

637 41.7 35.19 6.51 2.10

575 33.5 32.08 1.42 0.46

590 28.6 32.83 −4.23 −1.37

600 23.9 ? ? ?

562 29.6 31.42 −1.82 −0.59

495 27.3 28.05 −0.75 −0.24

540 33.2 ? 2.88 0.93

470 26.6 26.80 −0.20 −0.06

408 23.6 23.68 −0.07 −0.02

387 23.1 22.62 0.48 0.15

564 36.6 31.52 5.08 1.64

603 35.8 33.49 2.21 0.75

420 28.0 24.28 3.72 1.20

573 33.8 ? ? 0.59

602 33.6 33.43 0.17 0.05

430 21.0 24.78 −3.78 ?

508 31.2 28.71 2.49 ?

565 31.2 31.57 −0.37 −0.12

464 23.7 26.49 −2.79 −0.90

495 24.5 28.05 −3.55 −1.10

461 30.5 26.34 4.16 1.34

540 25.9 30.32 −4.42 −1.43

588 32.7 ? −0.03 −0.00

498 26.9 ? −1.30 −0.42

483 24.6 27.45 −2.85 −0.92

554 28.8 31.02 −2.22 −0.72

521 25.9 29.36 −3.46 −1.12

436 24.4 25.09 −0.69 −0.22

398 26.3 23.18 3.12 1.01

366 23.2 21.57 1.63 0.53

439 24.6 25.24 −0.64 −0.21

549 28.8 30.77 −1.97 −0.64

360 19.6 21.26 −1.66 −0.54

566 31.4 31.62 −0.22 −0.07

407 26.6 23.63 2.97 0.96

602 30.6 33.43 −2.83 −0.92

488 27.5 27.70 −0.20 −0.06

526 30.9 29.61 1.29 0.42

524 33.9 29.51 4.39 1.42

562 32.3 31.42 0.88 0.28

496 26.9 28.10 −1.20 −0.39

Platelet aggregation measures the extent to which platelets aggregate or cluster together in

the presence of a chemical that stimulates clustering or aggregation. The measure used was the

percent increase in light transmission after an aggregating agent was added to plasma. (The

clustering of the cells make more “holes” in the plasma to let light through.) Two aggregating

agents, adenosine diphosphate (ADP) and epinephrine (EPI), were used in this experiment. A

second measure taken from the blood count was the count of platelets.
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Figure 9.18 Residual plot for Problem 9.8.
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Figure 9.19 Normal probability plot for Problem 9.9.

Blood was sampled from two sites, the aorta (blood being pumped from the heart) and the

coronary sinus (blood returning from nourishing the heart muscle). Control samples as well as

samples after intravenous infusion of 100 mg of dipyridamole were taken. The data are given

in Table 9.17 and 9.18. Problems 9.13 to 9.22 refer to these data.
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Table 9.16 Exercise Data for Sedentary Males

Duration VO2 MAX Heart Rate Age Height Weight

360 24.7 168 40 175 96

770 46.8 190 25 168 68

663 41.2 175 41 187 82

679 31.4 190 37 176 82

780 45.7 200 26 179 73

727 47.6 210 28 185 84

647 38.6 208 26 177 77

675 43.2 200 42 162 72

735 48.2 196 30 188 85

827 50.9 184 21 178 69

760 47.2 184 33 182 87

814 41.8 208 31 182 82

778 42.9 184 29 174 73

590 35.1 174 42 188 93

567 37.6 176 40 184 86

648 47.3 200 40 168 80

730 44.4 204 44 183 78

660 46.7 190 44 176 81

663 41.6 184 40 174 78

589 40.2 200 43 193 92

600 35.8 190 41 176 68

480 30.2 174 44 172 84

630 38.4 164 39 181 72

646 41.3 190 39 187 90

630 31.2 190 42 173 69

630 42.6 190 53 181 53

624 39.4 172 57 172 57

572 35.4 164 58 181 58

622 35.9 190 61 168 61

209 16.0 104 74 171 74

536 29.3 175 57 181 57

602 36.7 175 49 175 49

727 43.0 168 53 172 53

260 15.3 112 75 170 75

622 42.3 175 47 185 47

705 43.7 174 51 169 51

669 40.3 174 65 170 65

425 28.5 170 56 167 56

645 38.0 175 50 177 50

576 30.8 184 48 188 48

605 40.2 156 46 187 46

458 29.5 148 61 185 61

551 32.3 188 49 182 49

607 35.5 179 53 179 53

599 35.3 166 55 182 55

453 32.3 160 69 182 69

337 23.8 204 68 176 68

663 41.4 182 47 171 47

603 39.0 180 48 180 48

610 38.6 190 55 180 55

472 31.5 175 53 192 85
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Table 9.16 (continued)

Duration VO2 MAX Heart Rate Age Height Weight

458 25.7 166 58 178 81
446 24.6 160 50 178 77
532 30.0 160 51 175 82
656 42.0 186 52 176 73
583 34.4 175 52 172 77
595 34.9 180 48 179 78
552 35.5 156 45 167 89
675 38.7 162 58 183 85
622 38.4 186 45 175 76
591 32.4 170 62 175 79
582 33.6 156 63 171 69
518 30.0 166 57 174 75
444 28.9 170 48 180 105
473 29.5 175 52 177 77
490 30.4 168 59 173 74
596 34.4 192 46 190 92
529 37.0 175 54 168 82
652 43.4 156 54 180 85
714 46.0 175 46 174 77
646 43.0 184 45 178 80
551 29.3 160 54 172 86
601 36.8 184 48 169 82
579 35.0 170 54 180 80
325 21.9 140 61 175 76
392 25.4 168 60 180 89
659 40.7 178 45 181 81
631 33.8 184 48 173 74
405 28.8 170 63 168 79
560 35.8 180 60 181 82
615 40.3 190 47 178 78
580 33.4 180 66 173 68
530 39.0 174 47 169 64
495 23.2 145 69 171 84
330 20.5 138 60 185 87
600 36.4 200 50 182 81
443 23.5 166 50 175 84
508 29.7 188 61 188 80
596 43.2 168 57 174 66
461 30.4 170 47 171 65
583 34.7 164 46 187 83
620 37.1 174 61 165 71
620 41.4 190 45 171 79
180 19.8 125 71 185 80

Source: Data from Bruce et al. [1973]

9.13 Relate the control platelet counts in the aorta, X, and coronary sinus, Y . Do tasks (a),
(b), (c), (d), (e), compute the (X, Y , ̂

Y , residual, normal deviate) table, (g), (h), (i), (j),
(k-i), (k-iv), (l), (m), (p), (r), and (s).

9.14 Look at the association between the platelet counts in the aorta, X, and coronary sinus,
Y , when being treated with dipyridamole. Do tasks (a), (b), (c), (d), (m), (r), and (s).
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Table 9.17 Platelet Aggregation Data for Problem 9.12

Platelet Aggregation (%)

Control Dipyridamole

Aorta Coronary Sinus Aorta Coronary Sinus

Case EPI ADP EPI ADP EPI ADP EPI ADP

1 87 75 89 23 89 75 89 35

2 70 23 42 14 45 16 47 18

3 96 75 96 31 96 83 96 84

4 65 51 70 33 70 55 70 57

5 85 16 79 4 69 13 53 22

6 98 83 98 80 83 70 94 88

7 77 14 97 13 84 35 73 67

8 98 50 99 40 85 50 91 48

Mean 85 48 84 30 78 50 77 52

±SEM 5 10 7 8 6 9 7 9

Source: Data from Mehta et al. [1981].

9.15 Examine the control platelet aggregation percent for EPI, X, and ADP, Y , in the aorta.

Do tasks (a), (b), (c), (d), (e), and (m).

9.16 Examine the association between the EPI, X, and ADP, Y , in the control situation at the

coronary sinus. Do tasks (a), (b), (c), (d), (e), (m), (p), (r), and (s).

9.17 Interpret at the 5% significance level. Look at the platelet aggregation % for epinephrine

in the aorta and coronary sinus under the control data. Do tasks (m), (p) and (t), (u).

Explain in words how there can be association but no (statistical) difference between the

values at the two locations.

9.18 Under dipyridamole treatment, study the platelet aggregation percent for EPI in the aorta,

X, and coronary sinus, Y . Do tasks (a), (b), (c), (d), (e), (g), (h), (m), (p), (r), (s), (t),

and (u).

9.19 The control aggregation percent for ADP is compared in the aorta, X, and coronary sinus,

Y , in this problem. Do tasks (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (m), (p), and (q-ii).

9.20 Under dipyridamole, the aggregation percent for ADP in the aorta, X, and coronary

sinus, Y , is studied here. Do tasks (b), (c), (e), (k-ii), (k-iv), (l-ii), (m), (p), (q-ii), (r),

and (s).

9.21 The aortic platelet counts under the control, X, and dipyridamole, Y , are compared in

this problem. Do tasks (b), (c), (e), (m), (p), (q-ii), (t), and (u). Do the platelet counts

differ under the two treatments? (Use α = 0.05.) Are the platelet counts associated under

the two treatments? (α = 0.05.)

9.22 The coronary sinus ADP aggregation percent was studied during the control period, the

X variable, and on dipyridamole, the Y variable. Do tasks (b), (c), (d), (e), (m), and

(t). At the 5% significance level, is there a change between the treatment and control

periods? Can you show association between the two values? How do you reconcile these

findings?
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Table 9.18 Platelet Count Data for Problem 9.12

Platelet Counts (×1000/mm

3
)

a

Control Dipyridamole

Case Aorta Coronary Sinus Aorta Coronary Sinus

1 390 355 455 445

2 240 190 248 205

3 135 125 150 145

4 305 268 285 290

5 255 195 230 220

6 283 307 291 312

7 435 350 457 374

8 290 250 301 284

Mean 292 255 302 284

±SEM 32 29 38 34

Source: Data from Mehta et al. [1981].

Problems 9.23 to 9.29 deal with the data in Tables 9.19 and 9.20. Jensen et al. [1980] studied

19 patients with coronary artery disease. Thirteen had a prior myocardial infarction (heart attack);

three had coronary bypass surgery. The patients were evaluated before and after three months

or more on a structured supervised training program.

The cardiac performance was evaluated using radionuclide studies while the patients were at

rest and also exercising with bicycle pedals (while lying supine). Variables measured included

(1) ejection fraction (EF), the fraction of the blood in the left ventricle ejected during a heart

beat, (2) heart rate (HR) at maximum exercise in beats per minute, (3) systolic blood pressure

(SBP) in millimeters of mercury, (4) the rate pressure product (RPP) maximum heart rate times

the maximum systolic blood pressure divided by 100, and (5) the estimated maximum oxygen

consumption in cubic centimeters of oxygen per kilogram of body weight per minute.

9.23 The resting ejection fraction is measured before, X, and after, Y , training. X = 0.574, Y =

0.553, [x2] = 0.29886, [y2] = 0.32541, [xy] = 0.23385, and paired t = −0.984. Do

tasks (c), (e), (k-iv), (m), and (p). Is there a change in resting ejection fraction demon-

strated with six months of exercise training? Are the two ejection fractions associated?

9.24 The ejection fraction at maximal exercise was measured before, X, and after, Y , training.

X = 0.556, Y = 0.564, [x2] = 0.30284, [y2] = 0.46706, and [xy] = 0.2809. Is there

association (α = 0.05) between the two ejection fractions? If yes, do tasks (c), (k-iii),

(l-iii), (p), and (q-ii). Is there a change (α = 0.05) between the two ejection fractions?

If yes, find a 95% confidence interval for the average difference.

9.25 The maximum systolic blood pressure was measured before, X, and after, Y , training.

X = 173.8, Y = 184.2, [x2] = 11, 488.5, [y2] = 10, 458.5, [xy] = 7419.5, and paired

t = 2.263. Do tasks (a), (b), (c), (d), (e), (m), (p), and (t). Does the exercise training

produce a change? How much? Can we predict individually the maximum SBP after

training from that before? How much of the variability in maximum SBP after exercise

is accounted for by knowing the value before exercise?

9.26 The before, X, and after, Y , rate pressure product give X = 223.0, Y = 245.7, [x2] =

58, 476, [y2] = 85, 038, [xy] = 54, 465, and paired t = 2.256 (Table 9.21). Do tasks (c),

(e), (f), (g), (h), and (m). Find the large-sample p-value for Kendall’s tau for association.
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Table 9.19 Resting and Maximal Ejection Fraction

Measured by Radionuclide Ventriculography, and

Maximal Heart Rate

Resting EF Maximal EF Maximal HR

Case Pre Post Pre Post Pre Post

1 0.39 0.48 0.46 0.48 110 119

2 0.57 0.49 0.51 0.57 120 125

3 0.77 0.63 0.70 0.82 108 105

4 0.48 0.50 0.51 0.51 85 88

5 0.55 0.46 0.45 0.55 107 103

6 0.60 0.50 0.52 0.54 125 115

7 0.63 0.61 0.75 0.68 170 166

8 0.73 0.61 0.53 0.71 160 142

9 0.70 0.68 0.80 0.79 125 114

10 0.66 0.68 0.54 0.43 131 150

11 0.40 0.31 0.42 0.30 135 174

12 0.48 0.46 0.48 0.30 97 94

13 0.63 0.78 0.60 0.75 135 132

14 0.41 0.37 0.41 0.44 127 162

15 0.75 0.54 0.76 0.57 126 148

16 0.58 0.64 0.62 0.72 102 112

17 0.50 0.58 0.54 0.65 145 140

18 0.71 0.81 0.65 0.60 152 145

19 0.37 0.38 0.32 0.31 155 170

Mean 0.57 0.55 0.56 0.56 127 132

±SD 0.13 0.13 0.13 0.16 23 26

Table 9.20 Systolic Blood Pressure, Rate Pressure

Product and Estimate VO2 MAX before (Pre) and

after (Post) Training

Est. VO2 MAX

Maximal SBP Maximal RPP (cm3
/kg · min)

Case Pre Post Pre Post Pre Post

1 148 156 163 186 24 30

2 180 196 216 245 28 44

3 185 200 200 210 28 28

4 150 148 128 130 34 38

5 150 156 161 161 20 28

6 164 172 205 198 30 36

7 180 210 306 349 64 54

8 182 176 291 250 44 40

9 186 170 233 194 30 28

10 220 230 288 345 30 30

11 188 205 254 357 28 44

12 120 165 116 155 22 20

13 175 160 236 211 20 36

14 190 180 241 292 36 38

15 140 170 176 252 36 44

16 200 230 204 258 28 36

17 215 185 312 259 44 44

18 165 190 251 276 28 34

19 165 200 256 340 44 52

Mean 174 184 223 246 31 37

±SD 25 24 57 69 8 9
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Table 9.21 Blood Pressure Data for Problem 9.26

Maximal SBP

Pre Post

X Y

̂

Y Y − ̂

Y Normal Deviate

163 186 189.90 −3.80 −0.08

216 245 239.16 ? ?

200 210 224.26 −14.26 −0.32

128 130 157.20 −27.20 −0.61

161 161 ? −26.94 ?

205 198 228.92 −30.92 −0.69

306 349 322.99 26.01 ?

291 250 309.02 −59.02 −1.31

233 194 255.00 −61.00 −1.36

288 345 306.22 38.77 0.86

254 357 ? ? ?

116 155 146.02 8.98 0.20

236 211 257.79 −46.79 −1.04

241 292 262.45 29.55 0.66

176 252 201.91 50.09 1.12

204 258 227.99 30.01 0.67

312 259 328.58 −69.58 −1.55

251 276 271.76 4.24 0.09

256 340 276.42 63.58 1.42

9.27 The maximum oxygen consumption, VO2 MAX, is measured before, X, and after, Y .

Here X = 32.53, Y = 37.05, [x2] = 2030.7, [y2] = 1362.9, [xy] = 54465, and paired

t = 2.811. Do tasks (c), (k-ii), (m), (n), at x = 30, 35, and 40, (p), (q-ii), and (t).

9.28 The ejection fractions at rest, X, and at maximum exercise, Y , before training is used in

this problem. X = 0.574, Y = 0.556, [x2] = 0.29886, [y2] = 0.30284, [xy] = 0.24379,

and paired t = −0.980. Analyze these data, including a scatter diagram, and write a

short paragraph describing the change and/or association seen.

9.29 The ejection fractions at rest, X, and after exercises, Y , for the subjects after training:

(1) are associated, (2) do not change on the average, (3) explain about 52% of the

variability in each other. Justify statements (1)–(3). X = 0.553, Y = 0.564, [x2] =

0.32541, [y2] = 0.4671, [xy] = 0.28014, and paired t = 0.424.

Problems 9.30 to 9.33 refer to the following study. Boucher et al. [1981] studied patients

before and after surgery for isolated aortic regurgitation and isolated mitral regurgitation. The

aortic valve is in the heart valve between the left ventricle, where blood is pumped from the heart,

and the aorta, the large artery beginning the arterial system. When the valve is not functioning

and closing properly, some of the blood pumped from the heart returns (or regurgitates) as the

heart relaxes before its next pumping action. To compensate for this, the heart volume increases

to pump more blood out (since some of it returns). To correct for this, open heart surgery

is performed and an artificial valve is sewn into the heart. Data on 20 patients with aortic

regurgitation and corrective surgery are given in Tables 9.22 and 9.23.

“NYHA Class” measures the amount of impairment in daily activities that the patient suffers:

I is least impairment, II is mild impairment, III is moderate impairment, and IV is severe

impairment; HR, heart rate; SBP, the systolic (pumping or maximum) blood pressure; EF, the

ejection fraction, the fraction of blood in the left ventricle pumped out during a beat; EDVI,
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Table 9.22 Preoperative Data for 20 Patients with Aortic Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 33M I 75 150 0.54 225 121 104

2 36M I 110 150 0.64 82 52 30

3 37M I 75 140 0.50 267 134 134

4 38M I 70 150 0.41 225 92 133

5 38M I 68 215 0.53 186 99 87

6 54M I 76 160 0.56 116 65 51

7 56F I 60 140 0.81 79 64 15

8 70M I 70 160 0.67 85 37 28

9 22M II 68 140 0.57 132 95 57

10 28F II 75 180 0.58 141 82 59

11 40M II 65 110 0.62 190 118 72

12 48F II 70 120 0.36 232 84 148

13 42F III 70 120 0.64 142 91 51

14 57M III 85 150 0.60 179 107 30

15 61M III 66 140 0.56 214 120 94

16 64M III 54 150 0.60 145 87 58

17 61M IV 110 126 0.55 83 46 37

18 62M IV 75 132 0.56 119 67 52

19 64M IV 80 120 0.39 226 88 138

20 65M IV 80 110 0.29 195 57 138

Mean 49 75 143 0.55 162 85 77

±SD 14 14 25 0.12 60 26 43

Table 9.23 Postoperative Data for 20 Patients with Aortic Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 33M I 80 115 0.38 113 43 43

2 36M I 100 125 0.58 56 32 24

3 37M I 100 130 0.27 93 25 68

4 38M I 85 110 0.17 160 27 133

5 38M I 94 130 0.47 111 52 59

6 54M I 74 110 0.50 83 42 42

7 56F I 85 120 0.56 59 33 26

8 70M I 85 130 0.59 68 40 28

9 22M II 120 136 0.33 119 39 80

10 28F II 92 160 0.32 71 23 48

11 40M II 85 110 0.47 70 33 37

12 48F II 84 120 0.24 149 36 113

13 42F III 84 100 0.63 55 35 20

14 57M III 86 135 0.33 91 72 61

15 61M III 100 138 0.34 92 31 61

16 64M III 60 130 0.30 118 35 83

17 61M IV 88 130 0.62 63 39 24

18 62M IV 75 126 0.29 100 29 71

19 64M IV 78 110 0.26 198 52 147

20 65M IV 75 90 0.26 176 46 130

Mean 49 87 123 0.40 102 38 65

±SD 14 13 15 0.14 41 11 39
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Table 9.24 Preoperative Data for 20 Patients with Mitral Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 23M II 75 95 0.69 71 49 22

2 31M II 70 150 0.77 184 142 42

3 40F II 86 90 0.68 84 57 30

4 47M II 120 150 0.51 135 67 66

5 54F II 85 120 0.73 127 93 34

6 57M II 80 130 0.74 149 110 39

7 61M II 55 120 0.67 196 131 65

8 37M III 72 120 0.70 214 150 64

9 52M III 108 105 0.66 126 83 43

10 52F III 80 115 0.52 167 70 97

11 52M III 80 105 0.76 130 99 31

12 56M III 80 115 0.60 136 82 54

13 58F III 65 110 0.62 146 91 56

14 59M III 102 90 0.63 82 52 30

15 66M III 60 100 0.62 76 47 29

16 67F III 75 140 0.71 94 67 27

17 71F III 88 140 0.65 111 72 39

18 55M IV 80 125 0.66 136 90 46

19 59F IV 115 130 0.72 96 69 27

20 60M IV 64 140 0.60 161 97 64

Mean 53 81 121 0.66 131 86 45

±SD 12 17 17 0.09 40 30 19

Table 9.25 Postoperative Data for 20 Patients with Mitral Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 23M II 90 100 0.60 67 40 27

2 31M II 95 110 0.64 64 41 23

3 40F II 80 110 0.77 59 45 14

4 47M II 90 120 0.36 96 35 61

5 54F II 100 110 0.41 59 24 35

6 57M II 75 115 0.54 71 38 33

7 61M II 140 120 0.41 165 68 97

8 37M III 95 120 0.25 84 21 63

9 52M III 100 125 0.43 67 29 38

10 52F III 90 90 0.44 124 55 69

11 52M III 98 116 0.55 68 37 31

12 56M III 61 108 0.56 112 63 49

13 58F III 88 120 0.50 76 38 38

14 59M III 100 100 0.48 40 19 21

15 66M III 85 124 0.51 31 16 15

16 67F III 84 120 0.39 81 32 49

17 71F III 100 100 0.44 76 33 43

18 55M IV 108 124 0.43 63 27 36

19 59F IV 100 110 0.49 62 30 32

20 60M IV 90 110 0.36 93 34 60

Mean 53 93 113 0.48 78 36 42

±SD 12 15 9 0.11 30 14 21
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the volume of the left ventricle after the heart relaxes (adjusted for physical size, to divide by

an estimate of the patient’s body surface area (BSA); SVI, the volume of the left ventricle after

the blood is pumped out, adjusted for BSA; ESVI, the volume of the left ventricle pumped

out during one cycle, adjusted for BSA; ESVI = EDVI − SVI. These values were measured

before and after valve replacement surgery. The patients in this study were selected to have left

ventricular volume overload; that is, expanded EDVI.

Another group of 20 patients with mitral valve disease and left ventricular volume overload

were studied. The mitral valve is the valve allowing oxygenated blood from the lungs into the left

ventricle for pumping to the body. Mitral regurgitation allows blood to be pumped “backward”

and to be mixed with “new” blood coming from the lungs. The data for these patients are given

in Tables 9.24 and 9.25.

9.30 (a) The preoperative, X, and postoperative, Y , ejection fraction in the patients with

aortic valve replacement gave X = 0.549, Y = 0.396, [x2] = 0.26158, [y2] =

0.39170, [xy] = 0.21981, and paired t = −6.474. Do tasks (a), (c), (d), (e), (m),

(p), and (t). Is there a change? Are ejection fractions before and after surgery

related?

(b) The mitral valve cases had X = 0.662, Y = 0.478, [x2] = 0.09592, [y2] =

0.24812, [xy] = 0.04458, and paired t = −7.105. Perform the same tasks as

in part (a).

(c) When the emphasis is on the change, rather than possible association and predictive

value, a figure like Figure 9.20 may be preferred to a scatter diagram. Plot the scatter

diagram for the aortic regurgitation data and comment on the relative merits of the

two graphics.
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Figure 9.20 Figure for Problem 9.30(c). Individual values for ejection fraction before (pre-OP) and early

after (post-OP) surgery are plotted; preoperatively, only four patients with aortic regurgitation had an ejection

fraction below normal. After operation, 13 patients with aortic regurgitation and 9 with mitral regurgitation

had an ejection fraction below normal. The lower limit of normal (0.50) is represented by a dashed line.

(From Boucher et al. [1981].).
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Table 9.26 Data for Problem 9.31

X Y

̂

Y Residuals Normal Deviate

22 67 51.26 15.74 0.75

42 64 74.18 −10.18 −0.48

30 59 60.42 −1.42 −0.06

66 96 101.68 −5.68 −0.27

34 59 65.01 −6.01 −0.28

39 71 70.74 0.26 0.01

65 165 ? ? ?

64 84 99.39 15.29 −0.73

43 67 75.32 ? −0.39

97 124 137.20 −13.20 ?

31 68 61.57 ? ?

54 112 87.93 24.07 1.14

56 76 ? ? −0.67

30 40 ? −20.42 −0.97

29 31 ? ? ?

27 81 56.99 24.01 1.14

39 76 70.74 5.26 0.25

46 63 78.76 −15.76 −0.75

27 62 56.99 5.01 0.24

64 93 99.39 −6.39 −0.30

9.31 (a) For the mitral valve cases, we use the end systolic volume index (ESVI) before

surgery to try to predict the end diastolic volume index (EDVI) after surgery.

X = 45.25, Y = 77.9, [x2] = 6753.8, [y2] = 16, 885.5, and [xy] = 7739.5. Do

tasks (c), (d), (e), (f), (h), (j), (k-iv), (m), and (p). Data are given in Table 9.26.

The residual plot and normal probability plot are given in Figures 9.21 and 9.22.

(b) If subject 7 is omitted, X = 44.2, Y = 73.3, [x2] = 6343.2, [y2] = 8900.1, and

[xy] = 5928.7. Do tasks (c), (m), and (p). What are the changes in tasks (a), (b),

and (r) from part (a)?

(c) For the aortic cases; X = 75.8, Y = 102.3, [x2] = 35,307.2, [y2] = 32,513.8,

[xy] = 27, 076. Do tasks (c), (k-iv), (p), and (q-ii).

9.32 We want to investigate the predictive value of the preoperative ESVI to predict the postop-

erative ejection fraction, EF. For each part, do tasks (a), (c), (d), (k-i), (k-iv), (m), and (p).

(a) The aortic cases have X = 75.8, Y = 0.396, [x2] = 35307.2, [y2] = 0.39170, and

[xy] = 84.338.

(b) The mitral cases have X = 45.3, Y = 0.478, [x2] = 6753.8, [y2] = 0.24812, and

[xy] = −18.610.

9.33 Investigate the relationship between the preoperative heart rate and the postoperative

heart rate. If there are outliers, eliminate (their) effect. Specifically address these ques-

tions: (1) Is there an overall change from preop to postop HR? (2) Are the preop and

postop HRs associated? If there is an association, summarize it (Tables 9.27 and 9.28).

(a) For the aortic cases,
∑

X = 1502,

∑

Y = 17.30,

∑

X

2
= 116, 446,

∑

Y

2
=

152, 662, and
∑

XY = 130, 556. Data are given in Table 9.27.

(b) For the mitral cases:
∑

X = 1640,

∑

Y = 1869,

∑

X

2
= 140, 338,

∑

Y

2
=

179, 089, and
∑

XY = 152, 860. Data are given in Table 9.28.
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 ŷ

Figure 9.21 Residual plot for Problem 9.31(a).
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Figure 9.22 Normal probability plot for Problem 9.31(a).

9.34 The Web appendix to this chapter contains county-by-county electoral data for the state

of Florida for the 2000 elections for president and for governor of Florida. The major

Democratic and Republican parties each had a candidate for both positions, and there

were two minor party candidates for president and one for governor. In Palm Beach

County a poorly designed ballot was used, and it was suggested that this led to some

voters who intended to vote for Gore in fact voting for Buchanan.
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Table 9.27 Data for Problem 9.33(a)

X Y

̂

Y Residuals Normal Deviate

75 80 86.48 −6.48 −0.51

110 100 92.56 7.44 0.59

75 100 86.48 13.52 1.06

70 85 85.61 0.61 −0.04

68 94 85.27 8.73 0.69

76 74 86.66 −12.66 −1.00

60 85 83.88 1.12 0.08

70 85 85.61 0.61 −0.04

68 120 85.27 34.73 2.73

75 92 86.48 5.52 0.43

65 85 84.75 0.25 0.02

70 84 85.61 −1.61 −0.13

70 84 85.61 −1.61 −0.13

85 86 88.22 −2.22 −0.17

66 100 84.92 15.08 1.19

54 60 82.84 −22.84 −1.80

110 88 92.56 −4.56 0.36

75 75 86.48 −11.48 −0.90

80 78 87.35 −9.35 −0.74

80 75 87.35 −12.35 −0.97

Table 9.28 Data for Problem 9.33(b)

X Y

̂

Y Residuals Normal Deviate

75 90 93.93 −3.93 −0.25

70 95 94.27 0.73 0.04

86 80 93.18 −13.18 −0.84

120 90 90.87 −0.87 −0.05

85 100 93.25 6.75 0.43

80 75 93.59 −18.59 −1.19

55 140 95.28 44.72 2.86

72 95 94.13 0.87 0.05

108 100 91.68 8.32 0.53

80 90 93.59 −3.59 −0.23

80 98 93.59 4.41 0.28

80 61 93.95 −32.59 −2.08

65 88 94.61 −6.61 0.42

102 100 92.09 7.91 0.51

60 85 94.94 −9.94 −0.64

75 84 93.93 −9.93 −0.63

88 100 93.04 6.96 0.44

80 108 93.59 14.41 0.92

115 100 91.21 8.79 0.56

64 90 94.67 −4.67 −0.30

(a) Using simple linear regression and graphs, examine whether the data support this

claim.

(b) Read the analyses linked from the Web appendix and critically evaluate their claims.
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Analysis of Variance

10.1 INTRODUCTION

The phrase analysis of variance was coined by Fisher [1950], who defined it as “the separation

of variance ascribable to one group of causes from the variance ascribable to other groups.”

Another way of stating this is to consider it as a partitioning of total variance into component

parts. One illustration of this procedure is contained in Chapter 9, where the total variability

of the dependent variable was partitioned into two components: one associated with regression

and the other associated with (residual) variation about the regression line. Analysis of variance

models are a special class of linear models.

Definition 10.1. An analysis of variance model is a linear regression model in which the

predictor variables are classification variables. The categories of a variable are called the levels

of the variable.

The meaning of this definition will become clearer as you read this chapter.

The topics of analysis of variance and design of experiments are closely related, which has

been evident in earlier chapters. For example, use of a paired t-test implies that the data are

paired and thus may indicate a certain type of experiment. Similarly, a partitioning of total

variation in a regression situation implies that two variables measured are linearly related. A

general principle is involved: The analysis of a set of data should be appropriate for the design.

We indicate the close relationship between design and analysis throughout this chapter.

The chapter begins with the one-way analysis of variance. Total variability is partitioned

into a variance between groups and a variance within groups. The groups could consist of

different treatments or different classifications. In Section 10.2 we develop the construction of

an analysis of variance from group means and standard deviations, and consider the analysis

of variance using ranks. In Section 10.3 we discuss the two-way analysis of variance: A spe-

cial two-way analysis involving randomized blocks and the corresponding rank analysis are

discussed, and then two kinds of classification variables (random and fixed) are covered. Spe-

cial but common designs are presented in Sections 10.4 and 10.5. Finally, in Section 10.6 we

discuss the testing of the assumptions of the analysis of variance, including ways of trans-

forming the data to make the assumptions valid. Notes and specialized topics conclude our

discussion.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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A few comments about notation and computations: The formulas for the analysis of variance

look formidable but follow a logical pattern. The following rules are followed or held (we

remind you on occasion):

1. Indices for groups follow a mnemonic pattern. For example, the subscript i runs from

1, . . . , I ; the subscript j from 1, . . . , J ; k from 1, . . . , K , and so on.

2. Sums of values of the random variables are indicated by replacing the subscript by a dot.

For example,

Y

i· =

J

∑

j=1

Y

ij

, Y·jk

=

I

∑

i=1

Y

ijk

, Y·j· =

I

∑

i=1

K

∑

k=1

Y

ijk

3. It is expensive to print subscripts and superscripts on
∑

signs. A very simple rule is that

summations are always over the given subscripts. For example,

∑

Y

i

=

I

∑

i=1

Y

i

,

∑

Y

ijk

=

I

∑

i=1

J

∑

j=1

K

∑

k=1

Y

ijk

We may write expressions initially with the subscripts and superscripts, but after the patterns

have been established, we omit them. See Table 10.6 for an example.

4. The symbol n

ij

denotes the number of Y

ijk

observations, and so on. The total sample size

is denoted by n rather than n

...

; it will be obvious from the context that the total sample size is

meant.

5. The means are indicated by Y

ij·, Y ·j·, and so on. The number of observations associated

with a mean is always n with the same subscript (e.g., Y

ij· = Y

ij·/n

ij

or Y ·j· = Y·j·/n·j ).

6. The analysis of variance is an analysis of variability associated with a single obser-

vation. This implies that sums of squares of subtotals or totals must always be divided by

the number of observations making up the total; for example,
∑

Y

2
i·
/n

i

if Y

i· is the sum

of n

i

observations. The rule is then that the divisor is always the number of observations

represented by the dotted subscripts. Another example: Y

2
··
/n··, since Y·· is the sum of n··

observations.

7. Similar to rules 5 and 6, a sum of squares involving means always have as weighting

factor the number of observations on which the mean is based. For example,

I

∑

i=1

n

i

(Y

i· − Y ··)
2

because the mean Y

i· is based on n

i

observations.

8. The anova models are best expressed in terms of means and deviations from means.

The computations are best carried out in terms of totals to avoid unnecessary calculations and

prevent rounding error. (This is similar to the definition and calculation of the sample standard

deviation.) For example,

∑

n

i

(Y

i· − Y ··)
2

=

∑

Y

2
i·

n

i

−

Y

2
··

n··

See Problem 10.25.
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10.2 ONE-WAY ANALYSIS OF VARIANCE

10.2.1 Motivating Example

Example 10.1. To motivate the one-way analysis of variance, we return to the data of Zelazo

et al. [1972], which deal with the age at which children first walked (see Chapter 5). The

experiment involved reinforcement of the walking and placing reflexes in newborns. The walking

and placing reflexes disappear by about 8 weeks of age. In this experiment, newborn children

were randomly assigned to one of four treatment groups: active exercise; passive exercise; no

exercise; or an 8-week control group. Infants in the active-exercise group received walking

and placing stimulation four times a day for eight weeks, infants in the passive-exercise group

received an equal amount of gross motor stimulation, infants in the no-exercise group were

tested along with the first two groups at weekly intervals, and the eight-week control group

consisted of infants observed only at 8 weeks of age to control for possible effects of repeated

examination. The response variable was age (in months) at which the infant first walked. The

data are presented in Table 10.1. For purposes of this example we have added the mean of the

fourth group to that group to make the sample sizes equal; this will not change the mean of the

fourth group. Equal sample sizes are not required for the one-way analysis of variance.

Assume that the age at which an infant first walks alone is normally distributed with variance

σ

2. For the four treatment groups, let the means be µ1, µ2, µ3, and µ4. Since σ

2 is unknown,

we could calculate the sample variance for each of the four groups and come up with a pooled

estimate, s

2
p

, of σ

2. For this example, since the sample sizes per group are assumed to be

equal, this is

s

2
p

=

1

4
(2.0938 + 3.5938 + 2.3104 + 0.7400) = 2.1845

But we have one more estimate of σ

2. If the four treatments do not differ (H0 : µ1 = µ2 =

µ3 = µ4 = µ), the sample means are normally distributed with variance σ

2
/6. The quantity

σ

2
/6 can be estimated by s

2

Y

, the variance of the sample means. For this example it is

s

2

Y

= 0.87439

Table 10.1 Distribution of Ages (in Months) at which Infants

First Walked Alone

Active Passive No-Exercise Eight-Week

Group Group Group Control Group

9.00 11.00 11.50 13.25

9.50 10.00 12.00 11.50

9.75 10.00 9.00 12.00

10.00 11.75 11.50 13.50

13.00 10.50 13.25 11.50

9.50 15.00 13.00 12.35a

Mean 10.125 11.375 11.708 12.350

Variance 2.0938 3.5938 2.3104 0.7400

Y

i· 60.75 68.25 70.25 74.10

Source: Data from Zelazo et al. [1972].
aThis observation is missing from the original data set. For purposes of this
illustration, it is estimated by the sample mean. See the text for further dis-
cussion.
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Hence, 6s

2

Y

= 5.2463 is also an estimate of σ

2. Under the null hypothesis, 6s

2

Y

/s

2
p

will

follow an F -distribution. How many degrees of freedom are involved? The quantity s

2

Y

has

three degrees of freedom associated with it (since it is a variance based on four observations).

The quantity s

2
p

has 20 degrees of freedom (since each of its four component variances has five

degrees of freedom). So the quantity 6s

2

Y

/s

2
p

under the null hypothesis has an F -distribution with

3 and 20 degrees of freedom. What if the null hypothesis is not true (i.e., the µ1, µ2, µ3, and µ4

are not all equal)? It can be shown that 6s

2

Y

then estimates σ

2
+ positive constant, so that the

ratio 6s

2

Y

/s

2
p

tends to be larger than 1. The usual hypothesis-testing approach is to reject the

null hypothesis if the ratio is “too large,” with the critical value selected from an F -table. The

analysis is summarized in an analysis of variance table (anova), as in Table 10.2.

The variances 6s

2

Y

/s

2
p

and s

2
p

are called mean squares for reasons to be explained later. It is

clear that the first variance measures the variability between groups, and the second measures

the variability within groups. The F -ratio of 2.40 is referred to an F -table. The critical value

at the 0.05 level is F3,20,0.95 = 3.10, the observed value 2.40 is smaller, and we do not reject

the null hypothesis at the 0.05 level. The data are displayed in Figure 10.1. From the graph it

can be seen that the active group had the lowest mean value. The nonsignificance of the F -test

suggests that the active group mean is not significantly lower than that of the other three groups.

Table 10.2 Simplified anova Table of Data of Table 10.1

Source of

Variation d.f. MS F -Ratio

Between groups 3 6s

2

Y

= 5.2463
6s

2

Y

s

2
p

=

5.2463

2.1845
= 2.40

Within groups 20 s

2
p

= 2.1845

Figure 10.1 Distribution of ages at which infants first walked alone. (Data from Zelazo et al. [1972]; see

Table 10.1.)
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10.2.2 Using the Normal Distribution Model

Basic Approach

The one-way analysis of variance is a generalization of the t-test. As in the motivating example

above, it can be used to examine the age at which groups of infants first walk alone, each group

receiving a different treatment; or we may compare patient costs (in dollars per day) in a sample

of hospitals from a metropolitan area. (There is a subtle distinction between the two examples;

see Section 10.3.4 for a further discussion.)

Definition 10.2. An analysis of variance of observations, each of which belongs to one of

I disjoint groups, is a one-way analysis of variance of I groups.

Suppose that samples are taken from I normal populations that differ at most in their means;

the observations can be modeled by

Y

ij

= µ

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

(1)

The mean for normal population i is µ

i

; we assume that there are n

i

observations from this

population. Also, by assumption, the ǫ

ij

are independent N(0, σ

2
) variables. In words: Y

ij

denotes the j th sample from a population with mean µ

i

and variance σ

2. If I = 2, you can see

that this is precisely the model for the two-sample t-test.

The only difference between the situation now and that of Section 10.2.1 is that we allow the

number of observations to vary from group to group. The within-group estimate of the variance

σ

2 now becomes a weighted sum of sample variances. Let s

2
i

be the sample variance from group

i, where i = 1, . . . , I . The within-group estimate σ

2 is

∑

(n

i

− 1)s

2
i

∑

(n

i

− 1)

=

∑

(n

i

− 1)s

2
i

n − I

where n = n1 + n2 + · · · + n

I

is the total number of observations.

Under the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

= µ, the variability among the group

of sample means also estimates σ

2. We will show below that the proper expression is

∑

n

i

(Y

i· − Y ··)
2

I − 1

where

Y

i· =

n

i

∑

j=1

Y

ij

n

i

is the sample mean for group i, and

Y ·· =

I

∑

i=1

n

i

∑

j=1

Y

ij

n

=

∑

n

i

Y

i·

n

is the grand mean. These quantities can again be arranged in an anova table, as displayed in

Table 10.3. Under the null hypothesis, H0 : µ1 = µ2 = · · · = µ

I

= µ, the quantity A/B in

Table 10.3 follows an F -distribution with (I − 1) and (n − I ) degrees of freedom.

We now reanalyze our first example in Section 10.2.1, deleting the sixth observation, 12.35,

in the eight-week control group. The means and variances for the four groups are now:



362 ANALYSIS OF VARIANCE

Table 10.3 One-Way anova Table for I Groups and ni

Observations per Group (i = 1, . . . , I)

Source of Variation d.f. MS F -Ratio

Between groups I − 1 A =

∑

n

i

(Y

i· − Y ··)
2

I − 1
A/B

Within groups n − I B =

∑ (n

i

− 1)s

2
i

n − I

Table 10.4 anova of Data from Example 10.1,

Omitting the Last Observation

Source of Variation d.f. MS F -Ratio

Between groups 3 4.9253 2.14

Within groups 19 2.2994

Active Passive No Exercise Control Overall

Mean (Y

i·) 10.125 11.375 11.708 12.350 11.348

Variance (s

2
i

) 2.0938 3.5938 2.3104 0.925 —

n

i

6 6 6 5 23

Therefore,

∑

n

i

(Y

i· − Y ··)
2

= 6(10.125 − 11.348)

2
+ 6(11.375 − 11.348)

2

+ 6(11.708 − 11.348)

2
+ 5(12.350 − 11.348)

2

= 14.776

The between-group mean square is 14.776/(4 − 1) = 4.9253. The within-group mean square is

1

23 − 4
[5(2.0938) + 5(3.5938) + 5(2.3104) + 4(0.925)] = 2.2994

The anova table is displayed in Table 10.4.

The critical value F3,19,0.95 = 3.13, so again, the four groups do not differ significantly.

Linear Model Approach

In this section we approach the analysis of variance using linear models. The model Y

ij

= µ

i

+ǫ

ij

is usually written as

Y

ij

= µ + α

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

(2)

The quantity µ is defined as

µ =

I

∑

i=1

n

i

∑

j=1

µ

i

n
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where n =

∑

n

i

(the total number of observations). The quantity α

i

is defined as α

i

= µ − µ

i

.

This implies that

I

∑

i=1

n

i

∑

j=1

α

i

=

∑

n

i

α

i

= 0 (3)

Definition 10.3. The quantity α

i

= µ − µ

i

is the main effect of the ith population.

Comments:

1. The symbol α with a subscript will denote an element of the analysis of variance model,

not the type I error. The context will make it clear which meaning is intended.

2. The equation
∑

n

i

α

i

= 0 is a constraint. It implies that fixing any (I − 1) of the main

effects determines the remaining value.

If we hypothesize that the I populations have the same means,

H0 : µ1 = µ2 = · · · = µ

I

= µ

then an equivalent statement is

H0 : α1 = α2 = · · · = α

I

= 0 or H0 : α

i

= 0, i = 1, . . . , I

How are the quantities µ

i

, i = 1, . . . , I and σ

2 to be estimated from the data? (Or, equiva-

lently, µ, α

i

, i = 1, . . . , I and σ

2.) Basically, we follow the same strategy as in Section 10.2.1.

The variances within the I groups are pooled to provide an estimate of σ

2, and the variability

between groups provides a second estimate under the null hypothesis. The data can be displayed

as shown in Table 10.5. For this set of data, a partitioning can be set up that mimics the model

defined by equation (2):

Model : Y

ij

= µ + α

i

+ ǫ

ij

Data : Y

ij

= Y ·· + a

i

+ e

ij

}

i = 1, . . . , I, j = 1, . . . , n

i

(4)

where a

i

= Y

i· − Y ·· and e

ij

= Y

ij

− Y

i· for i = 1, . . . , I and j = 1, . . . , n

i

. It is easy to

verify that the condition
∑

n

i

α

i

= 0 is mimicked by
∑

n

i

a

i

= 0. Each data point is partitioned

into three component estimates:

Y

ij

= Y ·· + (Y

i

− Y ··) + (Y

ij

− Y

i·) = mean + ith main effect + error

Table 10.5 Pooled Variances of I Groups

Sample

1 2 3 · · · I

Y11 Y21 Y31 · · · Y

I1

Y12 Y22 Y32 · · · Y

I2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y1n1
Y2n2

Y3n3
· · · Y

In

I

Observations n1 n2 n3 · · · n

I

Means Y 1· Y 2· Y 3· · · · Y

I ·

Totals Y1· Y2· Y3· · · · Y

I ·
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The expression on the right side of Y

ij

is an algebraic identity. It is a remarkable property of

this partitioning that the sum of squares of the Y

ij

is equal to the sum of the three sums of

squares of the elements on the right side:

I

∑

i=1

n

i

∑

j=1

Y

2
ij

=

I

∑

i=1

n

i

∑

j=1

Y

2

··
+

I

∑

i=1

n

i

∑

j=1

(Y

i· − Y ··)
2
+

I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2

= nY

2

··
+

I

∑

i=1

n

i

(Y

i· − Y ··)
2
+

I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2 (5)

and the degrees of freedom can also be partitioned: n = 1+(I −1)+(n−I ). You will recognize

the terms on the right side as the ingredients needed for setting up the analysis of variance table

as discussed in the preceding section. It should also be noted that the quantities on the right side

are random variables (since they are based on statistics). It can be shown that their expected

values are

E

(

∑

n

i

(Y

i· − Y ··)
2
)

=

∑

n

i

α

2
i

+ (I − 1)σ

2 (6)

and

E





I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2



 = (n − I )σ

2 (7)

If the null hypothesis H0 : α1 = α2 = · · · = α

I

= 0 is true (i.e., µ1 = µ2 = · · · = µ

I

= µ),

then
∑

n

i

α

2
i

= 0, and both of the terms above provide an estimate of σ

2 [after division by

(I − 1) and (n − I ), respectively]. This layout and analysis is summarized in Table 10.6.

The quantities making up the component parts of equation (5) are called sums of squares

(SS). “Grand mean” is usually omitted; it is used to test the null hypothesis that µ = 0. This

is rarely of very much interest, particularly if the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

is

rejected (but see Example 10.7). “Between groups” is used to test the latter null hypothesis, or

the equivalent hypothesis, H0 : α1 = α2 = · · · = α

I

= 0.

Before returning to Example 10.1, we give a few computational notes.

Computational Notes

As in the case of calculating standard deviations, the computations usually are not based on

the means but rather, on the group totals. Only three quantities have to be calculated for the

one-way anova. Let

Y

i· =

n

i

∑

j=1

Y

ij

= total in the ith treatment group (8)

and

Y·· =

∑

Y

i· = grand total (9)

The three quantities that have to be calculated are

I

∑

i=1

n

i

∑

j=1

Y

2
ij

=

∑ ∑

Y

2
ij

,

I

∑

i=1

Y

2
i·

n

i

=

∑

Y

2
i·

n

i

,

Y

2
··

n
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·

M
S

µ

=
S

S
µ

M
S

µ

M
S

ǫ

(
1
,
n

−
1
)

n
µ

2
+

σ

2
µ
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0
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et

w
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n
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n
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I
−
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S
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=

∑

n
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Y
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−
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2
M

S
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=

S
S
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∑
∑
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=
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−
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∑
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where n =

∑

n

i

= total observations. It is easy to establish the following relationships:

SS
µ

=

Y

2
··

n

(10)

SS
α

=

∑

Y

2
i·

n

i

−

Y

2
··

n

(11)

SS
ǫ

=

∑ ∑

Y

2
ij

−

∑

Y

2
i·

n

i

(12)

The subscripts are omitted.

We have an algebraic identity in
∑∑

Y

2
ij

= SS
µ

+SS
α

+SS
ǫ

. Defining SStotal as SStotal =

∑∑

Y

2
ij

−SS
µ

, we get SS
total

= SS
α

+SS
ǫ

and degrees of freedom (n−1) = (i−1)+(n−I ).

This formulation is a simplified version of equation (5). Note that the original data are needed

only for
∑∑

Y

2
ij

; all other sums of squares can be calculated from group or overall totals.

Continuing Example 10.1, omitting again the last observation (12.35):

∑ ∑

Y

2
ij

= 9.002
+ 9.502

+ · · · + 11.502
= 3020.2500

∑

Y

2
i·

n

i

=

60.752

6
+

68.252

6
+

70.252

6
+

61.752

5
= 2976.5604

Y

2
··

n

=

261.002

23
= 2961.7826

The anova table omitting rows for SS
µ

and SStotal becomes

Source of Variation d.f. SS MS F -Ratio

Between groups 3 14.7778 4.9259 2.14

Within groups 19 43.6896 2.2995

The numbers in this table are not subject to rounding error and differ slightly from those in

Table 10.4.

Estimates of the components of the expected mean squares of Table 10.6 can now be obtained.

The estimate of σ

2 is σ̂

2
= 2.2995, and the estimate of

∑

n

i

α

2
i

/(I − 1) is

∑

n

i

α̂

2
i

I − 1
= 4.9259 − 2.2995 = 2.6264

How is this quantity to be interpreted in view of the nonrejection of the null hypothesis?

Theoretically, the quantity can never be less than zero (all the terms are positive). The best

interpretation looks back to MS
α

, which is a random variable which (under the null hypothesis)

estimates σ

2. Under the null hypothesis, MS
α

and MS
ǫ

both estimate σ

2
, and

∑

n

i

α

2
i

/(I −1)

is zero.

10.2.3 One-Way anova from Group Means and Standard Deviation

In many research papers, the raw data are not presented but rather, the means and standard

deviations (or variances) for each of the, say, I treatment groups under consideration. It is

instructive to construct an analysis of variance from these data and see how the assumption
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of the equality of the population variances for each of the groups enters in. Advantages of

constructing the anova table are:

1. Pooling the sample standard deviations (variances) of the groups produces a more precise

estimate of the population standard deviation. This becomes very important if the sample

sizes are small.

2. A simultaneous comparison of all group means can be made by means of the F -test

rather than by a series of two-sample t-tests. The analysis can be modeled on the layout

in Table 10.3.

Suppose that for each of I groups the following quantities are available:

Group Sample Size Sample Mean Sample Variance

i n

i

Y

i· s

2
i

The quantities n =

∑

n

i

, Y

i· = n

i

Y

i·, and Y·· =

∑

Y

i· can be calculated. The “within

groups” SS is the quantity B in Table 10.3 times n − I , and the “between groups” SS can be

calculated as

SS
α

=

∑

Y

2
i·

n

i

−

Y

2
··

n

Example 10.2. Barboriak et al. [1972] studied risk factors in patients undergoing coronary

bypass surgery for coronary artery disease. The authors looked for an association between

cholesterol level (a putative risk factor) and the number of diseased blood vessels. The data are:

Diseased Sample Mean Cholesterol Standard

Vessels (i ) Size (n
i
) Level (Y

i·) Deviation (s
i
)

1 29 260 56.0

2 49 289 87.5

3 76 295 72.4

Using equations (8)–(12), we get n = 29 + 49 + 76 = 154,

Y1· = n1Y 1· = 29(260) = 7540, Y3· = n3Y 3· = 76(295) = 22,420

Y2· = n2Y 2· = 49(289) = 14,161, Y·· =

∑

n

i

Y

i· =

∑

Y

i· = 44, 121

SS
α

=

75402

29
+

14,1612

49
+

22,4202

76
−

44,1212

154

= 12,666,829.0 − 12,640,666.5 = 26,162.5

SS
ǫ

=

∑

(n

i

− 1)s

2
i

= 28 × 56.02
+ 48 × 87.52

+ 75 × 72.42
= 848, 440

The anova table (Table 10.7) can now be constructed. (There is no need to calculate the

total SS.)

The critical value for F at the 0.05 level with 2 and 120 degrees of freedom is 3.07; the

observed F -value does not exceed this critical value, and the conclusion is that the average

cholesterol levels do not differ significantly.
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Table 10.7 anova of Data of Example 10.2

Source d.f. SS MS F -Ratio

Main effects (disease status) 2 26,162.50 13,081.2 2.33

Residual (error) 151 848,440.0 5,618.5 —

10.2.4 One-Way anova Using Ranks

In this section the rank procedures discussed in Chapter 8 are extended to the one-way analysis

of variance. For three or more groups, Kruskal and Wallis [1952] have given a one-way anova

based on ranks. The model is

Y

ij

= µ

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

The only assumption about the ǫ

ij

is that they are independently and identically distributed, not

necessarily normal. It is assumed that there are no ties among the observations. For a small

number of ties in the data, the average of the ranks for the tied observations is usually assigned

(see Note 10.1). The test procedure will be conservative in the presence of ties (i.e., the p-value

will be smaller when adjustment for ties is made).

The null hypothesis of interest is

H0 : µ1 = µ2 = · · · = µ

I

= µ

The procedure for obtaining the ranks is similar to that for the two-sample Wilcoxon rank-sum

procedure: The n1 + n2 + · · · + n

I

= n observations are ranked without regard to which group

they belong. Let R

ij

= rank of observation j in group i.

TKW =

12
∑

n

i

(R

i· − R··)
2

n(n + 1)

(13)

where R

i· is the average of the ranks of the observations in group i:

R

i· =

n

i

∑

j=1

R

ij

n

i

and R·· is the grand mean of the ranks. The value of the mean (R··) must be (n + 1)/2 (why?)

and this provides a partial check on the arithmetic. Large values of TKW imply that the average

ranks for the group differ, so that the null hypothesis is rejected for large values of this statistic.

If the null hypothesis is true and all the n

i

become large, the distribution of the statistic TKW

approaches a χ

2-distribution with I −1 degrees of freedom. Thus, for large sample sizes, critical

values for TKW can be read from a χ

2-table. For small values of n

i

, say, in the range 2 to 5,

exact critical values have been tabulated (see, e.g., CRC Table X.9 [Beyer, 1968]). Such tables

are available for three or four groups.

An equivalent formula for TKW as defined by equation (13) is

TKW =

12
∑

R

2
i·
/n

i

n(n + 1)

− 3(n + 1) (14)

where R

i· is the total of the ranks for the ith group.
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Example 10.3. Chikos et al. [1977] studied errors in the reading of chest x-rays. The opin-

ion of 10 radiologists about the status of the left ventricle of the heart (“normal” vs. “abnormal”)

was compared to data obtained by ventriculography (which consists of the insertion of a catheter

into the left ventricle, injection of a radiopague fluid, and the taking of a series of x-rays). The

ventriculography data were used to classify a subject’s left ventricle as “normal” or “abnor-

mal.” Using this gold standard, the percentage of errors for each radiologist was computed. The

authors were interested in the effect of experience, and for this purpose the radiologists were

classified into one of three groups: senior staff, junior staff, and residents. The data for these

three groups are shown in Table 10.8.

To compute the Kruskal–Wallis statistic TKW, the data are ranked disregarding groups:

Observation 7.3 7.4 10.6 13.3 14.7 15.0 20.7 22.7 23.0 26.6

Rank 1 2 3 4 5 6 7 8 9 10

Group 1 1 2 2 3 2 2 3 3 3

The sums and means of the ranks for each group are calculated to be

R1· = 1 + 2 = 3, R1· = 1.5

R2· = 3 + 4 + 6 + 7 = 20, R2· = 5.0

R3· = 5 + 8 + 9 + 10 = 32, R3· = 8.0

[The sum of the ranks is R1 + R2 + R3 = 55 = (10 × 11)/2, providing a partial check of the

ranking procedure.]

Using equation (14), the TKW statistic has a value of

TKW =

12(32
/2 + 202

/4 + 322
/4)

10(10 + 1)

− 3(10 + 1) = 6.33

This value can be referred to as a χ

2-table with two degrees of freedom. The p-value is

0.025 < p < 0.05. The exact p-value can be obtained from, for example, Table X.9 of the

CRC tables [Beyer, 1968]. (This table does not list the critical values of TKW for n1 = 2,

n2 = 4, n3 = 4; however, the order in which the groups are labeled does not matter, so

that the values n1 = 4, n2 = 4, and n3 = 2 may be used.) From this table it is seen that

0.011 < p < 0.046, indicating that the chi-square approximation is satisfactory even for these

small sample sizes. The conclusion from both analyses is that among staff levels there are

significant differences in the accuracy of reading left ventricular abnormality from a chest x-ray.

Table 10.8 Data for Three Radiologist Groups

Senior Staff Junior Staff Residents

i 1 2 3

n

i

2 4 4

Y

ij

7.3 13.3 14.7

7.4 10.6 23.0

(Percent error) 15.0 22.7

20.7 26.6
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10.3 TWO-WAY ANALYSIS OF VARIANCE

10.3.1 Using the Normal Distribution Model

In this section we consider data that arise when a response variable can be classified in two ways.

For example, the response variable may be blood pressure and the classification variables type

of drug treatment and gender of the subject. Another example arises from classifying people by

type of health insurance and race; the response variable could be number of physician contacts

per year.

Definition 10.4. An analysis of variance of observations, each of which can be classified

in two ways is called a two-way analysis of variance.

The data are usually displayed in “cells,” with the row categories the values of one classifi-

cation variable and the columns representing values of the second classification variable.

A completely general two-way anova model with each cell mean any value could be

Y

ijk

= µ

ij

+ ǫ

ijk

(15)

where i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . , n

ij

. By assumption, the ǫ

ijk

are iid

N(0, σ

2
): independently and identically distributed N(0, σ

2
). This model could be treated as a

one-way anova with IJ groups with a test of the hypothesis that all µ

ij

are the same, implying

that the classification variables are not related to the response variable. However, if there is a

significant difference among the IJ group means, we want to know whether these differences

can be attributed to:

1. One of the classification variables,

2. Both of the classification variables acting separately (no interaction), or

3. Both of the classification variables acting separately and jointly (interaction).

In many situations involving classification variables, the mean µ

ij

may be modeled as the

sum of two terms, an effect of variable 1 plus an effect of variable 2:

µ

ij

= u

i

+ v

j

, i = 1, . . . , I, j = 1, . . . , J (16)

Here µ

ij

depends, in an additive fashion, on the ith level of the first variable and the j th level

of the second variable. One problem is that u

i

and v

j

are not defined uniquely; for any constant

C, if µ

∗

i

= u

i

+ C and v

∗

j

= v

j

− C, then µ

ij

= u

∗

i

+ v

∗

j

. Thus, the values of u

i

and v

j

can

be pinned down to within a constant. The constant is specified by convention and is associated

with the experimental setup. Suppose that there are n

ij

observations at the ith level of variable 1

and the j th level of variable 2. The frequencies of observations can be laid out in a contingency

table as shown in Table 10.9.

The experiment has a total of n·· observations. The notation is identical to that used in a

two-way contingency table layout. (A major difference is that all the frequencies are usually

chosen by the experimenter; we shall return to this point when talking about a balanced anova

design.) Using the model of equation (16), the value of µ

ij

is defined as

µ

ij

= µ + α

i

+ β

j

(17)

where µ =

∑∑

n

ij

µ

ij

/n··,

∑

n

i·αi

= 0, and
∑

n·jβj

= 0. This is similar to the constraints

put on the one-way anova model; see equations (2) and (10.3), and Problem 10.25(d).

Example 10.4. An experimental setup involves two explanatory variables, each at three

levels. There are 24 observations distributed as shown in Table 10.10. The effects of the first
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Table 10.9 Contingency Table for Variables

Levels of Variable 2
Levels of

Variable 1 1 2 · · · j · · · J Total

1 n11 n12 · · · n1j

· · · n1j

n1·

2 n21 n22 · · · n2j

· · · n2J

n2·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i n

i1 n

i2 · · · n

ij

· · · n

iJ

n

i·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I n

I1 n

I2 · · · n

Ij

· · · n

IJ

n

I ·

Total n·1 n·2 · · · n·j · · · n·J n··

Table 10.10 Observation Data

Levels of Variable 2
Levels of

Variable 1 1 2 3 Total

1 2 2 2 6

2 3 3 3 9

3 3 3 3 9

Total 8 8 8 24

Table 10.11 Data for Variable Effects

Effects of the Second Variable
Effects of the

First Variable β1 = 1 β2 = −3 β3 = 2 Total

α1 = 3 µ11 = 24 µ12 = 20 µ13 = 25 µ1· = 23

α2 = 6 µ21 = 27 µ22 = 23 µ23 = 28 µ2· = 26

α3 = −8 µ31 = 13 µ32 = 9 µ33 = 14 µ3· = 12

Total µ·1 = 21 µ·2 = 17 µ·3 = 22 µ = 20

variable are assumed to be α1 = 3, α2 = 6, and α3 = −8; the effects of the second variable

are β1 = 1, β2 = −3, and β3 = 2. The overall level is µ = 20. If the model defined by

equation (17) holds, the cell means µ

ij

are specified completely as shown in Table 10.11.

For example, µ11 = 20 + 3 + 1 = 24 and µ33 = 20 − 8 + 2 = 14. Note that
∑

n

i·αi

=

6.3 + 9.6 + 9(−8) = 0 and, similarly,
∑

n·jβj

= 0. Note also that µ1· =

∑

n1j

µ1j

/

∑

n

ij

=

µ + α1 = 20 + 3 = 23; that is, a marginal mean is just the overall mean plus the effect of the

variable associated with that margin. The means are graphed in Figure 10.2. The points have

been joined by dashed lines to make the pattern clear; there need not be any continuity between

the levels. A similar graph could be made with the level of the second variable plotted on the

abscissa and the lines indexed by the levels of the first variable.

Definition 10.5. A two-way anova model satisfying equation (17) is called an additive

model.
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Figure 10.2 Graph of additive anova model (see Example 10.4).

Some implications of this model are discussed. You will find it helpful to refer to

Example 10.4 and Figure 10.2 in understanding the following:

1. The statement of equation (17) is equivalent to saying that “changing the level of variable

1 while the level of the second variable remains fixed changes the value of the mean by

the same amount regardless of the (fixed) level of the second variable.”

2. Statement 1 holds with variables 1 and 2 interchanged.

3. If the values of µ

ij

(i = 1, . . . , I ) are plotted for the various levels of the second variable,

the curves are parallel (see Figure 10.2).

4. Statement 3 holds with the roles of variables 1 and 2 interchanged.

5. The model defined by equation (17) imposes 1 + (I − 1) + (J − 1) constraints on the IJ

means µ

ij

, leaving (I − 1)(J − 1) degrees of freedom.

We now want to define a nonadditive model, but before doing so, we must introduce one

other concept.

Definition 10.6. A two-way anova has a balanced (orthogonal) design if for every i and j ,

n

ij

=

n

i·n·j

n··

That is, the cell frequencies are functions of the product of the marginal totals. The reason this

characteristic is needed is that only for balanced designs can the total variability be partitioned in

an additive fashion. In Section 10.5 we introduce a discussion of unbalanced or nonorthogonal

designs; the topic is treated in terms of multiple regression models in Chapter 11.

Definition 10.7. A balanced two-way anova model with interaction (a nonadditive model)

is defined by

i = 1, . . . , I

Y

ijk

= µ + α

i

+ β

j

+ γ

ij

+ ǫ

ijk

, j = 1, . . . , J (18)

k = 1, . . . , n

ij
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subject to the following conditions:

1. n

ij

= n

i·n·j/n·· for every i and j .

2.
∑

n

i·αi

=

∑

n·jβj

= 0.

3.
∑

n

i·γij

= 0 for all j = 1, . . . , J,

∑

n·jγij

= 0 for all i = 1, . . . , I .

4. The ǫ

ijk

are iid N(0, σ

2
). This assumption implies homogeneity of variances among the

IJ cells.

If the γ

ij

are zero, the model is equivalent to the one defined by equation (17), there is no

interaction, and the model is additive.

As in Section 10.2, equations (4) and (5), a set of data as defined at the beginning of

this section can be partitioned into parts, each of which estimates the component part of the

model:

Y

ijk

= Y ··· + a

i

+ b

j

+ g

ij

+ e

ijk

(19)

where

Y ··· = grand mean

a

i

= Y

i·· − Y ··· = main effect of ith level of variable 1

b

j

= Y ·j· − Y ··· = main effect of j th level of variable 2

g

ij

= Y

ij· − Y

i·· − Y ·j· + Y ··· = interaction of ith and j th levels of variables 1 and 2

e

ijk

= Y

ijk

− Y

ij· = residual effect (error)

The quantities Y

i·· and Y ·j· are the means of the ith level of variable 1 and the j th level of

variable 2. In symbols,

Y

i·· =

J

∑

j=1

n

ij

∑

k=1

Y

ijk

n

i·

and Y ·j· =

I

∑

i=1

n

ij

∑

k=1

Y

ijk

n·j

The interaction term, g

ij

, can be rewritten as

g

ij

= (Y

ij· − Y ···) − (Y

i·· − Y ···) − (Y ·j · − Y ···)

which is the overall deviation of the mean of the ij th cell from the grand mean minus the main

effects of variables 1 and 2. If the data can be fully explained by main effects, the term g

ij

will

be zero. Hence, g

ij

measures the extent to which the data deviate from an additive model.

For a balanced design the total sum of squares, SSTOTAL =

∑∑∑

(Y

ijk

−Y ···)
2 and degrees

of freedom can be partitioned additively into four parts:

SSTOTAL = SS
α

+ SS
β

+ SS
γ

+ SS
ǫ

n·· − 1 = (I − 1) + (J − 1) + (I − 1)(J − 1) + (n·· − IJ ) (20)

Let

Y

ij· =

n

ij

∑

k=1

Y

ijk

= total for cell ij
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Y

i·· =

J

∑

j=1

Y

ij· = total for row i

Y·j· =

I

∑

i=1

Y

ij· = total for column j

Then the equations for the sums of squares together with computationally simpler formulas are

SS
α

=

∑

n

i·(Y i·· − Y ···)
2

=

∑

Y

2
i··

n

i·

−

Y

2
···

n··

SS
β

=

∑

n·j (Y ·j· − Y ···)
2

=

∑
Y

2
·j·

n·j

−

Y

2
···

n··

(21)

SS
γ

=

∑ ∑

n

ij

(Y

ij· − Y

i·· − Y ·j· + Y ···)
2

=

∑∑
Y

2
ij ·

n

ij

−

Y

2
···

n

− SS
α

− SS
β

SS
ǫ

=

∑ ∑ ∑

(Y

ijk

− Y

ij·)
2

=

∑ ∑ ∑

Y

2
ijk

−

∑ ∑
Y

2
ij·

n

ij

The partition of the sum of squares, the mean squares, and the expected mean squares are

given in Table 10.12.

A series of F -tests can be carried out to test the significance of the components of the model

specified by equation (18). The first test carried out is usually the test for interaction: MS
γ

/MS
ǫ

.

Under the null hypothesis H0 : γ

ij

= 0 for all i and j , this ratio has an F -distribution with

(I − 1)(J − 1) and n − IJ degrees of freedom. The null hypothesis is rejected for large values

of this ratio. Interaction is indicated by nonparallelism of the treatment effects. In Figure 10.3,

some possible patterns are indicated. The expected results of F -tests are given at the top of

each graph. For example, pattern 1 shows no–yes–no, implying that the test for the main effect

of variable 1 was not significant, the test for main effect of variable 2 was significant, and the

test for interaction was not significant. It now becomes clear that if interaction is present, main

effects are going to be difficult to interpret. For example, pattern 4 in Figure 10.3 indicates

significant interaction but no significant main effects. But the significant interaction implies that

at level 1 of variable 1 there is a significant difference in the main effect of variable 2. What

is happening is that the effect of variable 2 is in the opposite direction at the second level

of variable 1. This pattern is extreme. A more common pattern is that of pattern 6. How is

this pattern to be interpreted? First, there is interaction; second, above the interaction there are

significant main effects.

There are substantial practical problems associated with significant interaction patterns. For

example, suppose that the two variables represent two drugs for pain relief administered simul-

taneously to a patient. With pattern 2, the inference would be that the two drugs together are

more effective than either one acting singly. In pattern 4 (and pattern 3), the drugs are said to act

antagonistically. In pattern 6, the drugs are said to act synergistically ; the effect of both drugs

combined is greater than the sum of each acting alone. (For some subtle problems associated

with these patterns, see the discussion of transformations in Section 10.6.)

If interaction is not present, the main effects can be tested by means of the F -tests MS
α

/MS
ǫ

and MS
β

/MS
ǫ

with (I − 1, n − IJ ) and (J − 1, n − IJ ) degrees of freedom, respectively. If a

main effect is significant, the question arises: Which levels of the main effect differ significantly?

At this point, a visual inspection of the levels may be sufficient to establish the pattern; in

Chapter 12 we establish a more formal approach.

As usual, the test MS
µ

/MS
ǫ

is of little interest, and this line is frequently omitted in an

analysis of variance table.
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Figure 10.3 Some possible patterns for observed cell means in two-way anova with two levels for each

variable. Results of F -tests for main effects variable 1, variable 2, and interaction are indicated by yes or

no. See the text for a discussion.

Example 10.5. Nitrogen dioxide (NO2) is an automobile emission pollutant, but less is

known about its effects than those of other pollutants, such as particulate matter. Several animal

models have been studied to gain an understanding of the effects of NO2. Sherwin and Layfield

[1976] studied protein leakage in the lungs of mice exposed to 0.5 part per million (ppm) NO2

for 10, 12, and 14 days. Half of a total group of 44 animals was exposed to the NO2; the other

half served as controls. Control and experimental animals were matched on the basis of weight,

but this aspect will be ignored in the analysis since the matching did not appear to influence the

results. Thirty-eight animals were available for analysis; the raw data and some basic statistics

are listed in Table 10.13.

The response is the percent of serum fluorescence. High serum fluorescence values indicate

a greater protein leakage and some kind of insult to the lung tissue. The authors carried out

t-tests and state that with regard to serum fluorescence, “no significant differences” were found.
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Table 10.13 Serum Fluorescence Readings of Mice Exposed to Nitrogen

Dioxide (NO2) for 10, 12, and 14 Days Compared with Control Animals

Serum Fluorescence

10 Days (j = 1) 12 Days (j = 2) 14 Days (j = 3)

Control (i = 1) 143 179 76

169 160 40

95 87 119

111 115 72

132 171 163

150 146 78

141 — —

Exposed (i = 2) 152 141 119

83 132 104

91 201 125

86 242 147

150 209 200

108 114 178

75 — —

n
ij

j

i 1 2 3

1 7 6 6

2 7 6 6

Y
ij ·

j

i 1 2 3

1 941 858 548

2 745 1039 873

Y
ij ·

j

i 1 2 3

1 134.4 143.0 91.3

2 106.4 173.2 145.5

s
ij

j

i 1 2 3

1 24.7 35.5 43.2

2 32.1 51.0 37.1

The standard deviations are very similar, suggesting that the homogeneity of variance assump-

tion is probably valid. It is a good idea again to graph the results to get some “feel” for the

data, and this is done in Figure 10.4. We can see from this figure that there are no outlying

observations that would invalidate the normality assumption of the two-way anova model.

To obtain the entries for the two-way anova table, we basically need six quantities:

n, Y···,

∑

Y

2
ijk

,

∑

Y

2
i··

n

i·

,

∑
Y

2
·j·

n·j

,

∑
Y

2
ij·

n

ij

With these quantities, and using equations (20) and (21), the entire table can be computed. The

values are as follows:

n = 38, Y··· = 5004,

∑

Y

2
ijk

= 730,828

∑

Y

2
i··

n

i·

= 661,476.74,

∑
Y

2
·j·

n·j

= 671,196.74,

∑
Y

2
ij·

n

ij

= 685,472.90
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Figure 10.4 Serum fluorescence of mice exposed to nitrogen dioxide. (Data from Sherwin and Layfield

[1976]; see Example 10.5.)

Sums of squares can now be calculated:

SS
α

= SSTREATMENT = 661,476.74 −

50042

38
= 2528.95

SS
β

= SSDAYS = 671196.74 −

50042

38
= 12,248.95

SS
γ

= SSTREATMENT×DAYS = 685,472.90 −

50042

38
− 2528.95 − 12,248.95 = 11,747.21

SS
ǫ

= SSRESIDUAL = 730,828 − 685,472.90 = 45,355.10

(It can be shown that SS
ǫ

=

∑

(n

ij

− 1)s

2
ij

. You can verify this for these data.) The anova

table is presented in Table 10.14.
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Table 10.14 anova of Serum Fluorescence Levels of Mice Exposed to Nitrogen Dioxide (NO2)

Source of Variation d.f. SS MS F -Ratio p-Value

Treatment 1 2,528.95 2528.95 1.78 > 0.10

Days 2 12,248.95 6124.48 4.32 < 0.05

Treatment × days 2 11,747.21 5873.60 4.14 < 0.05

Residual 32 45,355.10 1417.35 — —

Total 37 71,880.21 — — —

Source: Data from Sherwin and Layfield [1976].

The MS for interaction is significant at the 0.05 level (F2,32 = 4.14, p < 0.05). How is this

to be interpreted? The means Y

ij· are graphed in Figure 10.5. There clearly is nonparallelism,

and the model is not an additive one. But more should be said in order to interpret the results,

particularly regarding the role of the control animals. Clearly, control animals were used to

provide a measurement of background variation. The differences in mean fluorescence levels

among the control animals indicate that the baseline response level changed from day 10 to

day 14. If we consider the response of the animals exposed to nitrogen dioxide standardized by

the control level, a different picture emerges. In Figure 10.5, the differences in means between

exposed and unexposed animals is plotted as a dashed line with scale on the right-hand side

of the graph. This line indicates that there is an increasing effect of exposure with time. The

interpretation of the significant interaction effect then is, possibly, that exposure did induce

increased protein leakage, with greater leakage attributable to longer exposure. This contradicts

the authors’ analysis of the data using t-tests. If the matching by weight was retained, it would

Figure 10.5 Mean serum fluorescence level of mice exposed to nitrogen dioxide, treatment vs. control.

The difference (treatment − control) is given by the dashed line. (Data from Sherwin and Layfield [1976];

see Example 10.5.)
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have been possible to consider the differences between exposed and control animals and carry

out a one-way anova on the differences. See Problem 10.5.

Two-Way ANOVA from Means and Standard Deviations

As in the one-way anova, a two-way anova can be reconstructed from means and standard

deviations. Let Y

ij· be the mean, s

ij

the standard deviation, and n

ij

the sample size associated

with cell ij (i = 1, . . . , I, j = 1, . . . , J ), assuming a balanced design. Then

Y··· =

I

∑

i=1

J

∑

j=1

n

ij

Y

ij·, Y

i·· =

J

∑

j=1

n

ij

Y

ij·, Y·j· =

I

∑

i=1

n

ij

Y

ij·

Using equation (21), SS
α

and SS
β

can now be calculated. The term
∑

Y

2
ij·

/n

ij

in SS
γ

is equiv-

alent to

∑
Y

2
ij·

n

ij

=

∑

n

ij

Y

2

ij·

Finally, SS
ǫ

can be calculated from

SS
ǫ

=

∑

(n

ij

− 1)s

2
ij

(22)

Problems 10.22 and 10.23 deal with data presented in terms of means and standard deviations.

There will be some round-off error in the two-way analysis constructed in this way, but it will

not affect the conclusion.

It is easy to write a computer subroutine that produces such a table upon input of means,

standard deviations, and sample sizes.

10.3.2 Randomized Block Design

In Chapter 2 we discussed the statistical concept of blocking. A block consists of a subset of

homogeneous experimental units. The background variability among blocks is usually much

greater than within blocks, and the experimental strategy is to assign all treatments randomly

to the units of a block. A simple example of blocking is illustrated by the paired t-test. Sup-

pose that two antiepileptic agents are to be compared. One possible (valid) design is to assign

randomly half of a group of patients to one agent and half to the other. By this randomization

procedure, the variability among patients is “turned” into error. Appropriate analyses are the

two-sample t-test, the one-way analysis of variance, or a two-sample nonparametric test. How-

ever, if possible, a better design would be to test both drugs on the same patient; this would

eliminate patient-to-patient variability, and comparisons are made within patients. The patients

in this case act as blocks. A paired t-test or analogous nonparametric test is now appropriate.

For this design to work, we would want to assign the drugs randomly within a patient. This

would eliminate a possible additive sequence effect; hence, the term randomized block design.

In addition, we would want to have a reasonably large time interval between drugs to eliminate

possible carryover effects; that is, we cannot permit a treatment × period interaction. Other

examples of naturally occurring blocks are animal litters, families, and classrooms. Constructed

blocks could be made up of sets of subjects matched on age, race, and gender.

Blocking is done for two purposes:

1. To obtain smaller residual variability

2. To examine treatments under a wide range of conditions
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A basic design principle is to partition a population of study units in such a way that

background variability between blocks is maximized, and consequently, background variability

within blocks is minimized.

Definition 10.8. In a randomized block design, each treatment is given once and only

once in each block. Within a block, the treatments are assigned randomly to the experimental

units.

Note that a randomized block design, by definition, is a balanced design: This is somewhat

restrictive. For example, in animal experiments it would require litters to be of the same size.

The statistical model associated with the randomized block design is

Y

ij

= µ + β

i

+ τ

j

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , J (23)

and (1)
∑

β

i

=

∑

τ

j

= 0 and (2) ǫ are iid N(0, σ

2
). In this model, β

i

is the effect of block i

and τ

j

the effect of treatment j . In this model, as indicated, we assume no interaction between

blocks and treatments (i.e., if there is a difference between treatments, the magnitude of this

effect does not vary from block to block except for random variation). In Section 10.6 we discuss

a partial check on the validity of the assumption of no interaction.

The analysis of variance table for this design is a simplified version of Table 10.12: The

number of observations is the same in each block and for each treatment. In addition, there is

no SS for interaction; another way of looking at this is that the SS for interaction is the error

SS. The calculations are laid out in Table 10.15.

Tests of significance proceed in the usual way. The expected mean squares can be derived

from Table 10.12, making use of the simpler design.

The computations for the randomized block design are very simple. You can verify that

SS
µ

=

Y

2
··

n

, SS
β

=

∑

Y

2
i·

J

−

Y

2
··

n

, SS
τ

=

∑

Y

2
·j

I

−

Y

2
··

n

(24)

SS
ǫ

=

∑

Y

2
ij

−

Y

2
··

n

− SS
β

− SS
τ

Example 10.6. The pancreas, a large gland, secretes digestive enzymes into the intestine.

Lack of this fluid results in bowel absorption problems (steatorrhea); this can be diagnosed

by excess fat in feces. Commercial pancreatic enzyme supplements are available in three

forms: capsule, tablets, and enteric-coated tablets. The enteric-coated tablets have a protec-

tive shell to prevent gastrointestinal reaction. Graham [1977] investigated the effectiveness of

these three formulations in six patients with steatorrhea; the three randomly assigned treat-

ments were preceded by a control period. For purposes of this example, we will consider the

control period as a treatment, even though it was not randomized. The data are displayed in

Table 10.16.

To use equation 4, we will need the quantities

Y·· = 618.6,

∑

Y

2
i·

4
= 21,532.80,

∑

Y

2
·j

6
= 17,953.02,

∑

Y

2
ij

= 25,146.8

The analysis of variance table, omitting SS
µ

, is displayed in Table 10.17.

The treatment effects are highly significant. A visual inspection of Table 10.16 suggests that

capsules and tablets are the most effective, enteric-coated tablets less effective. The author points

out that the “normal” amount of fecal fat is less than 6 g per day, suggesting that, at best, the

treatments are palliative. The F -test for patients is also highly significant, indicating that the

levels among patients varied considerably: Patient 4 had the lowest average level at 6.1 g in 24

hours; patient 5 had the highest level, with 47.1 g in 24 hours.
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Table 10.16 Effectiveness of Pancreatic Supplements on Fat Absorption in Patients with

Steatorrhea (Grams/Day)

None Enteric-Coated

Case (Control) Tablet Capsule Tablet Y

i· Y

i·

1 44.5 7.3 3.4 12.4 67.6 16.9

2 33.0 21.0 23.1 25.4 102.5 25.6

3 19.1 5.0 11.8 22.0 57.9 14.5

4 9.4 4.6 4.6 5.8 24.4 6.1

5 71.3 23.3 25.6 68.2 188.4 47.1

6 51.2 38.0 36.0 52.6 177.8 44.4

Y·j 228.5 99.2 104.5 186.4 618.6 —

Y ·j 38.1 16.5 17.4 31.1 Y ·· = 25.8

Source: Data from Graham [1977].

Table 10.17 Randomized Block Analysis of Fecal Fat Excretion of Patients with Steatorrhea

Source of Variation d.f. SS MS F -Ratio p-Value

Patients (blocks) 5 5588.38 1117.68 10.44 <0.001

Treatments 3 2008.60 669.53 6.26 <0.01

Residual 15 1605.40 107.03 — —

Total 23 9202.38 — — —

Source: Data from Graham [1977].

10.3.3 Analyses of Randomized Block Designs Using Ranks

A nonparametric analysis of randomized block data using only the ranks was developed by

Friedman [1937]. The model is that of equation (23), but the ǫ

ij

are no longer required to be

normally distributed. We assume that there are no ties in the data; for a small number of ties

the average ranks may be used. The idea of the test is simple: If there are no treatment effects

(τ
j

= 0 for all j ), the ranks of the observations within a block are randomly distributed. For

block i, let

R

ij

= rank of Y

ij

among Y

i1, Y

i2, . . . , Y

iJ

The Friedman statistic for testing the null hypothesis H0 : τ

j

= 0 (where j = 1, . . . , J ) is

TFR = 12I

J

∑

j=1

(R·j − R··)
2

J (J + 1)

(25)

Computationally, the following formula is easier:

TFR =

12

IJ (J + 1)

J

∑

j=1

R

2
·j

− 3(I )(J + 1) (26)

The null hypothesis is rejected for large values of TFR. For small randomized block designs,

the critical values of TFR are tabulated; see, for example, Table 39 in Odeh et al. [1977], which

goes up to I = J = 6. As the number of blocks becomes very large, the distribution of TFR
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approaches that of a χ

2-distribution with (J − 1) degrees of freedom. See also Notes 10.1 and

10.2.

Example 10.6. (continued ) Replacing the observations for each individual by their ranks

produces Table 10.18. For individual 4, the two tied observations are replaced by the average of

the two ranks. [As a check, the total R·· of ranks must be R·· = IJ (J + 1)/2. (Why?) For this

example I = 6, J = 4, IJ (J + 1)/2 = (6 · 4 · 5)/2 = 60, and R·· = 22 + 8.5 + 9.5 + 20 = 60.]

The Friedman statistic, using equation (26), has the value

TFR =

12

6 × 4 × 5
(222

+ 8.52
+ 9.52

+ 202
) − (3 × 6 × 5)

= 104.65 − 90 = 14.65

This quantity is compared to a χ

2 distribution with 3 d.f. (14.65/3 = 4.88); the p-value is

p = 0.0021. From exact tables such as Odeh et al. [1977], the exact p-value is p < 0.001. The

conclusion is the same as that of the analysis of variance in Section 10.3.2. Note also that the

ranking of treatments in terms of the total ranks is the same as in Table 10.11. For an alternative

rank analysis of these data, see Problem 10.20.

10.3.4 Types of anova Models

In Section 10.2.2, two examples were mentioned of one-way analyses of variance. The first

dealt with the age at which children begin to walk as a function of various training procedures;

the second example dealt with patient hospitalization costs, based on an examination of some

hospitals (treatments) selected randomly from all the hospitals in a large metropolitan area (from

each hospital selected, a specified number of patient records are selected for cost analysis). The

experimental design associated with the first example differs from the second: In a repetition

of the first study, the same set of treatments could be used; in the second study, a new set of

hospitals could presumably be selected; that is, the “treatment levels” are randomly selected

from a larger set of treatment levels.

Definition 10.9. If the levels of a classification variable in an anova situation are selected

at random from a population, the variable is said to be a random factor or random effect.

Factors with the levels fixed by those conducting the study or which are fixed classifications

(e.g., gender) are called fixed factors or fixed effects.

Table 10.18 Rank Values for Supplement Use

Treatment

Enteric-Coated

Case Control Tablet Capsule Tablet

1 4 2 1 3

2 4 1 2 3

3 3 1 2 4

4 4 1.5 1.5 3

5 4 1 2 3

6 3 2 1 4

R·j 22 8.5 9.5 20
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Definition 10.10. anova situations with all classification variables fixed are called fixed

effects models (model I). If all the classification variables are random effects, the design is a

random effects model (model II). If both random and fixed effects are present, the design is a

mixed effects model.

Historically, no distinction was made between model I and II designs, in part due to identical

analyses in simple situations and similar analyses in more complicated situations. Eisenhart

[1947] was the first to describe systematically the differences between the two models. Some

other examples of random effects models are:

1. A manufacturer of spectrophotometers randomly selects five instruments from its produc-

tion line and obtains a series of replicated readings on each machine.

2. To estimate the maximal exercise performance in a healthy adult population, 20 subjects

are selected randomly and 10 independent estimates of maximal exercise performance for

each person are obtained.

3. To determine knowledge about the effect of drugs among sixth graders, a researcher

randomly selects five sixth-grade classes from among the 100 sixth-grade classes in a

large school district. Each child selected fills out a questionnaire.

How can we determine whether a design is model I or model II? The basic criterion deals

with the population to which inferences are to be made. Another way of looking at this is to

consider the number of times randomness is introduced (ideally). In Example 10.2 there are two

sources of randomness: subjects and observations within subjects. If more than one “layer of

randomness” has to be passed through in order to reach the population of interest, we have a

random effects model.

An example of a mixed model is example 2 above with a further partitioning of subjects into

male and female. The factor, gender, is fixed.

Sometimes a set of data can be modeled by either a fixed or random effects model. Consider

example 1 again. Suppose that a cancer research center has bought the five instruments and is

now running standardization experiments. For the purpose of the research center, the effects of

machines are fixed effects.

To distinguish a random effects model from a fixed effects model, the components of the

model are written as random variables. The two-way random effects anova model with inter-

action is written as

Y

ijk

= µ + A

i

+ B

j

+ G

ij

+ e

ijk

, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , n

ij

(27)

The assumptions are:

1. e

ijk

are iid N(0, σ

2
), as before.

2. A

i

are iid N(0, σ

2
α

).

3. B

j

are iid N(0, σ

2
β

).

4. G

ij

are iid N(0, σ

2
γ

).

The total variance can now be partitioned into several components (hence another term for

these models: components of variance models). Assume that the experiment is balanced with

n

ij

= m for all i and j . The difference between the fixed effect and random effect model is in

the expected mean squares. Table 10.19 compares the EMS for both models, taking the EMS

for the fixed effect model from Table 10.12.

The test for interaction is the same in both models. However, if interaction is present, to be

valid the test for main effects in the random effects model must use MS
γ

in the denominator

rather than MS
ǫ

.
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Table 10.19 Comparison of Expected Mean Squares in the Two-Way anova, Fixed

Effect vs. Random Effect Modelsa

EMS

Source of

Variation d.f. Fixed Effect Random Effect

Row main effects I − 1 σ

2
+

Jm

∑

α

2
i

I − 1
σ

2
+ mσ

2
γ

+ mJσ

2
α

Column main effects J − 1 σ

2
+

Im

∑

β

2
j

J − 1
σ + mσ

2
γ

+ mIσ

2
β

Row × column interaction (I − 1)(J − 1) σ

2
+

IJm

∑

γ

2
ij

(I − 1)(J − 1)

σ

2
+ mσ

2
γ

Residual n·· − IJ σ

2
σ

2

aThere are m observations in each cell.

The null hypothesis

H0 : γ

ij

= 0 all i and j

in the fixed effect model has as its counterpart,

H0 : σ

2
γ

= 0

in the random effect model. In both cases the test is carried out using the ratio MS
γ

/MS
ǫ

with

(I − 1)(J − 1) and n − IJ degrees of freedom. If interaction is not present, the tests for main

effects are the same in both models. However, if H0 is not rejected, the tests for main effects

are different in the two models. In the random effects model the expected mean square for main

effects now contains a term involving σ

2
γ

. Hence the appropriate F -test involves MS
γ

in the

denominator rather than MS
ǫ

; the degrees of freedom are changed accordingly.

Several comments can be made:

1. Frequently, the degrees of freedom associated with MS
γ

are fewer than those of MS
ǫ

, so

that there is a loss of precision if MS
γ

has to be used to test main effects.

2. From a design point of view, if m, I , and J can be chosen, it may pay to choose m small

and I , J relatively large if a random effects model is appropriate. A minimum of two replicates

per treatment combination is needed to obtain an estimate of σ

2. If possible, the rest of the

observations should be allocated to the levels of the variables. This may not always be possible,

due to costs or other considerations. If the total cost of the experiment is fixed, an algorithm

can be developed for choosing the values of m, I , and J .

3. The difference between the fixed and random effects models for the two-way anova

designs is not as crucial as it seems. We have indicated caution in proceeding to the tests

of main effects if interaction is present in the fixed model (see Figure 10.3 and associated

discussion). In the random effects model, the same precaution holds. It is perhaps too strong to

say that main effects should not be tested when interaction is present, but you should certainly

be able to explain what information you hope to obtain from such tests after a full interpretation

of the (significant) interaction.

4. Expected mean squares for an unbalanced random effects model are not derivable or are

very complicated. A more useful approach is that of multiple regression, discussed in Chapter 11.

See also Section 10.5.

5. For the randomized block design the MS
ǫ

can be considered the mean square for interac-

tion. Hence, in this case the F -tests are appropriate for both models. (Does this contradict the
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statement made in comment 3?) Note also that there is little interest in the test of block effects,

except as a verification that the blocking was effective.

Good discussions about inference in the case of random effects models can be found in

Snedecor and Cochran [1988] and Winer [1991].

10.4 REPEATED MEASURES DESIGNS AND OTHER DESIGNS

10.4.1 Repeated Measures Designs

Consider a situation in which blood pressures of two populations are to be compared. One

person is selected at random from each population. The blood pressure of each of the two

subjects is measured 100 times. How would you react to data analysis that used the two-sample

t-test with two samples of size 100 and showed that the blood pressures differed in the two

populations? The idea is ridiculous, but in one form or another appears frequently in the research

literature. Where does the fallacy lie? There are two sources of variability: within individuals

and among individuals. The variability within individuals is assumed incorrectly to represent

the variability among individuals. Another way of saying this is that the 100 readings are not

independent samples from the population of interest. They are repeated measurements on the

same experimental unit. The repeated measures may be useful in this context in pinning down

more accurately the blood pressure of the two people, but they do not make up for the small

sample size. Another feature we want to consider is that the sequence of observations within

the person cannot be randomized, for example, a sequence of measurements of growth. Thus,

typically, we do not have a randomized block design.

Definition 10.11. In a repeated measures design, multiple (two or more) measurements are

made sequentially on the same observational unit.

A repeated measures design usually is an example of a mixed model with the observational

unit a random effect (e.g., persons or animals, and the treatments on the observational units

fixed effects). Frequently, data from repeated measure designs are somewhat unbalanced and

this makes the analysis more difficult. One approach is to summarize the repeated measures in

some meaningful way by single measures and then analyze the single measures in the usual

way. This is the way many computer programs analyze such data. We motivate this approach

by an example. See Chapter 18 for further discussion.

Example 10.7. Hillel and Patten [1990] were interested in the effect of accessory nerve

injury as result of neck surgery in cancer. The surgery frequently decreases the strength of

the arm on the affected side. To assess the potential recovery, the unaffected arm was to be

used as a control. But there is a question of the comparability of arms due to dominance,

age, gender, and other factors. To assess this effect, 33 normal volunteers were examined by

several measurements. The one discussed here is that of torque, or the ability to abduct (move

or pull) the shoulder using a standard machine built for that purpose. The subjects were tested

under three consecutive conditions (in order of increasing strenuousness): 90◦
, 60◦, and 30◦ per

second. The data presented in Table 10.20 are the best of three trials under each condition. For

completeness, the age and height of each of the subjects are also presented. The researchers

wanted answers to at least five questions, all dealing with differences between dominant and

nondominant sides:

1. Is there a difference between the dominant and nondominant arms?

2. Does the difference vary between men and women?
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Table 10.20 Peak Torque for 33 Subjects by Gender, Dominant Arm, and Age Group under Three

Conditions

90◦ 60◦ 30◦

Subject Age Height (in.) Weight (lb) DMa NDa DM ND DM ND

Female 1 20 64 107 17 13 20 17 23 22

2 23 68 140 25 25 28 29 31 31

3 23 67 135 27 28 30 31 32 33

4 23 67 155 23 28 27 29 27 32

5 25 65 115 15 11 15 13 17 17

6 26 68 147 27 17 25 21 32 27

7 31 62 147 25 17 25 21 29 24

8 31 66 137 19 15 17 17 21 19

9 33 66 160 28 26 31 27 31 31

10 36 66 118 23 23 26 27 27 25

11 56 67 210 23 31 37 44 49 53

12 59 67 130 15 17 17 19 20 20

13 60 63 132 17 15 19 21 24 28

14 60 64 180 15 15 17 19 19 21

15 67 62 135 13 5 15 8 15 14

16 73 62 124 11 9 13 13 19 17

Male 1 26 69 140 43 43 44 43 49 41

2 28 71 175 45 43 48 45 53 52

3 28 70 125 25 29 29 37 39 41

4 28 70 175 39 41 49 47 55 44

5 29 72 150 38 33 40 33 44 37

6 30 68 145 53 41 51 40 59 44

7 31 74 240 60 49 71 54 68 53

8 32 67 168 32 31 37 31 39 30

9 40 69 174 47 37 43 47 49 53

10 41 72 190 33 25 29 25 39 27

11 41 68 184 39 24 43 25 39 33

12 56 70 200 21 11 23 12 33 24

13 58 72 168 41 35 45 37 49 39

14 59 73 170 31 32 31 31 35 38

15 60 73 225 39 41 47 45 55 49

16 68 67 140 31 23 33 27 37 33

17 72 69 125 13 17 17 19 17 25

Source: Data from Hillel and Patten [1990].
aDM, dominant arm; ND, nondominant arm.

3. Does the difference depend on age, height, or weight?

4. Does the difference depend on treatment condition?

5. Is there interaction between any of the factors or variables mentioned in questions 1 to 4?

For purposes of this example, we only address questions 1, 2, 4, and 5, leaving question 3 for

the discussion of analysis of covariance in Chapter 11.

The second to fourth columns in Table 10.21 contain the differences between the dominant

and nondominant arms; the fifth to seventh columns are reexpressions of the three differences

as follows. Let d90, d60, and d30 be the differences between the dominant and nondominant
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Table 10.21 Differences in Torque under Three Conditions

and Associated Orthogonal Contrastsa

DM–ND Orthogonal Contrasts

90◦ 60◦ 30◦ Constant Linear Quadratic

Female 1 4 3 1 4.6 2.1 −0.4

2 0 −1 0 −0.6 0.0 0.8

3 −1 −1 −1 −1.7 0.0 0.0

4 −5 −2 −5 −6.9 0.0 −2.4

5 4 2 0 3.5 2.8 0.0

6 10 4 5 11.0 3.5 2.9

7 8 4 5 9.8 2.1 2.0

8 4 0 2 3.5 1.4 2.4

9 2 4 0 3.5 1.4 −2.4

10 0 −1 2 0.6 −1.4 1.6

11 −8 −7 −4 −11.0 −2.8 0.8

12 −2 −2 0 −2.3 −1.4 0.8

13 2 −2 −4 −2.3 4.2 0.8

14 0 −2 −2 −2.3 1.4 0.8

15 8 7 1 9.2 4.9 −2.0

16 2 0 2 2.3 0.0 1.6

Male 1 0 1 8 5.2 −5.7 2.4

2 2 3 1 3.5 0.7 −1.2

3 −4 −8 −2 −8.1 −1.4 4.1

4 −2 2 11 6.4 −9.2 2.0

5 5 7 7 11.0 −1.4 −0.8

6 12 11 15 21.9 −2.1 2.0

7 11 17 15 24.8 −2.8 −3.3

8 1 6 9 9.2 −5.7 −0.8

9 10 −4 −4 1.2 9.9 5.7

10 8 4 12 13.9 −2.8 4.9

11 15 18 6 22.5 6.4 −6.1

12 10 11 9 17.3 0.7 −1.2

13 6 8 10 13.9 −2.8 0.0

14 −1 0 −3 −2.3 1.4 −1.6

15 −2 2 6 3.5 −5.7 0.0

16 8 6 4 10.4 2.8 0.0

17 −4 −2 −8 −8.1 2.8 −3.3

Source: Data from Hillel and Patten [1990].
a See Table 10.20 for notation.

arms under each of the three conditions. Then we define

constant =

d90 + d60 + d30
√

3

linear =

d90 − d30
√

2

quadratic =

d90 − 2 · d60 + d30
√

6

For example, for the first female subject, rounding off to one decimal place yields

4 + 3 + 1
√

3
= 4.6
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4 − 1
√

2
= 9.9

4 − 2 × (3) + 1
√

6
= −0.4

The first component clearly represents an average difference of dominance over the three con-

ditions. The divisor is chosen to make the variance of this term equal to the variance of a single

difference. The second term represents a slope within an individual. If the three conditions were

considered as values of a predictor variable with values −1 (for 30◦), 0 (for 60◦), and 1 (for

90◦), the slope would be expressed as in the second, or linear, term. The linear term assesses a

possible trend in the differences over the three conditions within an individual. The last term,

the quadratic term, fits a quadratic curve through the data assessing possible curvature or non-

linearity within an individual. This partitioning of the observations within an individual has the

property that sums of squares are maintained. For example, for the first female subject,

42
+ 32

+ 12
= 26 = (4.6)

2
+ (2.1)

2
+ (−0.4)

2

except for rounding. (If you were to calculate these terms to more decimal places, you would

find that the right side is identical to the left side.) In words, the variability in response within an

individual has been partitioned into a constant component, a linear component, and a quadratic

component. The questions posed can now be answered unambiguously since the three com-

ponents have been constructed to be orthogonal, or uncorrelated. An analysis of variance is

carried out on the three terms; unlike the usual analysis of variance, a term for the mean is

included; results are summarized in Table 10.22. We start by discussing the analysis of the

quadratic component. The analysis indicates that there are no significant differences between

males and females in terms of the quadratic or nonlinear component. Nor is there an overall

effect. Next, conclusions are similar for the linear effect. We conclude that there is no linear

trend for abductions at 90◦
, 60◦, and 30◦. This leaves the constant term, which indicates (1)

Table 10.22 anova and Means of the Data in Table 10.21

Source of Variation d.f. SS MS F -Ratio

Analysis of Variance

Constant Mean 1 900.7 900.7 13.3

Gender 1 438.5 438.5 6.48

Error 1 31 2099.2 67.72

Linear Mean 1 0.33 0.33 0.02

Gender 1 33.43 33.43 2.43

Error 2 31 426.0 13.74

Quadratic Mean 1 3.09 3.09 0.50

Gender 1 0.70 0.70 0.11

Error 3 31 191.2 6.17

Means

Constant Linear Quadratic

Female (n = 16) Mean 1.306 1.138 0.456

Standard deviation 5.920 2.121 1.609

Male (n = 17) Mean 8.600 −0.876 0.165

Standard deviation 9.917 4.734 3.085
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that there is a significant gender effect of dominance (F1,31 = 6.48, p < 0.05) and an overall

dominance effect. The average of the constant term for females is 1.31, for males is 8.6. One

question that can be raised is whether the difference between female and male is a true gender

difference or can be attributed to differences is size. An analysis of covariance can answer this

question (see Problem 11.38).

Data from a repeated measures design often look like those of a randomized block design.

The major difference is the way the data are generated. In the randomized block, the treatments

are allocated randomly to a block. In the repeated measures design, this is not the case; not

being possible, as in the case of observations over time, or because of experimental constraints,

as in the example above. If the data are analyzed as a randomized block, care must be taken

that the assumptions of the randomized block design are satisfied. The key assumption is that of

compound symmetry: The sample correlations among treatments over subjects must all estimate

the same population correlation. The randomization ensures this in the randomized block design.

For example, for the data in Table 10.16, the correlations are as follows:

Control Tablet Capsule

Tablet 0.658

Capsule 0.599 0.960

Coated tablet 0.852 0.784 0.833

These correlations are reasonably comparable. If the correlations are not assumed equal, a

conservative F -test can be carried out by referring the observed value of F for treatments to

an F -table with 1 and (I − 1) [rather than (J − 1) and (I − 1)(J − 1)] degrees of freedom).

Alternatives to the foregoing two approaches include multivariate analyses. There is a huge

literature on repeated measures analysis. The psychometric literature contains many papers on

this topic. To explore this area, consult recent issues of journals such as American Statistician.

One example is a paper by Looney and Stanley [1989]. See also Chapter 18.

10.4.2 Factorial Designs

An experimental layout that is very common in agricultural and nutritional studies is the balanced

factorial design. It is less common in medical research, due to the ever-present risk of missing

observations and ethical constraints.

Definition 10.12. In a factorial design each level of a factor occurs with every level of

every other factor. Experimental units are assigned randomly to treatment combinations.

Suppose that there are three factors with levels I = 3, J = 2, and K = 4. Then there are

3 × 2 × 4 = 24 treatment combinations. If there are three observations per combination, 72

experimental units are needed. Factorial designs, if feasible, are very economical and permit

assessment of joint effects of treatments that are not possible with experiments dealing with

one treatment at a time. The two-way analysis of variance can be thought of as dealing with a

two-factor experiment. The generalization to three or more factors does not require new concepts

or strategies, just increased computational complexity.

10.4.3 Hierarchical or Nested Designs

A hierarchical or nested design is illustrated by the following example. As part of a program

to standardize measurement of the blood level of phenytoin, an antiepileptic drug, samples with

known amounts of active ingredients are sent to four commercial laboratories for analysis. Each
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laboratory employs a number of technicians who make one or more determinations of the blood

level. A possible layout is the following:

Laboratory 1 2 3 4

Technician 1 2 3 4 5 6 7 8 9

Assay
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

In this example, laboratory 2 employs three technicians who routinely do this assay; all other

laboratories use two technicians. In laboratory 3, each technician runs three assays; in the other

laboratories each technician runs two assays. There are three factors: laboratories, technicians,

and assays; the arrangement is not factorial: there is no reason to match technician 1 with any

technician from another laboratory.

Definition 10.13. In a hierarchical or nested design levels of one or more factors are

subsampled within one or more other factors. In other words, the levels of one or more factors

are not crossed with one or more other factors.

In the example above, the factors, “technicians” and “assay,” are not “crossed” with the first

factor but rather nested within that factor. For the factor “technician” to be “crossed,” its levels

would have to repeat within each level of “laboratory.” That is why we deliberately labeled

the levels of “technician” consecutively and introduced some imbalance. Determining whether

a design is factorial or hierarchical is not always easy. If the first of the two technicians within

a laboratory was the senior technician and the second (or second and third) a junior technician,

then “technician” could perhaps be thought of as having two levels, “senior” and “junior,”

which could then be crossed with “laboratory.” A second reason is that designs are sometimes

mixed, having both factorial and hierarchical components. In the example above, if “technician”

occurred at two levels, “technician” and “laboratory” could be crossed or factorial, but “assay”

would continue to be nested within “technician.”

10.4.4 Split-Plot Designs

A related experimental design is the split-plot design. We illustrate it with an example. We want

to test the effect of physiotherapy in conjunction with drug therapy on the mobility of patients

with arthritis. Patients are randomly assigned to physiotherapy, and each patient is given a

standard drug and a placebo in random order. The experimental layout is as follows:

Physiotherapy

i = 1 (Yes) i = 2 (No)

k Patient 1 2 · · · J 1 2 · · · J

1 Drug Y111 — · · · — Y211 — · · · —

2 Placebo Y112 — · · · — Y212 — · · · —

The patients form the “whole plots” and the drug administration, the “split plot.” These

designs are characterized by almost separate analyses of specified effects. To illustrate in this

example, let

D

ij

= Y

ij1 − Y

ij2 and T

ij

= Y

ij1 + Y

ij2, i = 1, 2, j = 1, . . . , J

In words, D

ij

is the difference between drug and placebo for patient j receiving physiotherapy

level i; T

ij

is the sum of readings for drug and placebo. Now carry out an analysis of variance

(or two-sample t-test) on each of these variables; see Table 10.23.
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Table 10.23 anova Table for Split-Plot Design

Interpretation of Split-Plot Analyses

One-Way anova d.f. Differences Sums

Mean 1 Mean differences Mean sums

Between groups 1 Differences × physiotherapy Sums × physiotherapy

Within groups 2(J − 1) Differences within physiotherapy Sums within physiotherapy

Total 2J “Total” “Total”

An analysis of variance of the sums is, in effect, an assessment of physiotherapy (averaged

or summed over drug and placebo), that is, a comparison of T 1· and T 2·.

The analysis of differences is very interesting. The assessment of the significance of “between

groups” is a comparison of the average differences between drug and placebo with physiotherapy

and without physiotherapy; that is, D1· − D2· is a test for interaction. Additionally, the “mean

differences” term can be used to test the hypothesis that D·· comes from a population with

mean zero, that is, it is a comparison of drug and placebo. This test makes sense only if the

null hypothesis of no interaction is not rejected.

These remarks are intended to give you an appreciation for these designs. For more details,

consult a text on design of experiments, such as Winer [1971].

10.5 UNBALANCED OR NONORTHOGONAL DESIGNS

In previous sections we have discussed balanced designs. The balanced design is necessary to

obtain an additive partition of the sum of squares. If the design is not balanced, there are basically

three strategies available; the first is to try to restore balance. If only one or two observations are

“missing,” this is a possible strategy, but if more than two or three are missing, a second or third

alternative will have to be used. The second alternative is to use an unweighted means analysis. The

third strategy is to use a multiple regression approach; this is discussed in detail in Section 11.10.

10.5.1 Causes of Imbalance

Perhaps the most important thing you can do in the case of unbalanced data is to reflect on the

reason(s) for the imbalance. If the imbalance is due to some random mechanism unrelated to the

factors under study, the procedures discussed below are appropriate. If the imbalance is due to a

specific reason, perhaps related to the treatment, it will be profitable to think very carefully about

the implications. Usually, such imbalance suggests a bias in the treatment effects. For example,

if a drug has major side effects which cause patients to drop out of a study, the effect of the drug

may be estimated inappropriately if only the remaining patients are used in the analysis; if one

does the analysis only on patients for whom “all data are available,” biased estimates may result.

10.5.2 Restoring Balance

Missing Data in the Randomized Block Design

Suppose that the ij th observation is missing in a randomized block design consisting of I blocks

and J treatments. The usual procedure is to:

1. Estimate the missing data point by least squares using the formula

̂

Y

ij

=

IY

i· + JY·j − Y··

(I − 1)(J − 1)

(28)

where the row, column, and grand totals are those for the values present.
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2. Carry out the usual analysis of variance on this augmented data set.

3. Reduce the degrees of freedom for MS
ǫ

by 1.

If more than one observation is missing, say two or three, values are guessed for all but one,

the latter is estimated by equation (28), a second missing value is deleted, and the process is

repeated until convergence. The degrees of freedom for MS
ǫ

are now reduced by the number

of observations that are missing.

Example 10.6. (continued ) We return to Table 10.11. Suppose that observation Y31 = 19.1

is missing and we want to estimate it. For this example, I = 6, J = 4, Y3· = 38.8, Y·1 = 209.4,

and Y·· = 599.5. We estimate Y31 by

̂

Y31 =

6(38.8) + 4(209.4) − 599.5

(6 − 1)(4 − 1)

= 31.4

This value appears to be drastically different from 19.1; it is. It also indicates that there is no

substitute for real data. The analysis of variance is not altered a great deal (see Table 10.24).

The F -ratios have not changed much from those in Table 10.12. So in this case, the conclu-

sions are unchanged. Note that the degrees of freedom for residual are reduced by 1. This means

that the critical values of the F -statistics are increased slightly. Therefore, this experiment has

less power than the one without missing data.

Missing Data in Two-Way and Factorial Designs

If a cell in a two-way design has a missing observation, it is possible to replace the missing point

by the mean for that cell, carry out the analysis as before, and subtract one degree of freedom

for MS
ǫ

. A second approach is to carry out an unweighted means analysis. We illustrate both

procedures by means of an example.

Example 10.8. These data are part of data used in Wallace et al. [1977]. The observations

are from a patient with prostatic carcinoma. The question of interest is whether the immune

system of such a patient differs from that of noncarcinoma subjects. One way of assessing this

is to stimulate in vitro the patient’s lymphocytes with phytohemagglutinin (PHA). This causes

blastic transformation. Of interest is the amount of blastogenic generation as measured by DNA

incorporation of a radioactive compound. The data observed are the mean radioactive counts

per minute both when stimulated with PHA and when not stimulated by PHA. As a control, the

amount of PHA stimulation in a pooled sera of normal blood donors was used. To examine the

response of a subject’s lymphocytes, the quantity

subject’s mean count/minute stimulated with PHA

subject’s mean count/minute without PHA

normal sera mean count/minute stimulated with PHA

normal sera mean count/minute without PHA

=

X11/X12

X21/X22
(29)

Table 10.24 anova for Example 10.6

Source of Variable d.f. SS MS F -Ratio

Patients (blocks) 5 5341.93 1068.39 9.90

Treatments 3 2330.30 776.77 7.20

Residual 14 1510.94 107.92 —

Total 22 9183.17 — —
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Table 10.25 DNA Incorporation of Sera of Patient

with Prostatic Carcinoma Compared to Sera from

Normal Blood Donorsa

Radioactivity (counts/min)

Subject With PHA Without PHA

Patient sera 129,594 (11.772) 301 (5.707)

143,687 (11.875) 333 (5.808)

115,953 (11.661) 295 (5.687)

103,098 (11.543) 285 (5.652)

98,125 (11.494)

Blood donor sera 43,125 (10.672) 247 (5.509)

46,324 (10.743) 298 (5.697)

42,117 (10.648) 387 (5.958)

45,482 (10.725)

31,192 (10.348)

a log
e

of counts in parentheses.

was used. If the lymphocytes responded in the same way to the subject’s sera and the pooled

sera, the ratio should be approximately equal to 1. The data are displayed in Table 10.25.

There is a great deal of variability in the counts/minute values as related to level. In

Section 10.6.3 we suggest that logarithms are appropriate for stabilization of the variability.

There is a bonus involved in this case. Under the null hypothesis of no difference in patient and

blood donor sera, the ratio in equation (28) is 1; that is,

H0 :
E(X11)/E(X12)

E(X21)/E(X22)
= 1

This is equivalent to

H0 : log
e

E(X11)/E(X12)

E(X21)/E(X22)
= log

e

1 = 0

or

log
e

E(X11) − log
e

E(X12) − log
e

E(X21) + log
e

E(X22) = 0 (30)

Now define

Y

ijk

= log
e

X

ijk

, i = 1, 2, j = 1, 2, k = 1, . . . , n

ij

It can be shown that equation (30) is zero only if the true interaction term is zero. Thus, the

hypothesis that the patient’s immune system does not differ from that of noncarcinoma subjects

is translated into a null hypothesis about interaction involving the logarithms of the radioactive

counts.

We finally get to the “missing data” problem. The data are not balanced: n

ij

�= n

i·n·j /n··

[we could delete one observation from the (1,2) cell, but considering the small numbers, we

want to retain as much information as possible]. One strategy is to add an observation to cell

(2,2) equal to the mean for that cell and adjust the degrees of freedom for interaction. The mean

Y 22· is 5.721. The analysis of variance becomes as shown in Table 10.26.

Note that the MS for error has 13 degrees of freedom, not 14. The MS for error will be

the correct estimate using this procedure, but the MS for interaction (and main effects) will

not be the same as the one obtained by techniques of Chapter 11. However, it should be

close.
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Table 10.26 anova for the Missing Data Problem

Source d.f. SS MS F -Ratio p-Value

Subject 1 1.4893 1.4893 — —

PHA 1 131.0722 131.0722 — —

PHA × subject 1 1.2247 1.2247 50.0 <0.001

Error 13 0.3184 0.02449 — —

Total 16 — — — —

10.5.3 Unweighted Means Analysis

The second approach is that of unweighted mean analysis. Again, assuming that the unequal cell

frequencies are not due to treatment effects, the cell means are used and an average sample size

calculated for each cell. The appropriate average sample size is given by the harmonic mean.

In the context of our example, the harmonic mean is defined to be

ñ =

IJ

1/n11 + 1/n12 + 1/n21 + 1/n22

where n

ij

is the number of observations in cell (i, j). The harmonic mean is used because the

standard error of the mean of cell (i, j) is proportional to 1/n

ij

. All calculations for row and

column effects are now based on cell means and the harmonic mean of the cell sample sizes.

Write the cell means and marginal means as follows:

Y 11· Y 12·
̂

M1·

Y 21· Y 22·
̂

M2·

̂

M·1
̂

M·2
̂

M··

The marginal and overall means are just the arithmetic average of the cell means, that is, the

unweighted average (hence the name unweighted mean analysis). The row and column sums of

squares are calculated as follows:

SS
α

= ñJ

∑

(M

i· − M··)
2

SS
β

= ñI

∑

(M ·j − M··)
2

SS
γ

= ñ

∑

(Y

ij· − M

i· − M·j + M··)
2

SS
ǫ

is calculated in the usual way: SS
ǫ

=

∑

(Y

ijk

− Y

ij·)
2. For the example, the calculations

are

Means

11.669000 5.713500 8.691250

10.627200 5.721333 8.174266

11.148100 5.717416 8.432758

The harmonic mean ñ is

ñ =

(2)(2)

1/5 + 1/4 + 1/5 + 1/3
= 4.067797

SS
µ

= (4.067797)(2)

[

(8.691250 − 8.432758)

2
+ (8.174266 − 8.432758)

2
]

= 1.0872
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Table 10.27 anova Table for Unweighted Means

Source d.f. SS MS F -Ratio p-Value

Subject 1 1.0872 1.0872

PHA 1 119.688 119.6888 1

PHA × subject 1 1.1204 1.1204 45.7 <0.001

Error 13 0.3184 0.02449

Total 16

SS
β

= (4.067797)(2)

[

(11.148100 − 8.432758)

2
+ (5.717416 − 8.432758)

2
]

= 119.6888

SS
γ

= (4.067797)

[

(4)(0.262408)

2
]

= 1.1204

making use of the fact that all the interaction deviations are equal in absolute value:

Y 11· − M1· − M·1 + M·· = 0.262408

Y 12· − M1· − M·2 + M·· = −0.262408, . . .

The ANOVA table based on the unweighted means is shown in Table 10.27.

The conclusion remains unchanged. It turns out in this case that the test for interaction is

identical to the multiple regression procedure of Chapter 11.

10.6 VALIDITY OF ANOVA MODELS

10.6.1 Assumptions in anova Models

All the models considered in this chapter have assumed at least the following:

1. Homogeneity of variance

2. Normality of the residual error

3. Statistical independence of the residual errors

4. Linearity of the model

For example, consider again the model associated with the one-way analysis of variance

(omitting the subscripts):

Y = µ + α + ǫ

We assumed that (1) the error term ǫ had constant variance for all values of µ and α, and was

normally distributed; (2) values of ǫ were randomly (independently) selected; and (3) the

response Y was related linearly to µ, α, and ǫ.

In addition, the random effects and repeated measures models made assumptions about the

covariances of the random factors and the residual error; other models assumed zero interaction

(additivity).

If one or more of the assumptions does not hold, one of the following approaches is frequently

used:

1. The data are analyzed by a method that makes fewer assumptions: for example, nonpara-

metric analysis.



398 ANALYSIS OF VARIANCE

2. Part of the data is eliminated or not used, for example, extreme values (i.e., outliers) are

deleted or replaced by less extreme values. Deletion usually induces bias.

3. The measurement variables are replaced by categorical variables and some kind of analysis

of frequencies is carried out; for example, “age at first pregnancy” is replaced by “teenage

mother: yes–no,” and the number of observations in various categories is now the outcome

variable.

4. A weighted analysis is done; for example, if the variance is not constant at all levels of

response, the responses are weighted by the inverse of the variances. The log-linear models of

Chapter 7 are an example of a weighting procedure.

5. The data are “transformed” to make the assumptions valid. Typical transformations are:

logarithmic, square root, reciprocal, and arcsin
√

. These transformations are nonlinear. Linear

transformations do not alter the analysis of variance tests.

6. Finally, appeal is made to the “robustness” of the anova and the analysis is carried out

anyway. This is a little bit like riding a bicycle without holding onto the handle bars; it takes

experience and courage. If you arrive safely, everyone is impressed, if not, they told you so.

The most common approach is to transform the data. There are advantages and disadvantages

to transformations. A brief discussion is presented in the next section. In the other sections we

present specific tests of the assumptions of the anova model.

10.6.2 Transformations

Some statisticians recommend routine transformations of data before any analysis is carried

out. We recommend the contrary approach; do not carry out transformations unless necessary,

and then be very careful, particularly in estimation. We discuss this more fully below, but first

we present some common transformations. Table 10.28 lists seven of the most commonly used

transformations and one somewhat more specialized one. Each row in the table lists some of

the characteristics of the transformation and its uses. A large number of these transformations

are variance stabilizing. For example, if the variance of Y is λ

2
µ

Y

, where λ is a constant and

µ

Y

is the expected value of Y , then
√

Y tends to have a variance that is constant and equal

to λ

2
/4. Hence, this transformation is frequently associated with a Poisson random variable: in

this case λ = 1, so that
√

Y tends to have a variance of 1/4 regardless of the value of µ

Y

. This

result is approximate in that it holds for large values of µ

Y

. However, the transformation works

remarkably well even for small µ

Y

, say, equal to 10. Freeman and Tukey [1950] have proposed

a modification of the square root transformation which stabilizes the variance for even smaller

values of µ

Y

. Variance stabilizing transformations tend to be normalizing as well and can be

derived explicitly as a function of the variance of the original variable.

The logarithmic transformation is used to stabilize the variance and/or change a multiplica-

tive model into an linear model. When the standard deviation of Y is proportional to µ

Y

the

logarithmic transformation tends to stabilize the variance. The reciprocal transformation (one per

observation) is used when the variance is proportional to µ

4
Y

. These first three transformations

deal with a progression in the dependence of the variance of Y on µ

Y

: from µ

Y

to µ

4
Y

. The

transformations consist of raising Y to an exponent from Y

1/2 to Y

−1. If we define the limit of

Y

b to be log
e

Y as b approaches 0, these transformations represent a gradation in exponents. A

further logical step is to let the data determine the value of b. This transformation, Y

b, is an

example of a power transformation. (Power here does not imply “powerful” but simply that Y

is raised to the bth power.) See Note 10.4 for additional comments.

The next two transformations are used with proportions or rates. The first one of these is the

ubiquitous logistic transformation, which is not variance stabilizing but does frequently induce

linearity (cf. Section 7.5). The angle transformation is variance stabilizing but has a finite range;

it is not used much anymore because computational power is now available to use the more

complex but richer logistic transformation.
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The Fisher Z-transformation is used to transform responses whose range is between −1 and

+1. It was developed specifically for the Pearson product-moment correlation coefficient and

discussed in Chapter 9. Finally, we mention one transformation via ranks, the normal scores

transformation. This transformation is used extensively in nonparametric analyses and discussed

in Chapter 8.

There are benefits to the use of transformations. It is well to state them explicitly since we

also have some critical comments. The benefits include the following:

1. Methods using the normal distribution can be used.

2. Tables, procedures, and computer programs are available.

3. A transformation derived for one purpose tends to achieve some other purposes as well—

but not always.

4. Inferences (especially relating to hypothesis testing) can be made more easily.

5. Confidence intervals in the transformed scale can be “transformed back” (but estimates

of standard errors cannot).

Transformations are more useful for testing purposes than for estimation. The following

drawbacks of transformations should be kept in mind:

1. The order of statistics may not be preserved. Consider the following two sets of data:

sample 1 : 1, 10; sample 2 : 5, 5. The arithmetic means are 5.5 and 5.0, respectively.

The geometric means (i.e., the antilogarithms of the arithmetic mean of the logarithms of

the observations) are 3.2 and 5.0, respectively. Hence, the ordering of the means is not

preserved by the transformation (the ordering of the raw data is preserved).

2. Contrary to some, we think that there may be a “natural scale” of measurement. Some

examples of variables with a natural scale of measurement are “life expectancy” measured

in years, days, or months; cost of medical care in dollars; number of accidents attributable

to alcoholism. Administrators or legislators may not be impressed with, or willing to think

about, the cost of medical care in terms of “square root of millions of dollars expended.”

3. Closely related is the problem of bias. An obvious approach to the criticism in our discus-

sion of drawback 2 is to do the analysis in the transformed units and then transform back

to the original scale. Unfortunately, this introduces bias as mentioned in our discussion of

drawback 1. Formally, if Y is the variable of interest and W = g(Y ) its transform, then

it is usually the case that

E(W) �= g(E(Y ))

There are ways of assessing this bias and eliminating it but such methods are cumbersome

and require an additional layer of computations, something the transformation was often

designed to reduce!

4. Finally, many of the virtues of transformations are asymptotic virtues; they are approached

as the sample size becomes very large. This should be kept in mind when analyzing

relatively small data sets.

10.6.3 Testing of Homogeneity of Variance

It is often the case that the variance or standard deviation is proportional to the mean level of

response. There are two common situations where this occurs. First, where the range of response

varies over two or more orders of magnitude; second, in situations where the range of response

is bounded, on the left, the right or both. Examples of the former are Poisson random variables;

examples of the latter, responses such as proportions, rates, or random variables that cannot be

negative.
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Figure 10.6 Mean serum fluorescence level and standard deviation. (Data from Sherwin and Layfield

[1976]; see Example 10.5.)

The simplest verification of homogeneity of variance is provided by a graph, plotting the

variance or standard deviation vs. the level of response.

Example 10.5. (continued ) In Table 10.8, the means and standard deviations of serum flu-

orescence readings of mice exposed to nitrogen dioxide are given. In Figure 10.6 the standard

deviations are plotted against the means of the various treatment combinations. This example

does not demonstrate any pattern between the standard deviation and the cell means. It would

not be expected because the range of the cell means is fairly small.

Example 10.9. A more interesting example is the data of Quesenberry et al. [1976] dis-

cussed in Problem 3.14. Samples of peanut kernels were analyzed for aflatoxin levels. Each

sample was divided into 15 or 16 subsamples. There was considerable variability in mean levels

and corresponding standard deviations.

A plot of means vs. standard deviations displays an increasing pattern, suggesting a log-

arithmic transformation to stabilize the variance. This transformation as well as two other

transformations (

√

Y , Y

1/4
) are summarized in Table 10.29. Means vs. standard deviations are

Table 10.29 Aflatoxin Levels in Peanut Kernels: Means and Standard Deviations for 11 Samples

Using Transformations

Mean and Standard Deviation of Aflatoxin Level

Y W = Y

1/4
W =

√

Y W = log Y

Sample n Mean SD Mean SD Mean SD Mean SD

1 16 110 25.6 3.2 0.192 10.4 1.24 4.7 0.240

2 16 79 20.6 3.0 0.204 8.8 1.19 4.3 0.281

3 16 21 3.9 2.1 0.109 4.5 0.45 3.0 0.213

4 16 33 12.2 2.4 0.192 5.7 0.96 3.4 0.311

5 15 32 10.6 2.4 0.194 5.6 0.92 3.4 0.328

6 16 15 2.7 2.0 0.089 3.8 0.35 2.7 0.183

7 15 33 6.2 2.4 0.111 5.8 0.54 3.5 0.183

8 16 31 2.8 2.4 0.054 5.6 0.26 3.4 0.092

9 16 17 4.2 2.0 0.129 4.1 0.51 2.8 0.261

10 16 8 3.1 1.7 0.143 2.9 0.49 2.1 0.339

11 15 84 17.7 3.0 0.164 9.1 0.98 4.4 0.221

Source: Data from Quesenberry et al. [1976].
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Figure 10.7 Means vs. standard deviation, arithmetic and logarithmic scales. (Data from Wallace et al.

[1977]; see Example 10.8.)

plotted in Figure 10.7. The first pattern clearly indicates a linear trend; the plot for the data

expressed as logarithms suggests very little pattern. This does not prove that the lognormal

model is appropriate. Quesenberry et al. [1976], in fact, considered two classes of models: the

11 samples are from normal distributions with means and variances µ

i

, σ

2
i

, i = 1, . . . , 11; the

second class of models assumes that the logarithms of the aflatoxin levels for the 11 samples

come from normal distributions with means and variances γ

i

, θ

2
, i = 1, . . . , 11.

On the basis of their analysis, they conclude that the normal models are more appropriate.

The cost is, of course, that 10 more parameters have to be estimated. Graphs of means vs.

standard deviation for the
√

Y and Y

1/4 scale still suggest a relationship.

The tests of homogeneity of variance developed here are graphical. There are more formal

tests. All of the tests assume normality and are sensitive to departure from normality. In view

of the robustness of the analysis of variance to heterogeneity of variance, Box [1953] remarked

that “. . . to make the preliminary tests on variances is rather like putting to sea in a rowing boat

to find out whether conditions are sufficiently calm for an ocean liner to leave port.” There are

four common tests of homogeneity of variance, associated with the names of Hartley, Cochran,

Bartlett, and Scheffé. Only the first two are described here, they will be adequate for most

purposes. For a description of the other tests see, for example, Winer [1971]. Suppose that

there are k samples with sample size n

i

and sample variance s

2
i

, i = 1, . . . , k. For the moment,

assume that all n

i

are equal to n. Hartley’s test calculates

FMAX =

s

2
maximum

s

2
minimum

Cochran’s test calculates

C =

s

2
maximum
∑

S

2
i

In the absence of software for computing critical values, both statistics can be referred to

appropriate tables in the Web appendix. If the sample sizes are not equal, the tables can be

entered with the minimum sample size to give a conservative test and with the maximum
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Table 10.30 Calculations for Example 10.9

Scale Fmax C

Y

(

25.6

2.7

)2

= 89.9
(25.7)

2

1758.1
= 0.38

√

Y

(

1.24

0.26

)2

= 22.7
(1.24)

2

9.787
= 0.16

Y

1/4

(

0.204

0.054

)2

= 14.1
(0.204)

2

0.252
= 0.16

log
e

Y

(

0.339

0.092

)2

= 13.6
(0.339)

2

0.694
= 0.17

Critical value at 0.05 level 5.8 0.15

sample size to give a “liberal” test (i.e., the null hypothesis is rejected more frequently than the

nominal significance level).

Example 10.9. (continued ) For the transformations considered, the FMAX test and C test

statistics are as shown in Table 10.30.

The critical values have been obtained by interpolation. The FMAX test indicates that none of

the transformations achieve satisfactory homogeneity of variance, validating one of Quesenberry

et al.’s conclusions. The Cochran test suggests that there is little to choose between the three

transformations.

A question remains: How valid is the analysis of variance under heterogeneity of variance?

Box [1953] indicates that for three treatments a ratio of 3 in the maximum-to-minimum pop-

ulation variance does not alter the significance level of the test appreciably (one-way anova

model with n

i· = 5, I = 3). The analysis of variance is therefore reasonably robust with respect

to deviation from homogeneity of variance.

10.6.4 Testing of Normality in anova

Tests of normality are not as common or well developed as tests of homogeneity of variance.

There are at least two reasons: first, they are not as crucial because even if the underlying

distribution of the data is not normal, appeal can be made to the central limit theorem. Second,

it turns out that fairly large sample sizes are needed (say, n > 50) to discriminate between

distributions. Again, most tests are graphical.

Consider for simplicity the one-way analysis of variance model

Y

ij

= µ + α

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

By assumption the ǫ

ij

are iid N(0, σ

2
). The ǫ

ij

are estimated by

ǫ

ij

= Y

ij

− Y

i·

The e

ij

are normally distributed with population mean zero;
∑

e

2
ij

/(n − I ) is an unbiased

estimate of σ

2 but the e

ij

are not statistically independent. They can be made statistically

independent, but it is not worthwhile for testing the normality. Some kind of normal probability

plot is usually made and a decision made based on a visual inspection. Frequently, such a plot is

used to identify outliers. Before giving an example, we give a simple procedure which is based

on the use of order statistics.
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Definition 10.14. Given a sample of n observations, Y1, Y2, . . . , Y

n

, the order statistics

Y

(1)

, Y

(2)

, . . . , Y

(n)

are the values ranked from lowest to highest.

Now suppose that we generate samples of size n from an N(0, 1) distribution and average

the values of the order statistics.

Definition 10.15. Rankits are the expected values of the order statistics of a sample of size

n from an N(0, 1) distribution. That is, let Z

(1)

, . . . , Z

(n)

be the order statistics from an N(0, 1)

population; then the rankits are E(Z

(1)

), E(Z

(2)

), . . . , E(Z

(n)

).

Rankits have been tabulated in Table A.13. A plot of the order statistics of the residuals

against the rankits is equivalent to a normal probability plot. A reasonable approximation for

the ith rankit is given by the formula

E(Z

(i)

)

.

= 4.91[p0.14
− (1 − p)

0.14] (31)

where

p =

i − 3/8

n + 1/4

For a discussion, see Joiner and Rosenblatt [1971]. To illustrate its use we return to Example 10.1.

A one-way analysis of variance was constructed for these data and we now want to test the

normality assumption.

Example 10.1. (continued ) The distribution of ages at which infants first walked [discussed

in Section 10.2.1 (see Table 10.1)] is now analyzed for normality. The residuals Y

ij

− Y

i· for

the 23 observations are:

−1.125 −0.375 −0.208 0.900

−0.625 −1.375 0.292 −0.850

−0.375 −1.375 −2.708 −0.350

−0.125 0.375 −0.208 1.150

2.875 −0.875 1.542 −0.850

−0.625 3.625 1.292

Note that the last observation has been omitted again so that we are working with the

23 observations given in the paper. These observations are now ranked from smallest to largest

to be plotted on probability paper. To illustrate the use of rankits, we will calculate the expected

values of the 23 normal (0,1) order statistics using equation (31). The 23 order statistics for e

ij

,

e

(ij)

, and the corresponding rankits are presented in Table 10.31.

For example, the largest deviation is −2.708; the expected value of Z

(1)

associated with this

deviation is calculated as follows:

p =

1 − 3/8

23 + 1/4
= 0.02688

E(Z

(1)

) = 4.91[(0.02688)

0.14
− (1 − 0.02688)

0.14]

= −1.93

The rankits and the ordered residuals are plotted in Figure 10.8. What do we do with this

graph? Is there evidence of nonnormality?
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Table 10.31 Order Statistics for Example 10.1

e

(ij)

E(Z

(ij)

) e

(ij)

E(Z

(ij)

) e

(ij)

E(Z

(ij)

)

−2.708 −1.93 −0.625 −0.33 0.375 0.57

−1.375 −1.48 −0.375 −0.22 0.900 0.70

−1.375 −1.21 −0.375 −0.11 1.150 0.84

−1.125 −1.01 −0.350 0.0 1.292 1.01

−0.875 −0.84 −0.208 0.11 1.542 1.21

−0.850 −0.70 −0.208 0.22 2.875 1.48

−0.850 −0.57 −0.125 0.33 3.625 1.93

−0.625 −0.44 −0.292 0.44

Figure 10.8 Normal probability plot of residuals from linear model. (Data from Zelazo et al. [1972]; see

Example 10.1.)

There does seem to be some excessive deviation in the tails. The question is: How important

is it? One way to judge this would be to generate many plots for normal and nonnormal data

and compare the plots to develop a visual “feel” for the data. This has been done by Daniel

and Wood [1999] and Daniel [1976]. Comparison of this plot with the plots in Daniel and

Wood suggests that these data deviate moderately from normality. For a further discussion, see

Section 11.8.1.

More formal tests of normality can be carried out using the Kolmogorov–Smirnov test of

Chapter 8. A good test is based on the Pearson product-moment correlation of the order statistics

and corresponding rankits. If the residuals are normally distributed, there should be a very high

correlation between the order statistics and the rankits. The (null) hypothesis of normality is

rejected when the correlation is not large enough. Weisberg and Bingham [1975] show that this

is a very effective procedure. The critical values for the correlation have been tabulated; see, for

example, Ryan et al. [1980]. For n ≥ 15, the critical value is on the order of 0.95 or more. This
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is a simple number to remember. For Example 10.1, the correlation between the order statistics

of the residuals, e

(ij)

and the rankits E(Z

(ij)

) is r = 0.9128 for n = 23. This is somewhat

lower than the critical value of 0.95 again, suggesting that the residuals are “not quite” normally

distributed.

10.6.5 Independence

One of the most difficult assumptions to verify is that of statistical independence of the residuals.

There are two problems. First, tests of independence for continuous variables are difficult to

implement. Frequently, such tests are, in fact, tests of no correlation among the residuals, so

that if the errors are normally distributed and uncorrelated, they are independent. Second, the

observed residuals in the analysis of variance have a built-in dependence due to the constraints

on the linear model. For example, in the one-way analysis of variance with I treatments and,

say, n

i· = m observations per treatment, there are mI residuals but only (m − 1)I degrees of

freedom; this induces some correlation among the residuals. This is not an important dependence

and can be taken care of.

Tests for dependence usually are tests for serial correlation (i.e., correlation among adjacent

values). This assumes that the observations can be ordered in space or time. The most common

test statistic for serial correlation is the Durbin–Watson statistic. See, for example, Draper and

Smith [1998]. Computer packages frequently will print this statistic assuming that the observa-

tions are entered in the same sequence in which they were obtained. This, of course, is rarely

the case and the statistic and its value should not be used. Such “free information” is sometimes

hard to ignore; the motto for computer output is caveat lector (let the reader beware).

10.6.6 Linearity in anova

Like independence, linearity is difficult to verify. In Example 10.7 we illustrated a multiplicative

model. The model was transformed to a linear (nonadditive) model by considering the logarithm

of the original observations. Other types of nonlinear models are discussed in Chapters 11 to

15. Evidence for a nonlinear model may consist of heterogeneity of variance or interaction.

However, this need not always be the case. Scheffé [1959] gives the following example. Suppose

that there are I + J + 1 independent Poisson variables defined as follows: U1, U2, . . . , U

I

have

means α1, α2, . . . , α

I

; V1, V2, . . . , V

J

have means β1, β2, . . . , β

J

; and W has mean γ . Let

Y

ij

= W + U

i

+ V

j

; then E(Y

ij

) = γ + α

i

+ β

j

; that is, we have an additive, linear model. But

var(Y
ij

) = γ +α

i

+β

j

, so that there is heterogeneity of variance (unless all the α

i

are equal and

all the β

j

are equal). The square root transformation destroys the linearity and the additivity.

Scheffé [1959] states: “It is not obvious whether Y or
√

Y is more nearly normal . . . but in the

present context it hardly matters.” A linear model is frequently assumed to be appropriate for

a set of data without any theoretical basis. It may be a reasonable first-order approximation to

the “state of nature” but should be recognized as such.

Sometimes a nonlinear model can be derived from theoretical principles. The form of the

model may then suggest a transformation to linearity. But as the example above illustrates, the

transformation need not induce other required properties of anova models, or may even destroy

them.

Another strategy for testing linearity is to add some nonlinear terms to the model and then

test their significance. In Sections 11.7 and 11.8 we elaborate on this strategy.

10.6.7 Additivity

The term additivity is used somewhat ambiguously in the statistical literature. It is sometimes

used to describe the transformation of a multiplicative model to a linear model. The effects

of the treatment variables become “additive” rather than multiplicative. We have called such a

transformation a linearizing transformation. It is not always possible to find such a transformation
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(see Section 11.10.5). We have reserved the term additivity for the additive model illustrated by

the two-way analysis of variance model (see Definition 10.4). A test for additivity then becomes

a test for “no interaction.” Scheffé [1959] proves that transformations to additivity exists for a

very broad class of models.

The problem is that the existence of interaction may be of key concern. Consider

Example 10.8. The existence of interaction in this example is taken as evidence that the immune

system of a patient with prostatic carcinoma differed from that of normal blood donors. This

finding has important implications for a theory of carcinogenesis. These data are an example

of the importance of expressing observations in an appropriate scale. Of course, what evidence

is there that the logarithms of the radioactive count is the appropriate scale? There is some

arbitrariness, but the original model was stated in terms of percentage changes, and this implies

constant changes on a logarithmic scale.

So the problem has been pushed back one step: Why state the original problem in terms of

percentage changes? The answer must be found in the experimental situation and the nature of

the data. Ultimately, the researcher will have to provide justification for the initial model used.

This discussion has been rather philosophical. One other situation will be considered: the

randomized block design. There is no test for interaction because there is only one observation

per cell. Tukey [1949] suggested a procedure that is an example of a general class of procedures.

The validity of a model is evaluated by considering an enlarged model and testing the significance

of the terms in the enlarged model. To be specific, consider the randomized block design model

of equation (23):

Y

ij

= µ + β

i

+ τ

j

+ ε

ij

, i = 1, . . . , I, j = 1, . . . , J

Tukey [1949] embedded this model in the “richer” model

Y

ij

= µ + β

i

+ τ

j

+ λβ

i

τ

j

+ ε

ij

, i = 1, . . . , I, j = 1, . . . , J (32)

He then proposed to test the null hypothesis,

H0 : λ = 0

as a test for nonadditivity. Why this form? It is the simplest nonlinear effect involving both

blocks and treatments. The term λ is estimated and tested as follows. Let the model without

interaction be estimated by

Y

ij

= Y ·· + b

i

+ t

j

+ e

ij

where

b

i

= Y

i· − Y ··, t

j

= Y ·j − Y ·· and e

ij

= Y

ij

− Y ·· − b

i

− t

j

We have the usual constraints,
∑

b

i

=

∑

t

j

= 0

and
∑

i

e

ij

=

∑

j

e

ij

= 0 for all i and j

Now define
X

ij

= b

i

t

j

, i = 1, . . . , I, j = 1, . . . , J (33)

It can be shown that the least squares estimate, ̂λ, of λ is

̂

λ =

∑

X

ij

Y

ij

∑

X

2
ij

(34)
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Since X = 0 (why?), the quantity ̂

λ is precisely the regression of Y

ij

on X

ij

. The sum of

squares for regression is the sum of squares for nonadditivity in the anova table:

SS
λ

= SSnonadditivity =

(
∑

X

ij

Y

ij

)2

∑

X

2
ij

(35)

The anova table for the randomized block design including the test for nonadditivity is dis-

played in Table 10.32. As expected, the SS
λ

has one degree of freedom since we are estimating

a slope. But who “pays” for the one degree of freedom? A little reflection indicates that it must

come out of the error term; the number of constraints on the block and treatment effects remain

the same. A graph of Y

ij

vs. X

ij

(or equivalently, e

ij

vs. X

ij

) will indicate whether there is any

pattern.

The idea of testing models within larger models as a way of testing the validity of the model

is discussed further in Section 11.8.2.

Example 10.6. (continued ) We now apply the Tukey test for additivity to the experiment

assessing the effect of pancreatic supplements on fat absorption in patients with steatorrhea,

discussed in Section 10.3.2. We need to calculate SS
λ

from equation (35) and this involves the

regression of Y

ij

on X

ij

, where X

ij

is defined by equation (33). To save space we calculate

only a few of the X

ij

. For example,

X11 =

(

Y 1· − Y ··

) (

Y ·1 − Y ··

)

= (16.9 − 25.775)(38.083 − 25.775)

= −109.2

and

X23 =

(

Y 2· − Y ··

) (

Y ·3 − Y ··

)

= (25.625 − 25.775)(17.417 − 25.775)

= 1.3

(Note that a few more decimal places for the means are used here as compared to

Table 10.15.) A graph of Y

ij

vs. X

ij

is presented in Figure 10.9. The estimate of the slope is

̂

λ =

∑

X

ij

Y

ij

∑

X

2
ij

=

(−109.2)(44.5) + (82.0)(7.3) + · · · + (98.8)(52.6)

(−109.2)

2
+ (82.0)

2
+ · · · + (98.8)

2

=

13,807

467,702

= 0.029521

SS
λ

is

SS
λ

=

(13,807)

2

467,702
= 407.60

The analysis of variance is tabulated in Table 10.33.
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Figure 10.9 Plot of the Tukey test for additivity. See the text for an explanation.

Table 10.33 Randomized Block Analysis with Tukey Test for Additivity of Fecal Fat Excretion of

Patients with Steatorrhea

Source of Variation d.f. SS MS F -Ratio p-Value

Patients 5 5588.38 1117.68 13.1 <0.001

Treatments 3 2008.60 669.53 7.83 <0.01

Additivity 1 407.60 407.60 4.76 0.025 < p < 0.05

Residual 14 1197.80 85.557

Total 23 9202.38

Source: Data from Graham [1977].

The test for additivity indicates significance at the 0.05 level (p = 0.047); thus there is some

evidence that the data cannot be represented by an additive model. Tukey [1949] related the

constant a in Y

a (power transformation) to the degree of nonadditivity by the following formula:

â = 1 −̂

λY ··.

The quantity â is a statistic and hence a random variable. For a particular set of data, the

confidence interval on â will tend to be fairly wide; hence, a “nice” value of “a” is usually

chosen. For the example, â = 1 − (0.029521)(25.775) = 0.239. A “nice” value for “ a” is thus

0.25, or even 0.20.

10.6.8 Strategy for Analysis of Variance

It is useful to have a checklist in carrying out an anova. Not every item on the list needs to

be considered, nor necessarily in the order given, but you will find it useful to be reminded of

these items:

1. Describe how the data were generated: from what population? To what population will

inferences be made? State explicitly at what steps in the data generation randomness

entered.
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2. Specify the anova null hypotheses, alternative hypotheses; whether the model is fixed,

random, or mixed.

3. Graph the data to get some idea of treatment effects, variability, and possible outliers.

4. If necessary, test the homogeneity of variance and the normality.

5. If anova is inappropriate on the data as currently expressed, consider alternatives. If

transformations are used, repeat steps 2 and 4.

6. Carry out the anova. Calculate F -ratios. Watch out for F -ratios much less than 1; they

usually indicate an inappropriate model.

7. State conclusions and limitations.

8. If null hypotheses are not rejected, consider the power of the study and of the analysis.

9. For more detailed analyses and estimation procedures, see Chapter 12.

NOTES

10.1 Ties in Nonparametric Analysis of Variance (One-Way and Randomized Block)

As indicated, both the Kruskal–Wallis and the Friedman tests are conservative in the presence

of ties. The adjustment procedure is similar to those used in Chapter 8, equation (4). For the

Kruskal–Wallis situation, let

CKW =

∑

L

l=1

(

t

3
l

− t

l

)

n

3
− n

where L is the number of groups of tied ranks and t

l

is the number of ties in group l, l =

1, . . . , L. Then the statistic TKW [equation (13)] is adjusted to TADJ = TKW/(1 − CKW). Since

0 ≤ CKW ≤ 1, TADJ ≥ TKW. Hence, if the null hypothesis is rejected with TKW, it will certainly

be rejected with TADJ since the degrees of freedom remain unchanged. Usually, CKW will be

fairly small: Suppose that there are 10 tied observations in an anova of 20 observations; in this

case CKW(103
− 10)/(203

− 20) = 0.1241, so that TADJ = TKW/(1 − 0.1241) = 1.14TKW. The

adjusted value is only 14% larger than the value of TKW even in this extreme situation. (If the

10 ties are made up of five groups of two ties each, the adjustment is less than 0.5%).

A similar adjustment is made for the Friedman statistic, given by equations (25) and (26).

In this case,

CFR =

∑

I

i=1

∑

L

i

l=1

(

t

3
il

− t

il

)

I (J

3
− J )

where t

il

is the number of ties in group l within block i and untied values within a block are

counted as a group of size 1. (Hence
∑

L

i

l=1 t

il

= J for every i.) The adjusted Friedman statistic,

TADJ, is TADJ = TFR/(1 − CFR). Again, unless there are very many ties, the adjustment factor,

CFR will be relatively small.

10.2 Nonparametric Analyses with Ordered Alternatives

All the tests considered in this chapter have been “omnibus tests”; that is, the alternative hypothe-

ses have been general. In the one-way anova, the null hypothesis is H0 : µ1 = µ2 = · · · =

µ

I

= µ, the alternative hypothesis H1 : µ

i

�= µ

′

i

for at least one i and i

′. Since the power

of a test is determined by the alternative hypothesis, we should be able to “do better” using

more specific alternative hypotheses. One such hypothesis involves ordered alternatives. For

the one-way anova (see Section 10.2), let H1 : µ1 ≤ µ2 ≤ · · · ≤ µ

I

with at least one strict
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inequality. A regression-type parametric analysis could be carried out by coding the categories

X = 1, X = 2, . . . , X = I .

A nonparametric test of H0 against an ordered alternative H1 was developed by Terpstra and

Jonckheere (see, e.g., Hollander and Wolfe [1999]). The test is based on the Mann–Whitney

statistic (see Section 8.6). The Terpstra–Jonckheere statistic is

TTJ =

I−1
∑

i=1

I

∑

k=i+1

M

ik

=

∑

i<k

M

ik

where M

ik

is the number of pairs with the observation in group i less than that of group k(i < k)

among the n

i

n

k

pairs.

Under the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

= µ, the statistic TTJ has a distribution

that approaches a normal distribution as n becomes large, with mean and variance given by

E [TTJ] =

n

2
−

∑

n

2
i

4

and

var[TTJ] =

[n2
(2n + 3) −

∑

n

2
i

(2n

i

+ 3)]

72

where n = n1 + n2 + · · · + n

I

. See Problems 10.3 and 10.11 for an application.

In Section 10.3.3, a nonparametric analysis of randomized block design was presented to test

the null hypothesis H0 : τ1 = τ2 = · · · = τ

J

= 0. Again, we consider an ordered alternative,

H1 : τ1 ≤ τ2 ≤ · · · ≤ τ

J

with at least one strict inequality. Using the notation of Section 10.3.3,

let R·j = sum of ranks for treatment j . Page [1963] developed a nonparametric test of H0

against H1. The statistic TPAGE =

∑

J

j=1 jR·j under the null hypothesis approaches a normal

distribution (as I become large) with mean and variance

E [TPAGE] =

IJ

2
(J + 1)

4

and

var [TPAGE] =

I (J

3
− J )

2

144(J − 1)

10.3 Alternative Rank Analyses

Conover and Iman [1981] in a series of papers have advocated a very simple rank analysis:

Replace observations by their ranks and then carry out the usual parametric analysis. These

procedures must be viewed with caution when models are nonadditive [Akritas, 1990] and

discussion in Chapter 8. Hettmansperger and McKean [1978] provide an illustration of another

class of rank-based analytical procedures that can be developed. There are three steps in this

type of approach:

1. Define a robust or nonparametric estimate of dispersion.

2. State an appropriate statistical model for the data.

3. Given a set of data, estimate the values of the parameters of the model to minimize the

robust estimate of dispersion.
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A drawback of such procedures is that estimates cannot be written explicitly, and more

important, the estimation procedure is nonlinear, requiring a computer to carry it out. However,

with the increasing availability of microcomputers, it will only be a matter of time until software

will be developed, making such procedures widely accessible.

It is possible to run a parametric analysis of the raw data routinely and compare it with

some alternative rank analysis. If the two analyses do not agree, the data should be examined

more carefully to determine the cause of the discrepant results; usually, it will be due to the

nonnormality of the data. The researcher then has two choices: if the nonnormality is thought to

be a characteristic of the biological system from which the data came, the rank analysis would

be preferred. On the other hand, if the nonnormality is due to outliers (see Chapter 8), there

are other options available, all the way from redoing the experiment (more carefully this time),

to removing the outliers, to sticking with the analysis of the ranks. Clearly, there are financial,

ethical, and professional costs and risks. What should not be done in the case of disagreement is

to pick the analysis that conforms, in some sense, to the researcher’s preconceptions or desires.

10.4 Power Transformation

Let Y

δ be a transformation of Y . The assumption is that Y

δ is normally distributed with mean

µ (which will depend on the experimental model) and variance σ

2. The SS
ε

will now be a

function of δ. It can be shown that the appropriate quantity to be minimized is

L(δ) =

n

2
SS

ε

−

∑

ln(δy

δ

)

and defined to be

=

n

2
SS

ǫ

−

∑

ln y

for δ = 0 (corresponding to the logarithmic transformation). Typically, this equation is solved

by trial and error. With a computer this can be done quickly. Usually, there will be a range of

values of δ over which the values of L(δ) will be close to the minimum; it is customary then to

pick a value of δ that is simple. For example, if the minimum of L(δ) occurs at δ = 0.49, the

value chosen will be δ = 0.50 to correspond to the square root transformation. For an example,

see Weisberg [1985]. Empirical evidence suggests that the value of δ derived from the data is

frequently close to some “natural” rescaling of the data. (This may just be a case of perfect

20/20 hindsight.)

PROBLEMS

For Problems 10.1 to 10.23, carry out one or more of the following tasks. Additional tasks are

indicated at each problem.

(a) State an appropriate anova model, null hypotheses, and alternative hypotheses.

State whether the model is fixed, random, or mixed. Define the population to

which inferences are to be made.

(b) Test the assumption of homogeneity of variance.

(c) Test the assumption of normality using a probability plot.

(d) Test the assumption of normality correlating residuals and rankits.

(e) Graph the data. Locate the cell means on the graph.

(f) Transform the data. Give a rationale for transformation.
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(g) Carry out the analysis of variance. State conclusions and reservations. Compare

with the conclusions of the author(s) of the paper. If possible, estimate the power

if the results are not significant.

(h) Carry out a nonparametric analysis of variance. Compare with conclusions of

parametric analysis.

(i) Partition each observation into its component parts [see, e.g., equations (4) and

(19)] and verify that the sum of squares of each component is equal to one of

the sums of squares in the anova table.

(j) Construct the anova table from means and standard deviations (or standard

errors). Do relevant parts of (g).

10.1 Olsen et al. [1975] studied “morphine and phenytoin binding to plasma proteins in

renal and hepatic failure.” Twenty-eight subjects with uremia were classified into four

groups. The percentage of morphine that was bound is the endpoint.

Chronic (n1 = 18) : 31.5, 35.1, 32.1, 34.2, 26.7, 31.9, 30.8,

27.3, 27.3, 29.0, 30.0, 36.4, 39.8, 32.0, 35.9, 29.9, 32.2, 31.8

Acute (n2 = 2) : 31.6, 28.5

Dialysis (n3 = 3) : 29.3, 32.1, 26.9

Anephric (n4 = 5) : 26.5, 22.7, 27.5, 24.9, 23.4

(a) Do tasks (a) to (e) and (g) to (i).

(b) In view of the nature of the response variable (percent of morphine bound),

explain why, strictly speaking, the assumption of homogeneity of variance cannot

hold.

10.2 Graham [1977] assayed 16 commercially available pancreatic extracts for six types

of enzyme activity. See also Example 10.6. Data for one of these enzymes, prote-

olytic activity, are presented here. The 16 products were classified by packaging form:

capsule, tablet, and enteric-coated tablets. The following data were obtained:

Proteolytic Activity (U/unit)

Tablet (n = 5) 6640 4440 240 990 410

Capsule (n = 4) 6090 5840 110 195

Coated tablet (n = 7) 1800 1420 980 1088 2200 870 690

(a) Do tasks (a) to (e) and (g) to (i).

(b) Is there a transformation that would make the variance more homogeneous? Why

is this unlikely to be the case? What is peculiar about the values for the coated

tablets?

10.3 The following data from Rifkind et al. [1976] consist of antipyrine clearance of males

suffering from β-thalassemia, a chronic type of anemia. In this disease, abnormally

thin red blood cells are produced. The treatment of the disease has undesirable side

effects, including liver damage. Antipyrine is a drug used to assess liver function with

a high clearance rate, indicating satisfactory liver function. These data deal with the

antipyrine clearance rate of 10 male subjects classified according to pubertal stage.
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The question is whether there is any significant difference in clearance rate among the

pubertal stages (I = infant; V = adult).

Pubertal Stage Clearance Rate (Half-Life in Hours)

I 7.4 5.6 3.7 6.6 6.0

IV 10.9 12.2

V 11.3 10.0 13.3

(a) Do tasks (a) to (e) and (g) to (i).

*(b) Assuming that the antipyrine clearance rate increases with age, carry out a non-

parametric test for trend (see Note 10.2). What is the alternative hypothesis in

this case?

10.4 It is known that organisms react to stress. A more recent discovery is that the immune

system’s response is altered as a function of stress. In a paper by Keller et al. [1981],

the immune response of rats as measured by the number of circulating lymphocytes

(cells per milliliter × 10−6) was related to the level of stress. The following data are

taken from this paper:

Number Mean Number

Group of Rats of Lymphocytes SE

Home-cage control 12 6.64 0.80

Apparatus control 12 4.84 0.70

Low shock 12 3.98 1.13

High shock 12 2.92 0.42

(a) Do tasks (a), (b), (e), and (j).

(b) The authors state: “a significant lymphocytopenia [F(3, 44) = 3.86, p < 0.02]

was induced by the stressful conditions.” Does your F -ratio agree with theirs?

(c) Sharpen the analysis by considering a trend in the response levels as a function

of increasing stress level.

10.5 This problem deals with the data in Table 10.8. The authors of the paper state that the

animals were matched on the basis of weight but that there was no correlation with

weight. Assume that the data are presented in the order in which the animals were

matched, that is, Y111 = 143 is matched with Y211 = 152; in general, Y1jk

is matched

with Y2jk

.

(a) Construct a table of differences D

jk

= Y2jk

− Y1jk

.

(b) Carry out a one-way anova on the differences; include SS
µ

in your table.

(c) Interpret SS
µ

for these data.

(d) State your conclusions and compare them with the conclusions of Example 10.5.

(e) Relate the MS(between groups) in the one-way anova to one of the MS terms

in Table 10.14. Can you identify the connection and the reason for it?

*(f) We want to correlate the Y1jk

observations with the Y2jk

observations, but the

problem is that the response level changes from day to day, which would induce

a correlation. So we will use the following “trick.” Calculate Y

∗

ijk

= Y

ijk

− Y

ij·;
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and correlate Y

∗

1jk

with Y

∗

2jk

. Test this correlation using a t-test with 16−1 = 15

degrees of freedom. Why 16 − 1? There are 7 − 1 = 6 independent pairs for

day 10, 5 each for day 12, and day 14, for a total of 16. Since the observations

sum to zero already, we subtract one more degree of freedom for estimating the

correlation. If matching was not effective, this correlation should be zero.

10.6 Ross and Bras [1975] investigated the relationship between diet and length of life in

121 randomly bred rats. After 21 days of age, each rat was given a choice of several

diets ad libitum for the rest of its life. The daily food intake (g/day) was categorized

into one of six intervals, so that an equal number of rats (except for the last interval)

appeared in each interval. The response variable was life span in days. The following

data were obtained:

Mean food intake (g/day) 18.3 19.8 20.7 21.6 22.4 24.1

Food intake category 1 2 3 4 5 6

Number of rats 20 20 20 20 20 21

Mean life span (days) 733 653 630 612 600 556

Standard error 117 126 111 115 113 106

(a) Carry out tasks (a), (b), (e), and (j).

(b) Can this be thought of as a regression problem? How would the residual MS

from regression be related to the MS error of the analysis of variance?

*(c) Can you relate in detail the anova procedure and the regression analysis; par-

ticularly an assessment of a nonlinear trend?

10.7 The following data from Florey et al. [1977] are the fasting serum insulin levels for

adult Jamaican females after an overnight fast:

Fasting Serum Insulin Level (µU/mL)

Age 25–34 35–44 45–54 55–64

Number 73 97 74 53

Mean 22.9 26.2 22.0 23.8

SD 10.3 13.0 7.4 10.0

(a) Do tasks (a), (b), (e), and (j).

(b) Why did the authors partition the ages of the subjects into intervals? Are there

other ways of summarizing and analyzing the data? What advantages or disad-

vantages are there to your alternatives?

10.8 The assay of insulin was one of the earliest topics in bioassay. A variety of methods

have been developed over the years. In the mid-1960s an assay was developed based

on the fact that insulin stimulates glycogen synthesis in mouse diaphragm tissue, in

vitro. A paper by Wardlaw and van Belle [1964] describes the statistical aspects of this

assay. The data in this problem deal with a qualitative test for insulin activity. A pool

of 36 hemidiaphragms was collected for each day’s work and the tissues incubated in

tubes containing medium with or without insulin. Each tube contained three randomly

selected diaphragms. For parts of this problem we ignore tube effects and assume

that each treatment was based on six hemidiaphragms. Four unknown samples were
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Table 10.34 Glycogen Content Data

Test Preparation
Medium Standard Insulin

Only (0.5 mU/mL) A B C D

280 290 460 465 470 480 430 300 510 505 310 290

240 275 400 460 440 390 385 505 610 570 350 330

225 350 470 470 425 445 380 485 520 570 250 300

Source: Data adapted from Wardlaw and van Belle [1964].

assayed. Since the diaphragms synthesize glycogen in medium, a control preparation

of medium only was added as well as a standard insulin preparation. The glycogen

content (optical density in anthrone TEST × 1000) data are given in Table 10.34.

(a) Carry out tasks (a) to (e) and (g) to (i). (To simplify the arithmetic if you are

using a calculator, divide the observations by 100.)

(b) Each column in the data layout represents one tube in which the three hemidi-

aphragms were incubated so that the design of the experiment is actually hier-

archical. To assess the effect of tubes, we partition the SS
ε

(with 30 d.f.) into

two parts: SS(between tubes within preparations) = SSBT(WP)

with six degrees

of freedom (why?) and SS(within tubes) = SSWT with 24 degrees of freedom

(why?). The latter SS can be calculated by considering each tube as a treatment.

The former can then be calculated as SSBT(WP)

= SS
ε

− SSWT. Carry out this

analysis and test the null hypothesis that the variability between tubes within

preparations is the same as the within-tube variability.

10.9 Schizophrenia is one of the psychiatric illnesses that is thought to have a definite

physiological basis. Lake et al. [1980] assayed the concentration of norepinephrine in

the cerebrospinal fluid of patients (NE in CSF) with one of three types of schizophrenia

and controls. They reported the following means and standard errors:

Schizophrenic Group
NE in CSF Control

(pg/mL) Group Paranoid Undifferentiated Schizoaffective

N 29 14 10 11

Mean 91 144 101 122

Standard error 6 20 11 21

Carry out tasks (a), (b), (e), and (j).

10.10 Corvilain et al. [1971] studied the role of the kidney in the catabolism (conver-

sion) of insulin by comparing the metabolic clearance rate in seven control subjects,

eight patients with chronic renal failure, and seven anephric (without kidneys) patients.

The data for this problem consist of the plasma insulin concentrations (ng/mL) at 45

and 90 min after the start of continuous infusion of labeled insulin. A low plasma con-

centration is associated with a high metabolic clearance rate, as shown in Table 10.35.

(a) Consider the plasma insulin concentration at 45 minutes. Carry out tasks (a) to

(e) and (g) to (i).
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Table 10.35 Plasma Concentration Data (ng/mL)

Control Renal Failure Anephric

Patient 45 90 Patient 45 90 Patient 45 90

1 3.7 3.8 1 3.0 4.2 1 6.7 9.6

2 3.4 4.2 2 3.1 3.9 2 2.6 3.4

3 2.4 3.1 3 4.4 6.1 3 3.4 —a

4 3.3 4.4 4 5.1 7.0 4 4.0 5.1

5 2.4 2.9 5 1.9 3.5 5 3.1 4.2

6 4.8 5.4 6 3.4 5.7 6 2.7 3.8

7 3.2 4.1 7 2.9 4.3 7 5.3 6.6

8 3.8 4.8

a Missing observation.

(b) Consider the plasma insulin concentration at 90 minutes. Carry out tasks (a) to

(e) and (g) to (i).

(c) Calculate the difference in concentrations between 90 and 45 minutes for each

patient. Carry out tasks (a) to (e) and (g) to (i). Omit Patient 3 in the anephric

group.

(d) Graph the means for the three groups at 45 and 90 minutes on the same graph.

What is the overall conclusion that you draw from the three analyses? Were all

three analyses necessary? Would two of three have sufficed? Why or why not?

10.11 We return to the data of Zelazo et al. [1972] one more time. Carry out the Terpstra–

Jonckheere test for ordered alternatives as discussed in Note 10.2. Justify the use of an

ordered alternative hypothesis. Discuss in terms of power the reason that this analysis

does indicate a treatment effect, in contrast to previous analyses.

10.12 One of the problems in the study of SIDS is the lack of a good animal model. Baak

and Huber [1974] studied the guinea pig as a possible model observing the effect of

lethal histamine shock on the guinea pig thymus. The purpose was to determine if

changes in the thymus of the guinea pig correspond to pathological changes observed

in SIDS victims. In the experiment 40 animals (20 male, 20 female) were randomly

assigned either to “control” or “histamine shock.” On the basis of a Wilcoxon two-

sample test—which ignored possible gender differences—the authors concluded that

the variable medullary blood vessel surface (mm2
/mm3

) did not differ significantly

between “control” and “histamine shock.” The data below have been arranged to keep

track of gender differences.

Control Histamine Shock

Female 6.4 6.2 6.9 6.9 5.4 8.4 10.2 6.2 5.4 5.5

7.5 6.1 7.3 5.9 6.8 7.3 5.2 5.1 5.7 9.8

Male 4.3 7.5 5.2 4.9 5.7 7.5 6.7 5.7 4.9 6.8

4.3 6.4 6.2 5.0 5.0 6.6 6.9 11.8 6.7 9.0

(a) Do tasks (a) to (e), (g), and (i).

(b) Replace the observations by their ranks and repeat the analysis of variance. Com-

pare your conclusions with those of part (a).
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10.13 In tumor metastasis, tumor cells spread from the original site to other organs. Usually, a

particular tumor will spread preferentially to specific organs. There are two possibilities

as to how this may occur: The tumor cells gradually adapt to the organ to which they have

spread, or tumor cells that grow well at this organ are selected preferentially. Nicolson and

Custead [1982] studied this problem by comparing the metastatic potential of melanoma

tumor cells mechanically lodged in the lungs of mice or injected intravenously and

allowed to metastasize to the lung. Each of these cell lines was then harvested and

injected subcutaneously. The numbers of pulmonary tumor colonies were recorded for

each of three treatments: original line (control), mechanical placement (adaptation), and

selection. The data in Table 10.36 were obtained in three experiments involving 84 mice.

Table 10.36 Experimental Data for Three Treatments

Number of Pulmonary Tumor Colonies

Experiment Control Adaption Selection

1 0 4 20 32 0 3 20 7 92 141

0 9 22 0 6 24 64 96 149

1 11 31 2 14 29 79 100 151

2 0 8 31 41 0 10 13 0 101 132

3 8 32 0 11 14 52 109 136

6 22 39 5 12 14 89 110 140

3 0 4 36 49 0 11 21 30 79 111

0 18 39 0 13 27 46 89 114

2 29 42 3 13 28 51 100 114

(a) Carry out tasks (a) to (g). You may want to try several transformations: for

example,
√

, Y

1/4. An appropriate transformation is logarithmic. To avoid prob-

lems with zero values, use log(Y + 1).

(b) How would you interpret a significant “experiment × treatment” interaction?

10.14 A paper by Gruber [1976] evaluated interactions between two analgesic agents: feno-

profen and propoxyphene. The design of the study was factorial with respect to drug

combinations. Propoxyphene (P ) was administered in doses of 0, 5, 100, and 150 mg.;

fenoprofen (F ) in doses of 0, 200, 400, and 600 mg. Each combination of the two

factors was studied. In addition, postepisiotomy postpartum patients were categorized

into one of four pain classes: “little,” “some,” “lot,” and “terrible” pain; for each of the

16 medication combinations, 8, 10, 10, and 2 patients in the four pain classes were used.

The layout of the number of patients could be constructed as shown in Table 10.37.

(a) One response variable was “analgesic score” for a medication combination.

Table 10.38 is a partial anova table for this variable. Fill in the lines in the

table, completing the table.

(b) The total analgesic score for the 16 sets of 30 patients classified by the two

drug levels is given in Table 10.39. Carry out a “randomized block analysis” on

these total scores dividing the sums of squares by 30 to return the analysis to a

single reading status. Link this analysis with the table in part (a). You have, in

effect, partitioned the SS for medications in that table into three parts. Test the

significance of the three mean squares.

(c) Graph the mean analgesia score (per patient) by plotting the dose on the x-axis

for fenoprofen, indicating the levels of the propoxyphene dose in the graph. State

your conclusions.
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Table 10.37 Design of Medication Combinations

Medication Combination

Pain Level (0P, 0F) (0P, 200F) · · · (0P, 600F) (50P, 0F) · · · (150P, 600F)

“Little” 8 8 · · · 8 8 · · · 8

“Some” 10 10 · · · 10 10 · · · 10

“Lot” 10 10 · · · 10 10 · · · 10

“Terrible” 2 2 · · · 2 2 · · · 2

Table 10.38 anova Table for Analgesic Score

Source d.f. SS MS F -Ratio P -Value

Pain class — 3,704 — — —

Medications — 9,076 — — —

Interaction — 3,408 — — —

Residual — — —

Total 479 41,910

Table 10.39 Total Analgesia Score

Fenoprofen Calcium Dose (mg)

Propoxyphene Dose (mg) 0 200 400 600

0 409 673 634 756

50 383 605 654 785

100 496 773 760 755

150 496 723 773 755

10.15 Although the prescription, “Take two aspirins, drink lots of fluids, and go to bed,” is

usually good advice, it is known that aspirin induces “microbleeding” in the gastroin-

testinal system, as evidenced by minute amounts of blood in the stool. Hence, there is

constant research to develop other anti-inflammatory and antipyretic (fever-combating)

agents. Arsenault et al. [1976] reported on a new agent, R-803, studying its effect in a

Latin square design, comparing it to placebo and aspirin (900 mg, q.i.d). For purposes

of this exercise the data are extracted in the form of a randomized block design. Each

subject received each of three treatments for a week. We will assume that the order

was random. The variable measured is the amount of blood lost in mL/day as measured

over a week.

Mean Blood Loss (ml/day)

Subject 1 2 3 4 5 6 7 8 9

Placebo 0.45 0.54 0.69 0.53 3.03 0.78 0.14 0.82 0.96

R-803 0.82 0.39 0.67 1.19 1.18 1.07 0.49 0.14 0.80

Aspirin 18.00 6.46 6.19 6.52 7.18 9.39 6.93 1.57 4.03

(a) Do tasks (a) to (e) and (g) to (i).

(b) Carry out the Tukey test for additivity. What are your conclusions?
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Table 10.40 COHb Data for Problem 10.16

No. Hours Since Beginning of Exposure

Subject 0 2 4 6 8

1 4.4 4.9 5.2 5.7 5.7

2 3.3 5.3 6.9 7.0 8.8

3 5.0 6.4 7.2 7.7 9.3

4 5.3 5.3 7.4 7.0 8.3

5 4.1 6.8 9.6 11.5 12.0

6 5.0 6.0 6.8 8.3 8.1

7 4.6 5.2 6.6 7.4 7.1

10.16 Occupational exposures to toxic substances are being investigated more and more care-

fully. Ratney et al. [1974] studied the effect of daily exposure of 180 to 200 ppm of

methylene chloride on carboxyhemoglobin (COHb) measured during the workday. The

COHb data (% COHb) for seven subjects measured five times during the day is given

in Table 10.40.

(a) Carry out tasks (a), (c) to (e), and (g) to (i).

(b) Suppose that the observation for subject 3 at time 6 (Y34 = 7.7) is missing.

Estimate its value and redo the anova.

(c) Carry out the Tukey test for additivity.

(d) Carry out the Page test for trend (see Note 10.2).

(e) Why do the data not form a randomized block design?

(f) Could this problem be treated by regression methods, where X = hours since

exposure and Y = % COHb? Why or why not?

(g) Calculate all 10 pairwise correlations between the treatment combinations. Do

they look “reasonably close”?

10.17 Wang et al. [1976] studied the effects on sleep of four hypnotic agents and a placebo.

The preparations were: lorazepam 2 and 4 mg, and flurazepam 15 and 30 mg. Each

of 15 subjects received all five treatments in a random order in five-night units. The

analysis of variance of length of sleep is presented here.

Source d.f. SS MS F -Ratio p-Value

Treatments — — 12.0 — —

Patients — — 14.8 — —

Residual — — 2.2

Total 74 —

(a) Do task (a).

(b) Fill in the missing values in the ANOVA table.

(c) State your conclusions.

(d) The article does not present any raw data or means. How satisfactory is this in

terms of clinical significance?

10.18 High blood pressure is a known risk factor for cardiovascular disease, and many drugs

are now on the market that provide symptomatic as well as therapeutic relief. One of
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Table 10.41 Blood Pressure Data (mmHg) for

Problem 10.18

Recumbent Upright

Patient Placebo Propranolol Placebo Propranolol

N.F. 96 71 73 87

A.C. 96 85 104 76

P.D. 92 89 83 90

J.L. 97 110 101 85

G.P. 104 85 112 94

A.H. 100 73 101 93

C.L. 93 81 88 85

these drugs is propranolol. Hamet et al. [1973] investigated the effect of propranolol

in labile hypertension. Among the variables studied was mean blood pressure mea-

sured in mmHg (diastolic+1/3 pulse pressure). A placebo treatment was included in a

double-blind fashion. The blood pressure was measured in the recumbent and upright

positions. The blood pressure data is given in Table 10.41.

(a) Assuming that the treatments are just four treatments, carry out tasks (a) to (e)

and (g) to (i) (i.e., assume a randomized block design).

(b) The sum of squares for treatments (3 d.f.) can be additively partitioned into

three parts: SSDRUG, SSPOSITION, and SSDRUG×POSITION, each with one degree

of freedom. To do this, construct an “interaction table” of treatment totals.

SSDRUGS =

13402

14
+

12042

14
−

25442

28
= 660.57

SSPOSITION =

12722

14
+

12722

14
−

25442

28
= 0[sic]

SSDRUGS×POSITION =

6782

7
+

5942

4
+

6622

7
+

6102

7
−

25442

28

− SSDRUGS − SSPOSITION = 36.57

Expand the anova table to include these terms. (The SSPOSITION = 0 is most

unusual; the raw data are as reported in the table.)

(c) This analysis could have been carried out as a series of three paired t-tests

as follows: for each subject, calculate the following three quantities “ + + −

−, ” “ + − + −, ” and “ + − − +.” For example, for subject N.F. “ + + − −” =

96 + 71 − 73 − 87 = 7, “ + − + −” = 96 − 71 + 73 − 87 = 11, and

“ + − − +” = 96 − 71 − 73 + 87 = 39. These quantities represent effects

of position, drug treatment, and interaction, respectively, and are called contrasts

(see Chapter 12 for more details). Each contrast can be tested against zero by

means of a one-sample t-test. Carry out these t-tests. Compare the variances for

each contrast; one assumption in the analysis of variance is that these contrast

variances all estimate the same variance. How is the sum of the contrast variances

related to the SS
ε

in the anova?

(d) Let d1 be the sum of the observations associated with the pattern + + −−, d2

the sum of the observations associated with the pattern +−+−, and d3 the sum
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of the observations associated with the pattern + − −+. How is (d

2
1 + d

2
2 + d

2
3 )

related to SSTREATMENT?

10.19 Consider the data in Example 10.5. Rank all 38 observations from lowest to highest

and carry out the usual analysis of variance on these ranks. Compare your p-values

with the p-values of Table 10.14. In view of Note 10.3, does this analysis give you

some concern?

10.20 Consider the data of Table 10.16 dealing with the effectiveness of pancreatic supple-

ments on fat absorption. Rank all of the observations from 1 to 24 (i.e., ignoring both

treatment and block categories).

(a) Carry out an analysis of variance on the ranks obtained above.

(b) Compare your analysis with the analysis using the Friedman statistic. What is a

potential drawback in the analysis of part (a)?

(c) Return to the Friedman ranks in Section 10.3.3 and carry out an analysis of vari-

ance on them. How is the Friedman statistic related to SS
τ

of the ANOVA of

the Friedman ranks?

10.21 These data are from the same source as those in Problem 10.3. We add data for females

to generate the two-way layout shown in Table 10.42.

Table 10.42 Two-Way Layout for Problem 10.21

Antipyrine Clearance (Half-Life in Hours)

Stage I Stage IV Stage V

Males 7.4 5.6 3.7 10.9 11.3 13.3

6.6 6.0 12.2 10.0

Females 9.1 6.3 7.1 11.0 8.3

11.3 9.4 7.9 4.3

(a) Do tasks (a) to (d).

(b) Graph the data. Is there any suggestion of interaction? Of main effects?

(c) Carry out a weighted means analysis.

(d) Partition each observation into its component parts and verify that the sums of

squares are not additive.

10.22 Fuertes-de la Haba et al. [1976] measured intelligence in offspring of oral and nonoral

contraceptive users in Puerto Rico. In the early 1960s, subjects were randomly assigned

to oral conceptive use or other methods of birth control. Subsequently, mothers with

voluntary pregnancies were identified and offspring between ages 5 and 7 were admin-

istered a Spanish–Puerto Rican version of the Wechsler Intelligence Scale for Children

(WISC). Table 10.43 lists the data for boys only, taken from the article.

(a) Carry out tasks (a), (b), and (e).

(b) Do an unweighted means analysis. Interpret your findings.

(c) The age categories have obviously been “collapsed.” What effect could such a

collapsing have on the analysis? (Why introduce age as a variable since IQ is

standardized for age?)

(d) Suppose that we carried out a contingency table analysis on the cell frequencies.

What could such an analysis show?
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Table 10.43 Data for Problem 10.22

Age Groups (Years)

5 6 7–8

Oral contraceptive WISC score

n 9 18 14

Mean 81.44 88.50 76.00

SD 9.42 11.63 9.29

Other birth control WISC score

n 11 28 21

Mean 82.91 87.75 83.24

SD 10.11 10.85 9.60

Table 10.44 Data for Problem 10.23

Gender

Boys Girls

Oral contraceptive WISC score

n 41 55

Mean 82.68 86.87

SD 11.78 14.66

Other birth control WISC score

n 60 54

Mean 85.28 85.83

SD 10.55 12.22

10.23 The data in Table 10.44 are also from the article by Fuertes-de la Haba [1976] but

have been “collapsed over age” and are presented by treatment (type of contraceptive)

by gender. The response variable is, again, Wechsler IQ score.

(a) Carry out tasks (a), (b), and (e).

(b) Do an unweighted means analysis.

(c) Compare your conclusions with those of Problem 10.22.

10.24 This problem considers some implications of the additive model for the two-way

ANOVA as defined by equation (18) and illustrated in Example 10.4.

(a) Graph the means of Example 10.4 by using the level of the second variable for

the abscissa. Interpret the difference in the patterns.

(b) How many degrees of freedom are left for the means assuming that the model

defined by equation (18) holds?

(c) We now want to define a nonadditive model retaining the values of the α’s, β’s,

and µ, equivalently, retaining the same marginal and overall means. You are free

to vary any of the cell means subject to the constraints above. Verify that you

can manipulate only four cell means. After changing the cell means, calculate

for each cell ij the quantity Y

ij

= µ − α

i

− β

j

. What are some characteristics

of these quantities?

(d) Graph the means derived in part (c) and compare the pattern obtained with that

of Figure 10.2.
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*10.25 This problem is designed to give you some experience with algebraic manipulation. It

is not designed to teach you algebra but to provide additional insight into the mathe-

matical structure of analysis of variance models. You will want to take this medicine

in small doses.

(a) Show that equation (5) follows from the model defined by equation (4).

(b) Prove equations (6) and (7).

(c) Prove equations (10) to (12) starting with the components of equation (5).

(d) Consider equation (17). Let µ

i

=

∑

n

ij

µ

ij

/n

i·, and so on. Relate α

i

and β

j

to

µ

i· and µ·j .

(e) For the two-way ANOVA model as defined by equation (21), show that SS
ε

=

SSERROR =

∑

(n

ij

− 1)s

2
ij

, where s

2
ij

is the variance of the observations in cell

(i, j).

(f) Derive the expected mean squares for MS
α

and MS
γ

in the fixed and random

effects models, as given in Table 10.19.
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C H A P T E R 11

Association and Prediction: Multiple
Regression Analysis and Linear Models
with Multiple Predictor Variables

11.1 INTRODUCTION

We looked at the linear relationship between two variables, say X and Y , in Chapter 9. We

learned to estimate the regression line of Y on X and to test the significance of the relationship.

Summarized by the correlation coefficient, the square of the correlation coefficient is the percent

of the variability explained.

Often, we want to predict or explain the behavior of one variable in terms of more than one

variable, say k variables X1, . . . , X

k

. In this chapter we look at situations where Y may be

explained by a linear relationship with the explanatory or predictor variables X1, . . . , X

k

. This

chapter is a generalization of Chapter 9, where only one explanatory variable was considered.

Some additional considerations will arise. With more than one potential predictor variable, it will

often be desirable to find a simple model that explains the relationship. Thus we consider how to

select a subset of predictor variables from a large number of potential predictor variables to find

a reasonable predictive equation. Multiple regression analyses, as the methods of this chapter are

called, are one of the most widely used tools in statistics. If the appropriate limitations are kept

in mind, they can be useful in understanding complex relationships. Because of the difficulty

of calculating the estimates involved, most computations of multiple regression analyses are

performed by computer. For this reason, this chapter includes examples of output from multiple

regression computer runs.

11.2 MULTIPLE REGRESSION MODEL

In this section we present the multiple regression mathematical model. We discuss the methods

of estimation and the assumptions that are needed for statistical inference. The procedures are

illustrated with two examples.

11.2.1 Linear Model

Definition 11.1. A linear equation for the variable Y in terms of X1, . . . , X

k

, is an equation

of the form
Y = a + b1X1 + · · · + b

k

X

k

(1)

The values of a, b1, . . . , b

k

, are fixed constant values. These values are called coefficients.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Suppose that we observe Y and want to model its behavior in terms of independent, predictor,

explanatory, or covariate variables, X1, . . . , X

k

. For a particular set of values of the covariates,

the Y value will not be known with certainty. As before, we model the expected value of Y for

given or known values of the X

j

. Throughout this chapter, we consider the behavior of Y for

fixed, known, or observed values for the X

j

. We have a multiple linear regression model if the

expected value of Y for the known X1, . . . , X

k

is linear. Stated more precisely:

Definition 11.2. Y has a linear regression on X1, . . . , X

k

if the expected value of Y for

the known X

j

values is linear in the X

j

values. That is,

E(Y |X1, . . . , X

k

) = α + β1X1 + · · · + β

k

X

k

(2)

Another way of stating this is the following. Y is equal to a linear function of the X

j

, plus

an error term whose expectation is zero:

Y = α + β1X1 + · · · + β

k

X

k

+ ε (3)

where

E(ε) = 0

We use the Greek letters α and β

j

for the population parameter values and Latin letters a and

b

j

for the estimates to be described below. Analogous to definitions in Chapter 9, the number

α is called the intercept of the equation and is equal to the expected value of Y when all the

X

j

values are zero. The β

j

coefficients are the regression coefficients.

11.2.2 Least Squares Fit

In Chapter 9 we fitted the regression line by choosing the estimates a and b to minimize the sum

of squares of the differences between the Y values observed and those predicted or modeled.

These differences were called residuals ; another way of explaining the estimates is to say that

the coefficients were chosen to minimize the sum of squares of the residual values. We use

this same approach, for the same reasons, to estimate the regression coefficients in the multiple

regression problem. Because we have more than one predictor or covariate variable and multiple

observations, the notation becomes slightly more complex. Suppose that there are n observations;

we denote the observed values of Y for the ith observation by Y

i

and the observed value of the

j th variable X

j

by X

ij

. For example, for two predictor variables we can lay out the data in the

array shown in Table 11.1.

Table 11.1 Data Layout for Two

Predictor Variables

Case Y X1 X2

1 Y1 X11 X12

2 Y2 X21 X22

.

.

.

.

.

.

.

.

.

.

.

.

i Y

i

X

i1 X

i2

.

.

.

.

.

.

.

.

.

.

.

.

n Y

n

X

n1 X

n2
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The following definition extends the definition of least squares estimation to the multiple

regression situation.

Definition 11.3. Given data (Y

i

, X

i1, . . . , X

ik

), i = 1, . . . , n, the least squares fit of the

regression equation chooses a, b1, . . . , b

k

to minimize

n

∑

i=1

(Y

i

− ̂

Y

i

)

2

where ̂

Y

i

= a + b1Xi1 + · · · + b

k

X

ik

. The b

j

are the (sample) regression coefficients, a is the

sample intercept. The difference Y

i

− ̂

Y

i

is the ith residual.

The actual fitting is usually done by computer, since the solution by hand can be quite

tedious. Some details of the solution are presented in Note 11.1.

Example 11.1. We consider a paper by Cullen and van Belle [1975] dealing with the effect

of the amount of anesthetic agent administered during an operation. The work also examines the

degree of trauma on the immune system, as measured by the decreasing ability of lymphocytes

to transform in the presence of mitogen (a substance that enhances cell division). The variables

measured (among others) were X1, the duration of anesthesia (in hours); X2, the trauma factor

(see Table 11.2 for classification); and Y , the percentage depression of lymphocyte transfor-

mation following anesthesia. It is assumed that the amount of anesthetic agent administered

is directly proportional to the duration of anesthesia. The question of the influence of each of

the two predictor variables is the crucial one, which will not be answered in this section. Here

we consider the combined effect. The set of 35 patients considered for this example consisted

of those receiving general anesthesia. The basic data are reproduced in Table 11.3. The pre-

dicted values and deviations are calculated from the least squares regression equation, which

was Y = −2.55 + 1.10X1 + 10.38X2.

11.2.3 Assumptions for Statistical Inference

Recall that in the simple linear regression models of Chapter 9, we needed assumptions about

the distribution of the error terms before we proceeded to statistical inference, that is, before we

tested hypotheses about the regression coefficient using the F -test from the analysis of variance

table. More specifically, we assumed:

Simple Linear Regression Model Observe (X

i

, Y

i

), i = 1, . . . , n. The model is

Y

i

= α + βX

i

+ ε

i

(4)

Table 11.2 Classification of Surgical Trauma

0 Diagnostic or therapeutic regional anesthesia; examination

under general anesthesia

1 Joint manipulation; minor orthopedic procedures; cys-

toscopy; dilatation and curettage

2 Extremity, genitourinary, rectal, and eye procedures; hernia

repair; laparoscopy

3 Laparotomy; craniotomy; laminectomy; peripheral vascular

surgery

4 Pelvic extenteration; jejunal interposition; total cystectomy
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Table 11.3 Effect of Duration of Anesthesia (X1) and Degree of Trauma (X2) on Percentage

Depression of Lymphocyte Transformation following Anesthesia (Y )

X1: X2: Y : Predicted Value Y − ̂

Y

Patient Duration Trauma Percent Depression of Y Residual

1 4.0 3 36.7 33.0 3.7

2 6.0 3 51.3 35.2 16.1

3 1.5 2 40.8 19.9 20.9

4 4.0 2 58.3 22.6 35.7

5 2.5 2 42.2 21.0 21.2

6 3.0 2 34.6 21.5 13.1

7 3.0 2 77.8 21.5 56.3

8 2.5 2 17.2 21.0 −3.8

9 3.0 3 −38.4 31.9 −70.3

10 3.0 3 1.0 31.9 −30.9

11 2.0 3 53.7 20.8 22.9

12 8.0 3 14.3 37.4 −23.1

13 5.0 4 65.0 44.5 20.5

14 2.0 2 5.6 20.4 −14.8

15 2.5 2 4.4 21.0 −16.6

16 2.0 2 1.6 20.4 −18.8

17 1.5 2 6.2 19.9 −13.7

18 1.0 1 12.2 8.9 3.3

19 3.0 3 29.9 31.9 −2.0

20 4.0 3 76.1 33.0 43.1

21 3.0 3 11.5 32.0 −20.5

22 3.0 3 19.8 31.9 −12.1

23 7.0 4 64.9 46.7 18.2

24 6.0 4 47.8 45.6 2.2

25 2.0 2 35.0 20.4 14.6

26 4.0 2 1.7 22.6 −20.9

27 2.0 2 51.5 20.4 31.1

28 1.0 1 20.2 8.9 11.3

29 1.0 1 −9.3 8.9 −18.2

30 2.0 1 13.9 10.0 3.9

31 1.0 1 −19.0 8.9 −27.9

32 3.0 1 −2.3 11.1 −13.4

33 4.0 3 41.6 33.0 8.6

34 8.0 4 18.4 47.8 −29.4

35 2.0 2 9.9 20.4 −10.5

Total 112.5 83 896.1 896.3 −0.2a

Mean 3.21 2.37 25.60 25.60 −0.006

aZero except for round-off error.

or

Y

i

= E(Y

i

|X
i

) + ε

i

where the “error” terms ε

i

are statistically independent of each other and all have the same

normal distribution with mean zero and variance σ

2; that is, ε

i

∼ N(0, σ

2
).

Using this model, it is possible to set up the analysis of variance table associated with the

regression line. The anova table has the following form:



432 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

Source of Degrees of

Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F -Ratio

Regression 1 SSREG =

∑

i

(

̂

Y

i

− Y )

2 MSREG = SSREG

MSREG

MSRESID

Residual n − 2 SSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2 MSRESID =

SSRESID

n − 2

Total n − 1
∑

i

(Y

i

− Y

i

)

2

The mean square for residual is an estimate of the variance σ

2 about the regression line. (In

this chapter we change notation slightly from that used in Chapter 9. The quantity σ

2 used here

is the variance about the regression line. This was σ

2
1 in Chapter 9.)

The F -ratio is an F -statistic having numerator and denominator degrees of freedom of 1

and n − 2, respectively. We may test the hypothesis that the variable X has linear predictive

power for Y , that is, β �= 0, by using tables of critical values for the F -statistic with 1 and

n − 2 degrees of freedom. Further, using the estimate of the variance about the regression line

MSRESID, it was possible to set up confidence intervals for the regression coefficient β.

For multiple regression equations of the current chapter, the same assumptions needed in

the simple linear regression analyses carry over in a very direct fashion. More specifically, our

assumptions for the multiple regression model are the following.

Multiple Regression Model Observe (Y

i

, X

i1, . . . , X

ik

), i = 1, 2, . . . , n (n observations).

The distribution of Y

i

for fixed or known values of X

i1, . . . , X

ik

is

Y

i

= E(Y

i

|X
i1, . . . , X

ik

) + ε

i

(5)

where E(Y

i

|X
i1, . . . , X

ik

) = α + β1Xi1 + · · · + β

k

X

ik

or Y

i

= α + β1Xi1 + · · · + β

k

X

ik

+ ε

i

.

The ε

i

are statistically independent and all have the same normal distribution with mean zero

and variance σ

2; that is, ε

i

∼ N(0, σ

2
).

With these assumptions, we use a computer program to find the least squares estimate of

the regression coefficients. From these estimates we have the predicted value for Y

i

given the

values of X

i1, . . . , X

ik

. That is,

̂

Y

i

= a + b1Xi1 + · · · + b

k

X

ik

(6)

Using these values, the anova table for the one-dimensional case generalizes. The anova table

in the multidimensional case is now the following:

Source of Degrees of

Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F -Ratio

Regression k SSREG =

∑

i

(

̂

Y

i

− Y )

2 MSREG =

SSREG

k

MSREG

MSRESID

Residual n − k − 1 SSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2 MSRESID =

SSRESID

n − k − 1

Total n − 1
∑

i

(Y

i

− Y

i

)

2

For the anova table and multiple regression model, note the following:

1. If k = 1, there is one X variable; the equations and anova table reduce to that of the

simple linear regression case.
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2. The F -statistic tests the hypothesis that the regression line has no predictive power. That

is, it tests the hypothesis
H0:β1 = β2 = · · · = β

k

= 0 (7)

This hypothesis says that all of the beta coefficients are zero; that is, the X variables do not

help to predict Y . The alternative hypothesis is that one or more of the regression coefficients

β1, . . . , β

k

are nonzero. Under the null hypothesis, H0, the F -statistic, has an F -distribution with

k and n−k−1 degrees of freedom. Under the alternative hypotheses that one or more of the β

j

are nonzero, the F -statistic tends to be too large. Thus the hypothesis that the regression line has

predictive power is tested by using tables of the F -distribution and rejection when F is too large.

3. The residual sum of squares is an estimate of the variability about the regression line;

that is, it is an estimate of σ

2. Introducing notation similar to that of Chapter 9, we write

σ̂

2
= S

2
Y ·X1,... ,Xk

= MSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2

n − k − 1
(8)

4. Using the estimated value of σ

2, it is possible to find estimated standard errors for the b

j

,

the estimates of the regression coefficients β

j

. The estimated standard error is associated with

the t distribution with n − k − 1 degrees of freedom. The test of β

j

= 0 and an appropriate

100(1 − α)% confidence interval are given by the following equations. To test H

j

: β

j

= 0 at

significance level α, use two-sided critical values for the t-distribution with n − k − 1 degrees

of freedom and the test statistic

t =

b

j

SE(b

j

)

(9)

where b

j

and SE(b

j

) are taken from computer output. Reject H

j

if

|t | ≥ t

n−k−1,1−α/2

A 100(1 − α)% confidence interval for β

j

is given by

b

j

± SE(b

j

)t

n−k−1,1−α/2 (10)

These two facts follow from the pivotal variable

t =

b

j

− β

j

SE(b

j

)

which has a t-distribution with n − k − 1 degrees of freedom.

5. Interpretations of the estimated coefficients in a multiple regression equation must be done

cautiously. Recall (from the simple linear regression chapter) that we used the example of height

and weight; we noted that if we managed to get the subjects to eat and/or diet to change their

weight, this would not have any substantial effect on a person’s height despite a relationship

between height and weight in the population. Similarly, when we look at the estimated multiple

regression equation, we can say that for the observed X values, the regression coefficients β

j

have the following interpretation. If all of the X variables except for one, say X

j

, are kept fixed,

and if X

j

changes by one unit, the expected value of Y changes by β

j

. Let us consider this

statement again for emphasis. If all the X variables except for one X variable, X

j

, are held

constant, and the observation has X

j

changed by an amount 1, the expected value of Y

i

changes

by the amount β

j

. This is seen by looking at the difference in the expected values:

α + β1X1 + · · · + β

j

(X

j

+ 1) + · · · + β

k

X

k

− (α + · · · + β

j

X

j

+ · · · + β

k

X

k

) = β

j
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This does not mean that when the regression equation is estimated, by changing X by a certain

amount we can therefore change the expected value of Y . Consider a medical example where

X

j

might be systolic blood pressure and other X variables are other measures of physiological

performance. Any maneuvers taken to change X

j

might also result in changing some or all of

the other X’s in the population. The change in Y of β

j

holds for the distribution of X’s in the

population sampled. By changing the values of X

j

we might change the overall relationship

between the Y

i

’s and the X

j

’s, so that the estimated regression equation no longer holds.

(Recall again the height and weight example for simple linear regression.) For these reasons,

interpretations of multiple regression equations must be made tentatively, especially when the

data result from observational studies rather than controlled experiments.

6. If two variables, say X1 and X2, are closely related, it is difficult to estimate their regres-

sion coefficients because they tend to get confused. Take the extreme case where the variables

X1 and X2 are actually the same value. Then if we look at β1X1+β2X2 we can factor out the X1

variable that is equal to X2. That is, if X1 = X2, then β1X1 +β2X2 = (β1 +β2)X1. We see that

β1 and β2 are not determined uniquely in this case, but any values for β1 and β2 whose sum is

the same will give the “same” regression equation. More generally, if X1 and X2 are very closely

associated in a linear fashion (i.e., if their correlation is large), it is very difficult to estimate the

betas. This difficulty is referred to as collinearity. We return to this fact in more depth below.

7. In Chapter 9 we saw that the assumptions of the simple linear regression model held if

the two variables X and Y have a bivariate normal distribution. This fact may be extended

to the considerations of this chapter. If the variables Y,X1, . . . , X

k

have a multivariate nor-

mal distribution, then conditionally upon knowing the values of X1, . . . , X

k

, the assumptions

of the multiple regression model hold. Note 11.2 has more detail on the multivariate normal

distribution. We shall not go into this in detail but merely mention that if the variables have a

multivariate normal distribution, any one of the variables has a normal distribution, any two of

the variables have a bivariate normal distribution, and any linear combination of the variables

also has a normal distribution.

These generalizations of the findings for simple linear regression are illustrated in the next

section, which presents several examples of multiple regression.

11.2.4 Examples of Multiple Regression

Example 11.1. (continued ) We modeled the percent depression of lymphocyte transformation

following anesthesia by using the duration of the anesthesia in hours and trauma factor. The least

squares estimates of the regression coefficients, the estimated standard errors and the anova

table are given below.

Constant or Variable j b
j

SE(b
j
)

Duration of anesthesia 1.105 3.620

Trauma factor 10.376 7.460

Constant −2.555 12.395

Source d.f. SS MS F -Ratio

Regression 2 4,192.94 2,096.47 3.18

Residual 32 21,070.09 658.44

Total 34 25,263.03

From tables of the F -distribution, we see that at the 5% significance level the critical value

for 2 and 30 degrees of freedom is 3.32, while for 2 and 40 degrees of freedom it is 3.23. Thus,
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F2,32,0.95 is between 3.23 and 3.32. Since the observed F -ratio is 3.18, which is smaller at the

5% significance level, we would not reject a null hypothesis that the regression equation has

no contribution to the prediction. (Why is the double negative appropriate here?) This being

the case, it would not pay to proceed further to examine the significance of the individual

regression coefficients. (You will note that a standard error for the constant term in the regres-

sion is also given. This is also a feature of the computer output for most multiple regression

packages.)

Example 11.2. This is a continuation of Example 9.1 regarding malignant melanoma of the

skin in white males. We saw that mortality was related to latitude by a simple linear regression

equation and also to contiguity to an ocean. We now consider the modeling of the mortality

result using a multiple regression equation with both the “latitude” variable and the “contiguity

to an ocean” variable. When this is done, the following estimates result:

Constant or Variable b
j

SE(b
j
)

Latitude in degrees −5.449 0.551

Contiguity to ocean 18.681 5.079

(1 = contiguous to ocean,

0 = does not border ocean)

Constant 360.28 22.572

Source d.f. SS MS F -Ratio

Regression 2 40,366.82 20,183.41 69.96

Residual 46 13,270.45 288.49

Total 48 53,637.27

The F critical values at the 0.05 level with 2 and 40 and 2 and 60 degrees of freedom are

3.23 and 3.15, respectively. Thus the F -statistic for the regression is very highly statistically

significant. This being the case, we might then wonder whether or not the significance came

from one variable or whether both of the variables contributed to the statistical significance. We

first test the significance of the latitude variable at the 5% significance level and also construct

a 95% confidence interval. t = −5.449/0.551 = −9.89, |t | > t48,0.975
.

= 2.01; reject β1 = 0 at

the 5% significance level. The 95% confidence interval is given by −5.449 ± 2.01 × 0.551 or

(−6.56, −4.34).

Consider a test of the significance of β2 at the 1% significance level and a 99% confidence

interval for β2. t = 18.681/5.079 = 3.68, |t | > t48,0.995
.

= 2.68; reject β2 = 0 at the 1%

significance level. The 99% confidence interval is given by 18.681±2.68×5.079 or (5.07, 32.29).

In this example, from the t statistic we conclude that both latitude in degrees and contiguity

to the ocean contribute to the statistically significant relationship between the melanoma of the

skin mortality rates and the multiple regression equation.

Example 11.3. The data for this problem come from Problems 9.5 to 9.8. These data con-

sider maximal exercise treadmill tests for 43 active women. We consider two possible multiple

regression equations from these data. Suppose that we want to predict or explain the variability

in VO2 MAX by using three variables: X1, the duration of the treadmill test; X2, the maximum

heart rate attained during the test; and X3, the height of the subject in centimeters. Data resulting

from the least squares fit are:
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Covariate or Constant b
j

SE(b
j
) t (t39,0.975

.

= 2.02)

Duration (seconds) 0.0534 0.00762 7.01

Maximum heart rate (beats/min) −0.0482 0.05046 −0.95

Height (cm) 0.0199 0.08359 0.24

Constant 6.954 13.810

F -Ratio

Source d.f. SS MS (F3,39,0.95
.

= 2.85)

Regression 3 644.61 214.87 21.82

Residual 39 384.06 9.85

Total 42 1028.67

Note that the overall F -test is highly significant, 21.82, compared to a 5% critical value for

the F -distribution with 3 and 39 degrees of freedom of approximately 2.85. When we look at

the t statistic for the three individual terms, we see that the t value for duration, 7.01, is much

larger than the corresponding 0.05 critical value of 2.02. The other two variables have values for

the t statistic with absolute value much less than 2.02. This raises the possibility that duration

is the only variable of the three that contributes to the predictive equation. Perhaps we should

consider a model where we predict the maximum oxygen consumption in terms of duration

rather than using all three variables. In sections to follow, we consider the question of selecting

a “best” predictive equation using a subset of a given set of potential explanatory or predictor

variables.

Example 11.3. (continued ) We use the same data but consider the dependent variable to be

age. We shall try to model this from three explanatory, or independent, or predictor variables.

Let X1 be the duration of the treadmill test in seconds; let X2 be VO2 MAX, the maximal oxygen

consumption; and let X3 be the maximum heart rate during the treadmill test. Analysis of these

data lead to the following:

t-Statistic

Covariate or Constant b
j

SE(b
j
) (t39,0.975

.
= 2.02)

Duration −0.0524 0.0268 −1.96

VO2 MAX −0.633 0.378 −1.67

Maximum heart rate −0.0884 0.119 −0.74

Constant 106.51 18.63

F -Ratio

Source d.f. SS MS (F3,39,0.95
.
= 2.85)

Regression 3 2256.97 752.32 13.70

Residual 39 2142.19 54.93

Total 42 4399.16

The overall F value of 13.7 is very highly statistically significant, indicating that if one has

the results of the treadmill test, including duration, VO2 MAX, and maximum heart rate, one can

gain a considerable amount of knowledge about the subject’s age. Note, however, that when

we look at the p-values for the individual variables, not one of them is statistically significant!
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How can it be that the overall regression equation is very highly statistically significant but none

of the variables individually can be shown to have contributed at the 5% significance level?

This paradox results because the predictive variables are highly correlated among themselves;

they are collinear, as mentioned above. For example, we already know from Chapter 9 that the

duration and VO2 MAX are highly correlated variables; there is much overlap in their predictive

information. We have trouble showing that the prediction comes from one or the other of the

two variables.

11.3 LINEAR ASSOCIATION: MULTIPLE AND PARTIAL CORRELATION

The simple linear regression equation was very closely associated with the correlation coefficient

between the two variables; the square of the correlation coefficient was the proportion of the

variability in one variable that could be explained by the other variable using a linear predictive

equation. In this section we consider a generalization of the correlation coefficient.

11.3.1 Multiple Correlation Coefficient

In considering simple linear regression, we saw that r

2 was the proportion of the variability of

the Y

i

about the mean that could be explained from the regression equation. We generalize this

to the case of multiple regression.

Definition 11.4. The squared multiple correlation coefficient, denoted by R

2, is the propor-

tion of the variability in the dependent variable Y that may be accounted for by the multiple

regression equation. Algebraically,

R

2
=

regression sum of squares

total sum of squares

Since
∑

i

(Y

i

− Y )

2
=

∑

i

(Y

i

− ̂

Y

i

)

2
+

∑

i

(

̂

Y

i

− Y

i

)

2

R

2
=

SSREG

SSTOTAL
=

∑

i

(

̂

Y

i

− Y )

2

∑

i

(Y

i

− Y )

2
(11)

Definition 11.5. The positive square root of R

2 is denoted by R, the multiple correlation

coefficient.

The multiple correlation coefficient may also be computed as the correlation between the

Y

i

and the estimated best linear predictor, ̂

Y

i

. If the data come from a multivariate sample

rather than having the X’s fixed by experimental design, the quantity R is an estimate of the

correlation between Y and the best linear predictor for Y in terms of X1, . . . , X

k

, that is, the

correlation between Y and a + b1X1 + · · · + b
k

X

k

. The population correlation will be zero if

and only if all the regression coefficients β1, . . . , β

k

are equal to zero. Again, the value of R

2

is an estimate (for a multivariate sample) of the square of the correlation between Y and the

best linear predictor for Y in the overall population. Since the population value for R

2 will be

zero if and only if the multiple regression coefficients are equal to zero, a test of the statistical

significance of R

2 is the F -test for the regression equation. R

2 and F are related (as given by

the definition of R

2 and the F test in the analysis of variance table). It is easy to show that

R

2
=

kF

kF + n − k − 1
, F =

(n − k − 1)R

2

k(1 − R

2
)

(12)
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The multiple correlation coefficient thus has associated with it the same degrees of freedom

as the F distribution: k and n − k − 1. Statistical significance testing for R

2 is based on the

statistical significance test of the F -statistic of regression.

At significance level α, reject the null hypothesis of the no linear association between Y and

X1, . . . , X

k

if

R

2
≥

kF

k,n−k−1,1−α

kF

k,n−k−1,1−α

+ n − k − 1

where F

k,n−k−1,1−α

is the 1 − α percentile for the F -distribution with k and n − k − 1 degrees

of freedom.

For any of the examples considered above, it is easy to compute R

2. Consider the last

part of Example 11.3, the active female exercise test data, where duration, VO2 MAX, and the

maximal heart rate were used to “explain” the subject’s age. The value for R

2 is given by

2256.97/4399.16 = 0.51; that is, 51% of the variability in Y (age) is explained by the three

explanatory or predictor variables. The multiple regression coefficient, or positive square root,

is 0.72.

The multiple regression coefficient has the same limitations as the simple correlation coeffi-

cient. In particular, if the explanatory variables take values picked by an experimenter and the

variability about the regression line is constant, the value of R

2 may be increased by taking

a large spread among the explanatory variables X1, . . . , X

k

. The value for R

2, or R, may be

presented when the data do not come from a multivariate sample; in this case it is an indicator

of the amount of the variability in the dependent variable explained by the covariates. It is

then necessary to remember that the values do not reflect something inherent in the relationship

between the dependent and independent variables, but rather, reflect a quantity that is subject to

change according to the value selection for the independent or explanatory variables.

Example 11.4. Gardner [1973] considered using environmental factors to explain and pre-

dict mortality. He studied the relationship between a number of socioenvironmental factors and

mortality in county boroughs of England and Wales. Rates for all sizable causes of death in the

age bracket 45 to 74 were considered separately. Four social and environmental factors were

used as independent variables in a multiple regression analysis of each death rate. The variables

included social factor score, “domestic” air pollution, latitude, and the level of water calcium.

He then examined the residuals from this regression model and considered relating the residual

variability to other environmental factors. The only factors showing sizable and consistent corre-

lation were the long-period average rainfall and latitude, with rainfall being the more significant

variable for all causes of death. When rainfall was included as a fifth regressor variable, no new

factors were seen to be important. Tables 11.4 and 11.5 give the regression coefficients, not for

the raw variables but for standardized variables.

These data were developed for 61 English county boroughs and then used to predict the values

for 12 other boroughs. In addition to taking the square of the multiple correlation coefficient for

the data used for the prediction, the correlation between observed and predicted values for the

other 12 boroughs were calculated. Table 11.5 gives the results of these data.

This example has several striking features. Note that Gardner tried to fit a variety of models.

This is often done in multiple regression analysis, and we discuss it in more detail in Section 11.8.

Also note the dramatic drop (!) in the amount of variability in the death rate that can be explained

between the data used to fit the model and the data used to predict values for other boroughs.

This may be due to several sources. First, the value of R

2 is always nonnegative and can only

be zero if variability in Y can be perfectly predicted. In general, R

2 tends to be too large. There

is a value called adjusted R

2, which we denote by R

2
a

, which takes this effect into account.
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Table 11.4 Multiple Regressiona of Local Death Rates on Five Socioenvironmental Indices in the

County Boroughsb

Long Period

Gender/Age Social Factor “Domestic” Water Average

Group Period Score Air Pollution Latitude Calcium Rainfall

Males/45–64 1948–1954 0.16 0.48∗∗∗ 0.10 −0.23 0.27∗∗∗

1958–1964 0.19∗ 0.36∗∗∗ 0.21∗∗
−0.24∗∗ 0.30∗∗∗

Males/65–74 1950–1954 0.24∗ 0.28∗ 0.02 −0.43∗∗∗ 0.17

1958–1964 0.39∗∗ 0.17 0.13 −0.30∗∗ 0.21

Females/45–64 1948–1954 0.16 0.20 0.32∗∗
−0.15 0.40∗∗∗

1958–1964 0.29∗ 0.12 0.19 −0.22∗ 0.39∗∗∗

Females/65–74 1950–1954 0.39∗∗∗ 0.02 0.36∗∗∗
−0.12 0.40∗∗∗

1958–1964 0.40∗∗∗
−0.05 0.29∗∗∗

−0.27∗∗ 0.29∗∗

aA standardized partial regression coefficients given; that is, the variables are reduced to the same mean (0) and variance
(1) to allow values for the five socioenvironmental indices in each cause of death to be compared. The higher of two
coefficients is not necessarily the more significant statistically.
b∗

p < 0.05; ∗∗
p < 0.01; ∗∗∗

p < 0.001.

Table 11.5 Results of Using Estimated

Multiple Regression Equations from 61

County Boroughs to Predict Death Rates in

12 Other County Boroughs

Gender/Age

Group Period ̂

R

2
r

a

2

Males/45–64 1948–1954 0.80 0.12

1958–1964 0.84 0.26

Males/65–74 1950–1954 0.73 0.09

1958–1964 0.76 0.25

Females/45–64 1948–1954 0.73 0.46

1958–1964 0.72 0.48

Females/65–74 1950–1954 0.80 0.53

1958–1964 0.73 0.41

a

r is the correlation coefficient in the second sample
between the value predicted for the dependent variable
and its observed value.

This estimate of the population, R

2, is given by

R

2
a

= 1 − (1 − R

2
)

n − 1

n − k

(13)

For the Gardner data on males from 45 to 64 during the time period 1948–1954, the adjusted

R

2 value is given by

R

2
a

= 1 − (1 − 0.80)

(

61 − 1

61 − 5

)

= 0.786

We see that this does not account for much of the drop. Another possible effect may be related

to the fact that Gardner tried a variety of models; in considering multiple models, one may get a

very good fit just by chance because of the many possibilities tried. The most likely explanation,

however, is that a model fitted in one environment and then used in another setting may lose much
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predictive power because variables important to one setting may not be as important in another

setting. As another possibility, there could be an important variable that is not even known by the

person analyzing the data. If this variable varies between the original data set and the new data

set, where one desires to predict, extreme drops in predictive power may occur. As a general rule

of thumb, the more complex the model, the less transportable the model is in time and/or space.

This example illustrates that whenever possible, when fitting a multivariate model including mul-

tiple linear regression models, if the model is to be used for prediction it is useful to try the model

on an independent sample. Great degradation in predictive power is not an unusual occurrence.

In one example above, we had the peculiar situation that the relationship between the depen-

dent variable age and the independent variables duration, VO2 MAX, and maximal heart rate

was such that there was a very highly statistically significant relationship between the regres-

sion equation and the dependent variable, but at the 5% significance level we were not able to

demonstrate the statistical significance of the regression coefficients of any of the three inde-

pendent variables. That is, we could not demonstrate that any of the three predictor variables

actually added statistically significant information to the prediction. We mentioned that this may

occur because of high correlations between variables. This implies that they contain much of

the same predictive information. In this case, estimation of their individual contribution is very

difficult. This idea may be expressed quantitatively by examining the variance of the estimate

for a regression coefficient, say β

j

. This variance can be shown to be

var(b
j

) =

σ

2

[x2
j

](1 − R

2
j

)

(14)

In this formula σ

2 is the variance about the regression line and [x2
j

] is the sum of the squares

of the difference between the values observed for the j th predictor variable and its mean (this

bracket notation was used in Chapter 9). R

2
j

is the square of the multiple correlation coefficient

between X

j

as dependent variable and the other predictor variables as independent variables.

Note that if there is only one predictor, R

2
j

is zero; in this case the formula reduces to the formula

of Chapter 9 for simple linear regression. On the other hand, if X

j

is very highly correlated with

other predictor variables, we see that the variance of the estimate of b

j

increases dramatically.

This again illustrates the phenomenon of collinearity. A good discussion of the problem may

be found in Mason [1975] as well as in Hocking [1976].

In certain circumstances, more than one multiple regression coefficient may be considered at

one time. It is then necessary to have notation that explicitly gives the variables used.

Definition 11.6. The multiple correlation coefficient of Y with the set of variables X1, . . . ,

X

k

is denoted by

R

Y(X1,... ,Xk

)

when it is necessary to explicitly show the variables used in the computation of the multiple

correlation coefficient.

11.3.2 Partial Correlation Coefficient

When two variables are related linearly, we have used the correlation coefficient as a measure

of the amount of association between the two variables. However, we might suspect that a

relationship between two variables occurred because they are both related to another variable.

For example, there may be a positive correlation between the density of hospital beds in a

geographical area and an index of air pollution. We probably would not conjecture that the

number of hospital beds increased the air pollution, although the opposite could conceivably be

true. More likely, both are more immediately related to population density in the area; thus we

might like to examine the relationship between the density of hospital beds and air pollution
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after controlling or adjusting for the population density. We have previously seen examples

where we controlled or adjusted for a variable. As one example this was done in the combining

of 2 × 2 tables, using the various strata as an adjustment. A partial correlation coefficient is

designed to measure the amount of linear relationship between two variables after adjusting for

or controlling for the effect of some set of variables. The method is appropriate when there are

linear relationships between the variables and certain model assumptions such as normality hold.

Definition 11.7. The partial correlation coefficient of X and Y adjusting for the variables

X1, . . . , X

k

is denoted by ρ

X,Y.X1,... ,Xk

. The sample partial correlation coefficient of X and Y

adjusting for X1, . . . , X

k

is denoted by r

X,Y.X1,... ,Xk

. The partial correlation coefficient is the

correlation of Y minus its best linear predictor in terms of the X

j

variables with X minus its

best linear predictor in terms of the X

j

variables. That is, letting ̂

Y be a predicted value of Y

from multiple linear regression of Y on X1, . . . , X

k

and letting ̂

X be the predicted value of X

from the multiple linear regression of X on X1, . . . , X

k

, the partial correlation coefficient is the

correlation of X − ̂

X and Y − ̂

Y .

If all of the variables concerned have a multivariate normal distribution, the partial correlation

coefficient of X and Y adjusting for X1, . . . , X

k

is the correlation of X and Y conditionally upon

knowing the values of X1, . . . , X

k

. The conditional correlation of X and Y in this multivariate

normal case is the same for each fixed set of the values for X1, . . . , X

k

and is equal to the

partial correlation coefficient.

The statistical significance of the partial correlation coefficient is equivalent to testing the

statistical significance of the regression coefficient for X if a multiple regression is performed

with Y as a dependent variable with X, X1, . . . , X

k

as the independent or explanatory variables.

In the next section on nested hypotheses, we consider such significance testing in more detail.

Partial regression coefficients are usually estimated by computer, but there is a simple formula

for the case of three variables. Let us consider the partial correlation coefficient of X and Y

adjusting for a variable Z. In terms of the correlation coefficients for the pairs of variables, the

partial correlation coefficient in the population and its estimate from the sample are given by

ρ

X,Y ·Z =

ρ

X,Y

− ρ

X,Z

ρ

Y,Z

√

(1 − ρ

2
X,Z

)(1 − ρ

2
Y,Z

)

r

X,Y.Z

=

r

X,Y

− r

X,Z

r

Y,Z

√

(1 − r

2
X,Z

)(1 − r

2
Y,Z

)

(15)

We illustrate the effect of the partial correlation coefficient by the exercise data for active

females discussed above. We know that age and duration are correlated. For the data above, the

correlation coefficient is −0.68913. Let us consider how much of the linear relationship between

age and duration is left if we adjust out the effect of the oxygen consumption, VO2 MAX, for

the same data set. The correlation coefficients for the sample are as follows:

rAGE, DURATION = −0.68913

rAGE, VO2 MAX
= −0.65099

rDURATION, VO2 MAX
= 0.78601

The partial correlation coefficient of age and duration adjusting VO2 MAX using the equation

above is estimated by

rAGE,DURATION·VO2 MAX
=

−0.68913 − [(−0.65099)(−0.78601)]
√

[1 − (−0.65099)

2][1 − (0.78601)

2]
= −0.37812
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If we consider the corresponding multiple regression problem with a dependent variable of age

and independent variables duration and VO2 MAX, the t-statistic for duration is −2.58. The

two-sided 0.05 critical value is 2.02, while the critical value at significance level 0.01 is 2.70.

Thus, we see that the p-value for statistical significance of this partial correlation coefficient is

between 0.05 and 0.01.

11.3.3 Partial Multiple Correlation Coefficient

Occasionally, one wants to examine the linear relationship, that is, the correlation between one

variable, say Y , and a second group of variables, say X1, . . . , X

k

, while adjusting or controlling

for a third set of variables, Z1, . . . , Z

p

. If it were not for the Z

j

variables, we would simply use

the multiple correlation coefficient to summarize the relationship between Y and the X variables.

The approach taken is the same as for the partial correlation coefficient. First subtract out for

each variable its best linear predictor in terms of the Z

j

’s. From the remaining residual values

compute the multiple correlation between the Y residuals and the X residuals. More formally,

we have the following definition.

Definition 11.8. For each variable let ̂

Y or ̂

X

j

denote the least squares linear predictor

for the variable in terms of the quantities Z1, . . . , Z

p

. The best linear predictor for a sample

results from the multiple regression of the variable on the independent variables Z1, . . . , Z

p

.

The partial multiple correlation coefficient between the variable Y and the variables X1, . . . , X

k

adjusting for Z1, . . . , Z

p

is the multiple correlation between the variable Y −̂

Y and the variables

X1−
̂

X1, . . . , X

k

−̂

X

k

. The partial multiple correlation coefficient of Y and X1, . . . , X

k

adjusting

for Z1, . . . , Z

p

is denoted by

R

Y(X1,... ,Xk

).Z1,... ,Zp

A significance test for the partial multiple correlation coefficient is discussed in Section 11.4.

The coefficient is also called the multiple partial correlation coefficient.

11.4 NESTED HYPOTHESES

In the second part of Example 11.3, we saw a multiple regression equation where we could not

show the statistical significance of individual regression coefficients. This raised the possibility

of reducing the complexity of the regression equation by eliminating one or more variables from

the predictive equation. When we consider such possibilities, we are considering what is called

a nested hypothesis. In this section we discuss nested hypotheses in the multiple regression

setting. First we define nested hypotheses; we then introduce notation for nested hypotheses in

multiple regression. In addition to notation for the hypotheses, we need notation for the various

sums of squares involved. This leads to appropriate F -statistics for testing nested hypotheses.

After we understand nested hypotheses, we shall see how to construct F -tests for the partial

correlation coefficient and the partial multiple correlation coefficient. Furthermore, the ideas of

nested hypotheses are used below in stepwise regression.

Definition 11.9. One hypothesis, say hypothesis H1, is nested within a second hypothesis,

say hypothesis H2, if whenever hypothesis H1 is true, hypothesis H2 is also true. That is to say,

hypothesis H1 is a special case of hypothesis H2.

In our multiple regression situation most nested hypotheses will consist of specifying that

some subset of the regression coefficients β

j

have the value zero. For example, the larger first
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hypothesis might be H2, as follows:

H2: Y = α + β1X1 + · · · + β

k

X

k

+ ǫ

ǫ ∼ N(0, σ

2
)

The smaller (nested) hypothesis H1 might specify that some subset of the β’s, for example, the

last k−j betas corresponding to variables X

j+1, . . . , X

k

, are all zero. We denote this hypothesis

by H1.

H1: Y = α + β1X1 + · · · + β

j

X

j

+ ǫ

ǫ ∼ N(0, σ

2
)

In other words, H2 holds and

β

j+1 = β

j+2 = · · · = β

k

= 0

A more abbreviated method of stating the hypothesis is the following:

H1: β

j+1 = β

j+2 = · · · = β

k

= 0|β1, . . . , β

j

To test such nested hypotheses, it will be useful to have a notation for the regression sum

of squares for any subset of independent variables in the regression equation. If variables

X1, . . . , X

j

are used as explanatory or independent variables in a multiple regression equation

for Y , we denote the regression sum of squares by

SSREG(X1, . . . , X

j

)

We denote the residual sum of squares (i.e., the total sum of squares of the dependent variable

Y about its mean minus the regression sum of squares) by

SSRESID(X1, . . . , X

j

)

If we use more variables in a multiple regression equation, the sum of squares explained by the

regression can only increase, since one potential predictive equation would set all the regression

coefficients for the new variables equal to zero. This will almost never occur in practice if

for no other reason than the random variability of the error term allows the fitting of extra

regression coefficients to explain a little more of the variability. The increase in the regression

sum of squares, however, may be due to chance. The F -test used to test nested hypotheses looks

at the increase in the regression sum of squares and examines whether it is plausible that the

increase could occur by chance. Thus we need a notation for the increase in the regression sum

of squares. This notation follows:

SSREG(X

j+1, . . . , X

k

|X1, . . . , X

j

) = SSREG(X1, . . . , X

k

) − SSREG(X1, . . . , X

j

)

This is the sum of squares attributable to X

j+1, . . . , X

k

after fitting the variables X1, . . . , X

j

.

With this notation we may proceed to the F -test of the hypothesis that adding the last k − j

variables does not increase the sum of squares a statistically significant amount beyond the

regression sum of squares attributable to X1, . . . , X

k

.

Assume a regression model with k predictor variables, X1, . . . , X

k

. The F -statistic for testing

the hypothesis

H1: β

j+1 = · · · = β

k

= 0|β1, . . . , β

j
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is

F =

SSREG(X

j+1, . . . , X

k

|X1, . . . , X

j

)/(k − j)

SSRESID(X1, . . . , X

k

)/(n − k − 1)

Under H1, F has an F -distribution with k − j and n − k − 1 degrees of freedom. Reject H1 if

F > F

k−j,n−k−1,1−α

, the 1 − α percentile of the F -distribution.

The partial correlation coefficient is related to the sums of squares as follows. Let X be a

predictor variable in addition to X1, . . . , X

k

.

r

2
X,Y ·X1,... ,X

k

=

SSREG(X|X1, . . . , X

k

)

SSRESID(X1, . . . , X

k

)

(16)

The sign of r

X,Y ·X1,... ,Xk

is the same as the sign of the X regression coefficient when Y is

regressed on X, Y · X1, . . . , X

k

. The F -test for statistical significance of r

X,Y ·X1,... ,Xk

uses

F =

SSREG(X|X1, . . . , X

k

)

SSRESID(X, X1, . . . , X

k

)/(n − k − 2)

(17)

Under the null hypothesis that the partial correlation is zero (or equivalently, that β

X

=

0|β1, . . . , β

k

), F has an F -distribution with 1 and n−k−2 degrees of freedom. F is sometimes

called the partial F -statistic. The t-statistic for the statistical significance of β

X

is related to F by

t

2
=

β

2
X

SE(β

X

)

2
= F

Similar results hold for the partial multiple correlation coefficient. The correlation is always

positive and its square is related to the sums of squares by

R

2
Y(X1,... ,Xk

)·Z1,... ,Zp

=

SSREG(X1, . . . , X

k

|Z1, . . . , Z

p

)

SSRESID(Z1, . . . , Z

p

)

(18)

The F -test for statistical significance uses the test statistic

F =

SSREG(X1, . . . , X

k

|Z1, . . . , Z

p

)/k

SSRESID(X1, . . . , X

k

, Z1, . . . , Z

p

)/(n − k − p − 1)

(19)

Under the null hypothesis that the population partial multiple correlation coefficient is zero, F

has an F -distribution with k and n − k − p − 1 degrees of freedom. This test is equivalent to

testing the nested multiple regression hypothesis:

H : β

X1
= · · · = β

X

k

= 0|β
Z1

, . . . , β

Z

p

Note that in each case above, the contribution to R

2 after adjusting for additional variables is

the increase in the regression sum of squares divided by the residual sum of squares after taking

the regression on the adjusting variables. The corresponding F -statistic has a numerator degrees

of freedom equal to the number of predictive variables added, or equivalently, the number of

additional parameters being estimated. The denominator degrees of freedom are equal to the

number of observations minus the total number of parameters estimated. The reason for the −1

in the denominator degrees of freedom in equation (19) is the estimate of the constant in the

regression equation.
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Example 11.3. (continued ) We illustrate some of these ideas by returning to the 43 active

females who were exercise-tested. Let us compute the following quantities:

rVO2 MAX,DURATION · AGE

R

2
AGE(VO2 MAX, HEART RATE) · DURATION

To examine the relationship between VO2 MAX and duration adjusting for age, let duration

be the dependent or response variable. Suppose that we then run two multiple regressions: one

predicting duration using only age as the predictive variable and a second regression using

both age and VO2 MAX as the predictive variable. These runs give the following data: for

Y = duration and X1 = age:

t-statistic

Covariate or Constant b
j

SE(b
j
) (t41,0.975

.
= 2.02)

Age −5.208 0.855 −6.09

Constant 749.975 39.564

F -Ratio

Source d.f. SS MS (F1,41,0.95
.

= 4.08)

Regression of duration on age 1 119,324.47 119,324.47 37.08

Residual 41 131,935.95 3,217.95

Total 42 251,260.42

and for Y = duration, X1 = age, and X2 = VO2 MAX:

t-statistic

Covariate or Constant b
j

SE(b
j
) (t40,0.975

.
= 2.09)

Age −2.327 0.901 −2.583

VO2 MAX 9.151 1.863 4.912

Constant 354.072 86.589

F -Ratio

Source d.f. SS MS (F2,40,0.95
.

= 3.23)

Regression of duration on age

and VO2 MAX

2 168,961.48 84,480.74 41.06

Residual 40 82,298.94 2,057.47

Total 42 251,260.42

Using equation (16), we find the square of the partial correlation coefficient:

r

2
VO2 MAX, DURATION·AGE =

168,961.48 − 119,324.47

131,935.95

=

49,637.01

131,935.95

= 0.376
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Since the regression coefficient for VO2 MAX is positive (when regressed with age) having

a value of 9.151, the positive square root gives r:

rVO2 MAX, DURATION · AGE = +

√

0.376 = 0.613

To test the statistical significance of the partial correlation coefficient, equation (17) gives

F =

168,961.48 − 119,324.467

82,298.94/(43 − 1 − 1 − 1)

= 24.125

Note that t

2
vo2MAX = 24.127 = F within round-off error. As F1,40,0.999 = 12.61, this is highly

significant (p < 0.001). In other words, the duration of the treadmill test and the maximum

oxygen consumption are significantly related even after adjustment for the subject’s age.

Now we turn to the computation and testing of the partial multiple correlation coefficient.

To use equations (18) and (19), we need to regress age on duration, and also regress age on

duration, VO2 MAX, and the maximum heart rate. The anova tables follow. For age regressed

upon duration:

F -Ratio

Source d.f. SS MS (F1,41,0.95
.

= 4.08)

Regression 1 2089.18 2089.18 37.08

Residual 41 2309.98 56.34

Total 42 4399.16

and for age regressed upon duration, VO2 MAX, and maximum heart rate:

F -Ratio

Source d.f. SS MS (F3,39,0.95
.
= 2.85)

Regression 3 2256.97 752.32 13.70

Residual 39 2142.19 54.93

Total 42 4399.16

From equation (18),

R

2
AGE(VO2 MAX, HEART RATE) · DURATION =

2256.97 − 2089.18

2309.98

= 0.0726

and R =

√

R

2
= 0.270.

The F -test, by equation (19), is

F =

(2256.97 − 2089.18)/2

2142.19/(43 − 2 − 1 − 1)

= 1.53

As F2,39,0.90
.

= 2.44, we have not shown statistical significance even at the 10% significance

level. In words: VO2 MAX and maximum heart rate have no more additional linear relationship

with age, after controlling for the duration, than would be expected by chance variability.
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11.5 REGRESSION ADJUSTMENT

A common use of regression is to make inference regarding a specific predictor of inference

from observational data. The primary explanatory variable can be a treatment, an environmental

exposure, or any other type of measured covariate. In this section we focus on the common

biomedical situation where the predictor of interest is a treatment or exposure, but the ideas

naturally generalize to any other type of explanatory factor.

In observational studies there can be many uncontrolled and unmeasured factors that are asso-

ciated with seeking or receiving treatment. A naive analysis that compares the mean response

among treated individuals to the mean response among nontreated subjects may be distorted

by an unequal distribution of additional key variables across the groups being compared. For

example, subjects that are treated surgically may have poorer function or worse pain prior

to their being identified as candidates for surgery. To evaluate the long-term effectiveness of

surgery, each patient’s functional disability one year after treatment can be measured. Simply

comparing the mean function among surgical patients to the mean function among patients

treated nonsurgically does not account for the fact that the surgical patients probably started

at a more severe level of disability than the nonsurgical subjects. When important character-

istics systematically differ between treated and untreated groups, crude comparisons tend to

distort the isolated effect of treatment. For example, the average functional disability may be

higher among surgically treated subjects compared to nonsurgically treated subjects, even though

surgery has a beneficial effect for each person treated since only the most severe cases may

be selected for surgery. Therefore, without adjusting for important predictors of the outcome

that are also associated with being given the treatment, unfair or invalid treatment comparisons

may result.

11.5.1 Causal Inference Concepts

Regression models are often used to obtain comparisons that “adjust” for the effects of other

variables. In some cases the adjustment variables are used purely to improve the precision of

estimates. This is the case when the adjustment covariates are not associated with the exposure of

interest but are good predictors of the outcome. Perhaps more commonly, regression adjustment

is used to alleviate bias due to confounding. In this section we review causal inference concepts

that allow characterization of a well-defined estimate of treatment effect, and then discuss how

regression can provide an adjusted estimate that more closely approximates the desired causal

effect.

To discuss causal inference concepts, many authors have used the potential outcomes frame-

work [Neyman, 1923; Rubin, 1974; Robins, 1986]. With any medical decision we can imagine

the outcome that would result if each possible future path were taken. However, in any single

study we can observe only one realization of an outcome per person at any given time. That is,

we can only measure a person’s response to a single observed and chosen history of treatments

and exposures. We can still envision the hypothetical, or “potential” outcome that would have

been observed had a different set of conditions occurred. An outcome that we believe could

have happened but was not actually observed is called a counterfactual outcome. For simplicity

we assume two possible exposure or treatment conditions. We define the potential outcomes as:

Y

i

(0): reponse for subject i at a specific measurement time

after treatment X = 0 is experienced

Y

i

(1): reponse for subject i at a specific measurement time

after treatment X = 1 is experienced

Given these potential outcomes, we can define the causal effect for subject i as

causal effect for subject i : �

i

= Y

i

(1) − Y

i

(0)
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The causal effect �

i

measures the difference in the outcome for subject i if they were given

treatment X = 1 vs. the outcome if they were given treatment X = 0. For a given population

of N subjects, we can define the average causal effect as

� =

1

N

N

∑

i=1

�

i

The average causal effect is a useful overall summary of the treatment under study. Individual

causal effects would be useful for selecting the best intervention for a given person. In general,

we can only reliably estimate average causal effects for specific populations of subjects. Using

covariates, we may try to narrow the population such that it closely approximates the particular

persons identified for possible treatment.

There are a number of important implications associated with the potential outcomes

framework:

1. In any given study we can only observe either Y

i

(0) or Y

i

(1) and not both. We are

assuming that Y

i

(0) and Y

i

(1) represent outcomes under different treatment schemes, and

in nature we can only realize one treatment and one subsequent outcome per subject.

2. Each subject is assumed to have an individual causal effect of treatment, �

i

. Thus, there

is no assumption of a single effect of treatment that is shared for all subjects.

3. Since we cannot observe Y

i

(0) and Y

i

(1), we cannot measure the individual treatment

effect �

i

.

Example 11.4. Table 11.6 gives a hypothetical example of potential outcomes. This

example is constructed to approximate the evaluation of surgical and nonsurgical interventions

for treatment of a herniated lumbar disk (see Keller et al. [1996] for an example). The outcome

represents a measure of functional disability on a scale of 1 to 10, where the intervention has

a beneficial effect by reducing functional disability. Here Y

i

(0) represents the postintervention

outcome if subject i is given a conservative nonsurgical treatment and Y

i

(1) represents the

postintervention outcome if subject i is treated surgically. Since only one course of treatment

Table 11.6 Hypothetical Example of Potential Outcomes and

Individual Causal Effects

Potential Potential

Outcome Causal Outcome Causal

Subject Effect Subject Effect
i Y

i

(0) Y

i

(1) �

i

i Y

i

(0) Y

i

(1) �

i

1 4.5 2.7 −1.8 11 7.5 5.1 −2.3

2 3.1 1.0 −2.1 12 6.7 5.2 −1.5

3 3.9 2.0 −1.9 13 6.0 4.4 −1.6

4 4.3 2.2 −2.1 14 5.6 3.2 −2.4

5 3.3 1.5 −1.9 15 6.5 4.0 −2.4

6 3.3 0.8 −2.5 16 7.7 6.0 −1.8

7 4.0 1.5 −2.5 17 7.1 5.1 −2.1

8 4.9 3.2 −1.7 18 8.3 6.0 −2.3

9 3.8 2.0 −1.9 19 7.0 4.6 −2.4

10 3.6 2.0 −1.6 20 6.9 5.3 −1.5

Mean 5.40 3.39 −2.01
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is actually administered, these outcomes are conceptual and only one can actually be measured.

The data are constructed such that the effect of surgical treatment is a reduction in the outcome.

For example, the individual causal effects range from a −1.5- to a −2.5-point difference between

the outcome if treated and the outcome if untreated. The average causal effect for this group

is −2.01. To be interpreted properly, the population over which we are averaging needs to be

detailed. For example, if these subjects represent veterans over 50 years of age, then −2.01

represents the average causal effect for this specific subpopulation. The value −2.01 may not

generalize to represent the average causal effect for other populations (i.e., nonveterans, younger

subjects).

Although we cannot measure individual causal effects, we can estimate average causal effects

if the mechanism that assigns treatment status is essentially an unbiased random mechanism.

For example, if P [X
i

= 1 | Y

i

(0), Y

i

(1)] = P(X

i

= 1), the mean of a subset of observations,

Y

i

(1), observed for those subjects with X

i

= 1 will be an unbiased estimate of the mean for

the entire population if all subjects are treated. Formally, the means observed for the treatment,

X = 1, and control, X = 0, groups can be written as

Y 1 =

1

n1

N

∑

j=1

Y

j

(1) · 1(X

j

= 1)

Y 0 =

1

n0

N

∑

j=1

Y

j

(0) · 1(X

j

= 0)

where n1 =

∑

j

1(X

j

= 1), n0 =

∑

j

1(X

j

= 0), and 1(X

j

= 0), 1(X

j

= 1) are indicator

functions denoting assignment to control and treatment, respectively. For example, if we assume

that P(X

i

= 1) = 1/2 and that n1 = n0 = N/2, then with random allocation to treatment,

E(Y 1) =

1

N/2

N

∑

j=1

Y

j

(1) · E[1(X

j

= 1)]

=

1

N/2

N

∑

j=1

Y

j

(1) · 1/2

=

1

N

∑

j

Y

j

(1)

= µ1

where we define µ1 as the mean for the population if all subjects receive treatment. A similar

argument shows that E(Y 0) = µ0, the mean for the population if all subjects were not treated.

Essentially, we are assuming the existence of parallel and identical populations, one of which

is treated and one of which is untreated, and sample means from each population under simple

random sampling are obtained.

Under random allocation of treatment and control status, the observed means Y 1 and Y 0 are

unbiased estimates of population means. This implies that the sample means can be used to

estimate the average causal effect of treatment:

E(Y 1 − Y 0) = E(Y 1) − E(Y 1)

= µ1 − µ0
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=

1

N

∑

i

Y

i

(1) −

1

N

∑

i

Y

i

(0)

=

1

N

∑

i

[Y
i

(1) − Y

i

(0)]

=

1

N

∑

i

�

i

= �

Example 11.5. An example of the data observed from a hypothetical randomized study

that compares surgical (X = 1) to nonsurgical (X = 0) interventions is presented in Table 11.7.

Notice that for each subject, only one of Y

i

(0) or Y

i

(1) is observed, and therefore a treatment vs.

control comparison can only be calculated using the group averages rather than using individual

potential outcomes. Since the study was randomized, the difference in the averages observed is a

valid (unbiased) estimate of the average causal effect of surgery. The mean difference observed

in this experimental realization is −1.94, which approximates the unobservable target value

of � = −2.01 shown in Table 11.6. In this example the key random variable is the treatment

assignment, and because the study was randomized, the distribution for the treatment assignment

indicator, X

i

= 0/1, is completely known and independent of the potential outcomes.

Often, inference regarding the benefit of treatment is based on observational data where the

assignment to X = 0 or X = 1 is not controlled by the investigator. Consequently, the factors

Table 11.7 Example of Data that would Be

Observed in a Randomized Treatment Trial

Outcome

Observed
Subject

i Assignment Y

i

(0) Y

i

(1) Difference

1 0 4.5

2 1 1.0

3 1 2.0

4 1 2.2

5 0 3.3

6 1 0.8

7 1 1.5

8 0 4.9

9 0 3.8

10 0 3.6

11 1 5.1

12 0 6.7

13 0 6.0

14 0 5.6

15 0 6.5

16 1 6.0

17 1 5.1

18 0 8.3

19 1 4.6

20 1 5.3

Mean 5.48 3.42 −1.94
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that drive treatment assignment need to be considered if causal inference is to be attempted.

If sufficient covariate information is collected, regression methods can be used to control for

confounding.

Definition 11.10. Confounding refers to the presence of an additional factor, Z, which

when not accounted for leads to an association between treatment, X, and outcome, Y , that

does not reflect a causal effect. Confounding is ultimately a “confusion” of the effects of X and

Z. For a variable Z to be a confounder, it must be associated with X in the population, be a

predictor of Y in the control (X = 0) group, and not be a consequence of either X or Y .

This definition indicates that confounding is a form of selection bias leading to biased esti-

mates of the effect of treatment or exposure (see Rothman and Greenland [1998, Chap. 8] for

a thorough discussion of confounding and for specific criteria for the identification of a con-

founding factor). Using the potential outcomes framework allows identification of the research

goal: estimating the average causal effect, �. When confounding is present, the expected differ-

ence between Y 1 and Y 0 is no longer equal to the desired average causal effect, and additional

analytical approaches are required to obtain approximate causal effects.

Example 11.6. Table 11.8 gives an example of observational data where subjects in stratum

2 are more likely to be treated surgically than subjects in stratum 1. The strata represent a

baseline assessment of the severity of functional disability. In many settings those subjects

with more severe disease or symptoms are treated with more aggressive interventions, such as

surgery. Notice that both potential outcomes, Y

i

(0) and Y

i

(1), tend to be lower for subjects in

stratum 1 than for subjects in stratum 2. Despite the fact that subjects in stratum 1 are much

less likely to actually receive surgical intervention, treatment with surgery remains a beneficial

intervention for both strata 1 and 2 subjects. The benefit of treatment for all subjects is apparent

in the negative individual causal effects shown in Table 11.6. The imbalanced allocation of more

severe cases to surgical treatment leads to crude summaries of Y 1 = 4.46 and Y 0 = 4.32. Thus

the subjects who receive surgery have a slightly higher posttreatment mean functional score

than those subjects who do not receive surgery. Does this comparison indicate the absence of

a causal effect of surgery? The overall comparison is based on a treated group that has 80%

of subjects drawn from stratum 2, the more severe group, while the control group has only

20% of subjects from stratum 2. The crude comparison of Y 1 to Y 0 is roughly a comparison

of the posttreatment functional scores among severe subjects (80% of the X = 1 group) to

the posttreatment functional scores among less severe subjects (80% of the X = 0 group). It

is “unfair” to attribute the crude difference between treatment groups solely to the effect of

surgery since the groups are clearly not comparable. A mixing of the effect of surgery with the

effect of baseline severity is an illustration of bias due to confounding. The observed difference

Y 1 − Y 0 = 0.14 is a distorted estimate of the average causal effect, � = −2.01.

11.5.2 Adjustment for Measured Confounders

There are several statistical methods that can be used to adjust for measured confounders. The

goal of adjustment is to obtain an estimate of the treatment effect that more closely approximates

the average causal effect. Commonly used methods include:

1. Stratified methods. In stratified methods the sample is broken into strata, k = 1, 2, . . . ,K ,

based on the value of a covariate, Z. Within each stratum, k, a treatment comparison can be

calculated. Let δ

(k)

= Y

(k)

1 −Y

(k)

0 , where Y

(k)

1 is the mean among treated subjects in strata k, and

Y

(k)

0 is the mean among control subjects in strata k. An overall summary of the stratum-specific

treatment contrasts can be computed using a simple or weighted average of the stratum-specific

comparisons, δ =

∑

K

k=1 w

k

·δ
(w

k

), where w

k

is a weight. In the example presented in Table 11.8
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Table 11.8 Example of an Observational Study Where Factors

That Are Associated with the Potential Outcomes Are Predictive of

the Treatment Assignment

Outcome

Observed
Subject

i Assignment Y

i

(0) Y

i

(1) Stratum Difference

1 1 2.7 1

2 0 3.1 1

3 0 3.9 1

4 1 2.2 1

5 0 3.3 1

6 0 3.3 1

7 0 4.0 1

8 0 4.9 1

9 0 3.8 1

10 0 3.6 1

Mean 3.74 2.45 −1.29

11 1 5.1 2

12 1 5.2 2

13 1 4.4 2

14 0 5.6 2

15 1 4.0 2

16 0 7.7 2

17 1 5.1 2

18 1 6.0 2

19 1 4.6 2

20 1 5.3 2

Mean 6.65 4.96 −1.69

Overall mean 4.32 4.46 0.14

the subjects are separated into two strata, and mean differences of δ

(1)

= −1.29 and δ

(2)

= −1.69

are obtained comparing treatment and controls within strata 1 and strata 2, respectively. These

estimates are much closer to the true average causal effect of � = −2.01 in Table 11.6 than the

comparison of crude means, Y 1 − Y 0 = 0.14.

2. Regression analysis. Regression methods extend the concept of stratification to allow

use with continuously measured adjustment variables and with multiple predictor variables. A

regression model

E(Y | X,Z) = α + β1X + β2Z

can be used to obtain an estimate of treatment, X, that adjusts for the covariate Z. Using the

regression model, we have

β1 = E(Y | X = 1, Z = z) − E(Y | X = 0, Z = z)

indicating that the parameter β1 represents the average or common treatment comparison formed

within groups determined by the value of the covariate, Z = z.

3. Propensity score methods. Propensity score methods are discussed by Rosenbaum and

Rubin [1983]. In this approach the propensity score, P(X = 1 | Z), is estimated using logistic

regression or discriminant analysis, and then used either as a stratifying factor, a covariate in
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regression, or a matching factor (see Little and Rubin [2000] and the references therein for

further detail on use of the propensity score for adjustment).

The key assumption that is required for causal inference is the “no unmeasured confounding”

assumption. This states that for fixed values of a covariate, Z

i

(this may be multiple covariates),

the assignment to treatment, X

i

= 1, or control, X

i

= 0, is unrelated to the potential outcomes.

This assumption can be stated as

P [X
i

= 1 | Y

i

(0), Y

i

(1), Z

i

] = P [X
i

= 1 | Z

i

]

One difficult aspect of this concept is the fact that we view potential outcomes as being measured

after the treatment is given, so how can the potential outcomes predict treatment assignment? An

association can be induced by another variable, such as Z

i

. For example, in the surgical example

presented in Table 11.8, an association between potential outcomes and treatment assignment is

induced by the baseline severity. The probability that a subject is assigned X

i

= 1 is predicted

by baseline disease severity, and the potential outcomes are associated with the baseline status.

Thus, if we ignore baseline severity, treatment assignment X

i

is associated with both Y

i

(0) and

Y

i

(1). The goal of collecting covariates Z

i

is to measure sufficient predictors of treatment such

that within the strata defined by Z

i

, the treatment assignment is approximately randomized.

A causal interpretation for effects formed using observational data requires the assumption

that there is no unmeasured confounding within any strata. This assumption cannot be verified

empirically.

Example 11.1. (continued ) We return to the data from Cullen and van Belle [1975]. We

use the response variable DMPA, the disintegrations per minute of lymphocytes measured after

surgery. We focus on the effect of anesthesia used for the surgery: X = 0 for general anesthesia

and X = 1 for local anesthesia. The following crude analysis uses a regression of DMPA on

anesthesia (X ), which is equivalent to the two-sample t-test:

Coefficient SE t p-Value

Intercept 109.03 11.44 9.53 <0.001

Anesthesia 38.00 15.48 2.45 0.016

The analysis suggests that local anesthesia leads to a mean DMPA that is 38.00 units greater

than the mean DMPA when general anesthesia is used. This difference is statistically significant

with p-value 0.016.

Recall that these data are comprised of patients undergoing a variety of surgical procedures

that are broadly classified using the variable trauma, whose values 0 to 4 were introduced in

Table 11.2. The type of anesthesia that is used varies by procedure type and therefore trauma, as

shown in Table 11.9. From this table we see that use of local anesthesia occurs more frequently

for trauma 0, 1, or 2, and that general anesthesia is used more frequently for trauma 3 or

4. In addition, in earlier analyses we have found trauma to be associated with the outcome.

Thus, the crude analysis of anesthesia that estimates a 38.00 unit (S.E. = 15.48) effect of local

anesthesia is confounded by trauma and does not reflect an average causal effect. To adjust for

trauma, we use regression with the indicator variables, trauma(j) = 1 if trauma = j and

0 otherwise, for j = 1, 2, 3, 4. We use a model that includes an intercept and therefore do not

also include an indicator for trauma 0. The regression results are shown in Table 11.10.

After controlling for trauma, the estimated comparison of local to general anesthesia within

trauma groups is 23.47 (S.E. = 18.24), and this difference is no longer statistically significant.

This example shows that for causal analysis of observational data, any factors that are associated

with treatment and associated with the outcome need to be considered in the analysis. In order

to use 23.47 as the average causal effect of anesthesia, we would need to justify the required
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Table 11.9 Anesthesia Use by Type

of trauma

Anesthesia

trauma 0 = General 1 = Local Total

0 0 11 11

1 6 12 18

2 14 16 30

3 11 3 14

4 4 0 4

Total 35 42 77

Table 11.10 Regression Results with Anesthesia and

Trauma Predictors

Coefficient SE t p-Value

Intercept 129.53 27.40 4.73 <0.001

Anesthesia 23.47 18.24 1.29 0.202

trauma 1 3.66 26.66 0.14 0.891

trauma 2 −13.68 25.38 −0.54 0.592

trauma 3 −25.34 30.86 −0.82 0.414

trauma 4 −67.28 43.60 −1.54 0.127

assumption of no additional measured or unmeasured confounding factors. The assumption of

no unmeasured confounding can only be supported by substantive considerations specific to the

study design and the scientific process under investigation. Finally, since there are no empirical

contrasts comparing local to general anesthesia within the trauma 0 and trauma 4 strata, we

would need to either consider the average causal effect as only pertaining to the trauma 1, 2,

and 3 groups, or be willing to extrapolate to the trauma 0 and 4 groups.

11.5.3 Model Selection Issues

One of the most difficult and controversial issues regarding the use of regression models is

the procedure for specifying which variables are to be used to control for confounding. The

epidemiological and biostatistical literature has introduced and evaluated several schemes for

choosing adjustment variables. In the next section we discuss methods that can be used to identify

a parsimonious explanatory or predictive model. However, the motivation for selecting covariates

to control for confounding is different from the goal of identifying a good predictive model.

To control for confounding, we identify adjustment variables in order to remove bias in the

regression estimate for a predictor of primary interest, typically a treatment or exposure variable.

Pocock et al. [2002] discuss covariate choice issues in the analysis of data from clinical trials.

The authors note that post hoc choice of covariates may not be done objectively and thus leads

to estimates that reflect the investigators bias (e.g., choose to control for a variable if it makes

the effect estimate larger!). In addition, simulation studies have shown that popular automatic

variable-selection schemes can lead to biased estimates and distorted significance levels [Mickey

and Greenland, 1989; Maldonado and Greenland, 1993; Sun et al., 1996; Hurvich and Tsai, 1990].

Kleinbaum [1994] discusses the a priori specification of the covariates to be used for

regression analysis. The main message is that substantive considerations should drive the

specification of the regression model when confirmatory estimation and inference are desired.

This position is also supported by Raab et al. [2000].
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11.5.4 Further Reading

Little and Rubin [2000] provide a comprehensive review of causal inference concepts. These

authors also discuss the importance of the stable unit treatment assumption that is required for

causal inference.

An overview of causal inference and discussion of the use of graphs for representing causal

relationships are given in the text by Pearl [2000].

11.6 SELECTING A “BEST” SUBSET OF EXPLANATORY VARIABLES

11.6.1 The Problem

Given a large number of potential explanatory variables, one can sometimes select a smaller

subset that explains the variability in the dependent variable. We have seen examples above

where it appears that one or more of the variables in a multiple regression do not contribute,

beyond an amount consistent with chance, to the explanation of the variability in the dependent

variable. Thus, consider a response variable Y with a large number of potential predictor variables

X

j

. How should we choose a “best” subset of variables to explain the Y variability? This topic

is addressed in this section. If we knew the number of predictor variables we wanted, we could

use some criterion for the best subset. One natural criterion from the concepts already presented

would be to choose the subset that gives the largest value for R

2. Even then, selection of the

subset can be a formidable task. For example, suppose that there are 30 predictor variables and

a subset of 10 variables is wanted; there are

(

30

10

)

= 30,045,015

possible regression equations that have 10 predictor variables. This is not a routinely manageable

number even with modern high-speed computers. Furthermore, in many instances we will not

know how many possible variables we should place into our prediction equation. If we consider

all possible subsets of 30 variables, there are over 1 billion possible combinations for the

prediction. Thus once again, one cannot examine all subsets. There has been much theoretical

work on selecting the best subset according to some criteria; the algorithms allow one to find

the best subset without looking explicitly at all of the possible subsets. Still, for large numbers

of variables, we need another procedure to select the predictive subset.

A further complication arises when we have a very large number of observations; then we

may be able to show statistically that all of the potential predictor variables contribute additional

information to explain the variability in the dependent variable Y . However, the large majority of

the predictor variables may add so little to the explanation that we would prefer a much smaller

subset that explains almost as much of the variability and gives a much simpler model. In general,

simple models are desirable because they may be used more readily, and often when applied in

a different setting, turn out to be more accurate than a model with a large number of variables.

In summary, the task before us in this section is to consider a means of choosing a subset

of predictor variables from a pool of potential predictor variables.

11.6.2 Approaches to the Problem That Consider All Possible Subsets of Explanatory

Variables

We discuss two approaches and then apply both approaches to an example. The first approach

is based on the following idea: If we have the appropriate predictive variables in a multiple

regression equation, plus possibly some other variables that have no predictive power, then the

residual mean square for the model will estimate σ

2 the variability about the true regression line.
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On the other hand, if we do not contain enough predictive variables, the residual mean square

will contain additional variability due to the poor multiple regression fit and will tend to be too

large. We want to use this fact to allow us to get some idea of the number of variables needed in

the model. We do this in the following way. Suppose that we consider all possible predictions

for some fixed number, say p, of the total possible number of predictor variables. Suppose that

the correct predictive equation has a much smaller number of variables than p. Then when we

look at all of the different subsets of p predictor variables, most of them will contain the correct

variables for the predictive equation plus other variables that are not needed. In this case, the

mean square residual will be an estimate of σ

2. If we average all of the mean square residuals for

the equations with p variables, since most of them will contain the correct predictive variables,

we should get an estimate fairly close to σ

2. We examine the mean square residuals by plotting

the average mean square residuals for all the regression equations using p variables vs. p. As

p becomes large, this average value should tend to level off at the true residual variability. By

drawing a horizontal line at approximately the value where things average out, we can get some

idea of the residual variability. We would then search for a simple model that has approximately

this asymptotic estimate of σ

2. That is, we expect a picture such as Figure 11.1.

The second approach, due to C. L. Mallows, is called Mallow’s C

p

statistic. In this case,

let p equal the number of predictive variables in the model, plus one. This is a change from

the preceding paragraph, where p was the number of predictive variables. The switch to this

notation is made because in the literature for Mallow’s C

p

, this is the value used. The statistic

is as follows:

C

p

(model with p − 1 explanatory variables)

=

SSRESID(model)

MSRESID(using all possible predictors)
− (N − 2p)

where MSRESID (using all possible predictors) is the residual mean square when the dependent

variable Y is regressed on all possible independent predictors; SSRESID (model) is the residual

sum of squares for the possible model being considered (this model uses p − 1 explanatory

variables), N is the total number of observations, and p is the number of explanatory variables

in the model plus one.

To use Mallow’s C

p

, we compute the value of C

p

for each possible subset of explanatory

variables. The points (C
p

, p) are then plotted for each possible model. The following facts about

the C

p

statistics are true:

1. If the model fits, the expected value for each C

p

is approximately p.

2. If C

p

is larger than p, the difference, C

p

− p, gives approximately the amount of bias

in the sum of squares involved in the estimation. The bias occurs because the estimating
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Figure 11.1 Average residual mean square as a function of the number of predictive variables.
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predictive equation is not the true equation and thus estimates something other than the

correct Y value.

3. The value of C

p

itself gives an overall estimate of the sum of the squares of the average

difference between correct Y values and the Y values predicted from the model. This

difference is composed of two parts, one part due to bias because the estimating equation

is not correct (and cannot be correct if the wrong variables are included), and a second

part because of variability in the estimate. If the expected value of Y may be modeled by

a few variables, there is a cost to adding more variables to the estimation procedure. In

this case, statistical noise enters into the estimation of the additional variables, so that by

using the more complex estimated predictive equation, future predictions would be off by

more.

4. Thus what we would like to look for in our plot is a value C

p

that is close to the 45◦ line,

C

p

= p. Such a value would have a low bias. Further, we would like the value of C

p

itself to be small, so that the total error sum of squares is not large. The nicest possible

case occurs when we can more or less satisfy both demands at the same time.

5. If we have to choose between a C

p

value, which is close to p, or one that is smaller

but above p, we are choosing between an equation that has a small bias (when C

p

= p)

but in further prediction is likely to have a larger predictive error, and a second equation

(the smaller value for C

p

) which in the future prediction is more likely to be close to the

true value but where we think that the estimated predictive equation is probably biased.

Depending on the use of the model, the trade-off between these two ills may or may not

be clearcut.

Example 11.1. (continued ) In this example we return to the data of Cullen and van Belle

[1975]. We shall consider the response variable, DPMA, which is the disintegrations per minute

of lymphocytes after the surgery. The viability of the lymphocytes was measured in terms of

the uptake of nutrients that were labeled radioactively. A large number of disintegrations per

minute suggests a high cell division rate, and thus active lymphocytes. The potential predictive

variables for explaining the variability in DPMA are trauma factor (as discussed previously),

duration (as discussed previously), the disintegrations per minute before the surgery, labeled

DPMB, and the lymphocyte count in thousands per cubic millimeter before the surgery, lymphb,

as well as the lymphocyte count in thousands per cubic millimeter after the surgery, lympha.

Let these variables have the following labels: Y = DPMA; X1 = duration; X2 = trauma;

X3 = DPMB; X4 = lymphb; X5 = lympha.

Table 11.11 presents the results for the 32 possible regression runs using subsets of the five

predictor variables. For each run the value of p, C

p

, the residual mean square, the average

residual mean square for runs with the same number of variables, the multiple R

2, and the

adjusted R

2, R

2
a

, are presented. For a given number of variables, the entries are ordered in terms

of increasing values of C

p

. Note several things in Table 11.11. For a fixed number, p − 1, of

predictor variables, if we look at the values for C

p

, the residual mean square, R

2, and R

2
a

, we see

that as C

p

increases, the residual mean square increases while R

2 and R

2
a

decrease. This relation-

ship is a mathematical fact. Thus, if we know how many predictor variables, p, we want in our

equation, any of the following six criteria for the best subset of predictor variables are equivalent:

1. Pick the predictive equation with a minimum value of C

p

.

2. Pick the predictive equation with the minimum value of the residual mean square.

3. Pick the predictive equation with the maximum value of the multiple correlation coeffi-

cient, R

2.

4. Pick the predictive equation with the maximum value of the adjusted multiple correlation

coefficient, R

2
a

.

5. Pick the predictive equation with a maximum sum of squares due to regression.

6. Pick the predictive equation with the minimum sum of squares for the residual variability.
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Table 11.11 Results from the 32 Regression Runs on the Anesthesia Data of Cullen and van Belle

[1975]

Numbers of

Explanatory Variables Residual Residual Average

in Predictive Equation p C

p

Mean Square Mean Square R

2
R

2
a

None 1 60.75 4047 4047 0 0

3 2 5.98 1645 0.606 0.594

1 49.45 3578 0.142 0.116

2 57.12 3919 3476 0.060 0.032

4 60.48 4069 0.024 −0.005

5 62.70 4168 0.000+ −0.030

2,3 3 2.48 1444 0.664 0.643

1,3 2.82 1459 0.661 0.639

3,5 6.26 1617 0.624 0.600

3,4 6.91 1647 0.617 0.593

1,4 48.37 3549 2922 0.175 0.123

1,2 51.06 3672 0.146 0.093

1,5 51.43 3689 0.142 0.088

2,4 56.32 3914 0.090 0.033

2,5 59.10 4041 0.060 0.001

4,5 62.39 4192 0.024 −0.036

2,3,4 4 3.03 1422 0.680 0.648

1,3,4 3.32 1435 0.677 0.645

1,3,5 3.36 1438 0.676 0.645

2,3,5 3.52 1445 0.674 0.643

1,2,3 3.96 1466 2396 0.670 0.639

3,4,5 7.88 1651 0.628 0.592

1,2,4 50.03 3647 0.178 0.099

1,4,5 50.15 3653 0.177 0.097

1,2,5 52.98 3787 0.146 0.064

2,4,5 57.75 4013 0.096 0.008

1,2,3,4 5 4.44 1440 0.686 0.644

1,3,4,5 4.64 1450 0.684 0.642

2,3,4,5 4.69 1453 1913 0.683 0.641

1,2,3,5 4.83 1460 0.682 0.640

1,2,4,5 51.91 3763 0.180 0.070

1,2,3,4,5 6 6 1468 1468 0.691 0.637

The C

p

data are more easily assimilated if we plot them. Figure 11.2 is a C

p

plot for these

data. The line C

p

= p is drawn for reference. Recall that points near this line have little bias in

terms of the fit of the model; for points above this line we have biased estimates of the regression

equation. We see that there are a number of models that have little bias. All things being equal,

we prefer as small a C

p

value as possible, since this is an estimate of the amount of variability

between the true values and predicted values, which takes into account two components, the bias

in the estimate of the regression line as well as the residual variability due to estimation. For

this plot we are in the fortunate position of the lowest C

p

value showing no bias. In addition, a

minimal number of variables are involved. This point is circled, and going back to Table 11.11,

corresponds to a model with p = 3, that is, two predictor variables. They are variables 2 and

3, the trauma variable, and DPMB, the lymphocyte count in thousands per cubic millimeters

before the surgery. This is the model we would select using Mallow’s C

p

approach.

We now turn to the average residual mean square plot to see if that would help us to decide

how many variables to use. Figure 11.3 gives this plot. We can see that this plot does not level
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Figure 11.2 Mallow’s C

p

plot for the data of Cullen and van Belle [1975]. Only points with C

p

< 8 are

plotted.
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Figure 11.3 Average mean square plot for the Cullen and van Belle data [1975].
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out but decreases until we have five variables. Thus this plot does not help us to decide on

the number of variables we might consider in the final equation. If we look at Table 11.11,

we can see why this happens. Since the final model has two predictive variables, even with

three variables, many of the subsets, namely four, do not include the most predictive variable,

variable 3, and thus have very large mean squares. We have not considered enough variables in

the model above and beyond the final model for the curve to level out. With a relatively small

number of potential predictor variables, five in this model, the average residual mean square

plot is usually not useful.

Suppose that we have too many predictor variables to consider all combinations; or suppose

that we are worried about the problem of looking at the huge number of possible combinations

because we feel that the multiple comparisons may allow random variability to have too much

effect. In this case, how might we proceed? In the next section we discuss one approach to this

problem.

11.6.3 Stepwise Procedures

In this section we consider building a multiple regression model variable by variable.

Step 1

Suppose that we have a dependent variable Y and a set of potential predictor variables, X

i

,

and that we try to explain the variability in Y by choosing only one of the predictor variables.

Which would we want? It is natural to choose the variable that has the largest squared correlation

with the dependent variable Y . Because of the relationships among the sums of squares, this is

equivalent to the following step.

Step 2

1. Choose i to maximize r

2
Y,X

i

.

2. Choose i to maximize SSREG(X

i

).

3. Choose i to minimize SSRESID(X

i

).

By renumbering our variables if necessary, we can assume that the variable we picked was

X1. Now suppose that we want to add one more variable, say X

i

, to X1, to give us as much

predictive power as possible. Which variable shall we add? Again we would like to maximize

the correlation between Y and the predicted value of Y , ̂

Y ; equivalently, we would like to

maximize the multiple correlation coefficient squared. Because of the relationships among the

sums of squares, this is equivalent to any of the following at this next step.

Step 3

X1 is in the model; we now find X

i

(i �= 1).

1. Choose i to maximize R

2
Y(X1,Xi

)

.

2. Choose i to maximize r

2
Y,X

i

.X1
.

3. Choose i to maximize SSREG(X1, Xi

).

4. Choose i to maximize SSREG(X

i

|X1).

5. Choose i to minimize SSRESID(X1, X

i

).

Our stepwise regression proceeds in this manner. Suppose that j variables have entered.

By renumbering our variables if necessary, we can assume without loss of generality that the

variables that have entered the predictive equation are X1, . . . , X

j

. If we are to add one more
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variable to the predictive equation, which variable might we add? As before, we would like to

add the variable that makes the correlation between Y and the predictor variables as large as

possible. Again, because of the relationships between the sums of squares, this is equivalent to

any of the following:

Step j + 1

X1, . . . , X

j

are in the model; we want X

i

(i �= 1, . . . , j).

1. Choose i to maximize R

2
Y(X1,... ,Xj

,X

i

)

.

2. Choose i to maximize r

2
Y,X

i

·X1,... ,Xj

.

3. Choose i to maximize SSREG(X1, . . . , X

j

, X

i

).

4. Choose i to maximize SSREG(X

i

|X1, . . . , X

j

).

5. Choose i to minimize SSRESID(X1, . . . , X

j

, X

i

).

If we continue in this manner, eventually we will use all of the potential predictor variables.

Recall that our motivation was to select a simple model. Thus we would like a small model;

this means that we would like to stop at some step before we have included all of our potential

predictor variables. How long shall we go on including predictor variables in this model? There

are several mechanisms for stopping. We present the most widely used stopping rule. We would

not like to add a new variable if we cannot show statistically that it adds to the predictive power.

That is, if in the presence of the other variables already in the model, there is no statistically

significant relationship between the response variable and the next variable to be added, we

will stop adding new predictor variables. Thus, the most common method of stopping is to

test the significance of the partial correlation of the next variable and the response variable

Y after adjusting for the variables entered previously. We use the partial F -test as discussed

above. Commonly, the procedure is stopped when the p-value for the F level is greater than

some fixed level; often, the fixed level is taken to be 0.05. This is equivalent to testing the

statistical significance of the partial correlation coefficient. The partial F -statistic in the context

of regression analysis is also often called the F to enter, since the value of F , or equivalently

its p-value, is used as a criteria for entering the equation.

Since the F -statistic always has numerator degrees of freedom 1 and denominator degrees

of freedom n − j − 2, and n is usually much larger than j , the appropriate critical value is

effectively the F critical value with 1 and ∞ degrees of freedom. For this reason, rather than

using a p-value, often the entry criterion is to enter variables as long as the F -statistic itself is

greater than some fixed amount.

Summarizing, we stop when:

1. The p-value for r

2
Y,X

i

.X1,... ,Xj

is greater than a fixed level.

2. The partial F -statistic
SSREG(X

i

|X1, . . . , X

j

)

SSRESID(X1, . . . , X

j

, X

i

)/(n − j − 2)

is less than some specified value, or its p-value is greater than some fixed level.

All of this is summarized in Table 11.12; we illustrate by an example.

Example 11.3. (continued ) Consider the active female exercise data used above. We shall

perform a stepwise regression with VO2 MAX as the dependent variable and duration, maximum

heart rate, age, height, and weight as potential independent variables. Table 11.13 contains

a portion of the BMDP computer output for this run.
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Table 11.13 Stepwise Multiple Linear Regression for the Data of Example 11.3

STEP NO. 0

---------------

STD. ERROR OF EST. 4.9489

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE

RESIDUAL 1028.6670 42 24.49208

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 29.05349)

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

DUR 1 0.78601 1.00000 66.28 1

HR 3 0.33729 1.00000 5.26 1

AGE 4 −0.65099 1.00000 30.15 1

HT 5 −0.29942 1.00000 4.04 1

WT 6 −0.12618 1.00000 0.66 1

STEP NO. 1

--------------

VARIABLE ENTERED 1 DUR

MULTIPLE R 0.7860

MULTIPLE R-SQUARE 0.6178

ADJUSTED R-SQUARE 0.6085

STD. ERROR OF EST. 3.0966

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 635.51730 1 635.5173 66.28

RESIDUAL 393.15010 41 9.589027

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 3.15880)

DUR 1 0.05029 0.0062 0.786 1.00000 66.28 1

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

HR 3 −0.14731 0.72170 0.89 1

AGE 4 −0.24403 0.52510 2.53 1

HT 5 0.01597 0.86364 0.01 1

WT 6 −0.32457 0.99123 4.71 1

(continued overleaf )
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Table 11.13 (continued)

STEP NO. 2

--------------

VARIABLE ENTERED 6 WT

MULTIPLE R 0.8112

MULTIPLE R-SQUARE 0.6581

ADJUSTED R-SQUARE 0.6410

STD. ERROR OF EST. 2.9654

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 676.93490 2 338.4675 38.49

RESIDUAL 351.73250 40 8.793311

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 10.30026)

DUR 1 0.05150 0.0059 0.805 0.99123 75.12 1

WT 6 −0.12659 0.0583 −0.202 0.99123 4.71 1

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

HR 3 −0.08377 0.68819 0.28 1

AGE 4 −0.24750 0.52459 2.54 1

HT 5 0.20922 0.66111 1.79 1

The 0.05 F critical value with degrees of freedom 1 and 42 is approximately 4.07. Thus

at step 0, duration, maximum heart rate, and age are all statistically significantly related to the

dependent variable VO2 MAX.

We see this by examining the F -to-enter column in the output from step 0. This is the

F -statistic for the square of the correlation between the individual variable and the dependent

variable. In step 0 up on the left, we see the analysis of variance table with only the constant

coefficient. Under partial correlation we have the correlation between each variable and the

dependent variable. At the first step, the computer program scans the possible predictor variables

to see which has the highest absolute value of the correlation with the dependent variable. This

is equivalent to choosing the largest F -to-enter. We see that this variable is duration. In step 1,

duration has entered the predictive equation. Up on the left, we see the multiple R, which

in this case is simply the correlation between the VO2 MAX and duration variables, the value

for R

2, and the standard error of the estimate; this is the estimated standard deviation about

the regression line. This value squared is the mean square for the residual, or the estimate

for σ

2 if this is the correct model. Below this is the analysis of variance table, and below

this, the value of the regression coefficient, 0.050, for the duration variable. The standard

error of the regression coefficient is then given. The standardized regression coefficient is the

value of the regression coefficient if we had replaced duration by its standardized value.

The value F -to-remove in a stepwise regression is the statistical significance of the partial

correlation between the variable in the model and the dependent variable when adjusting for other

variables in the model. The left-hand side lists the variables not already in the equation. Again
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we have the partial correlations between the potential predictor variables and the dependent

variable after adjusting for the variables in the model, in this case one variable, duration.

Let us focus on the variable age at step 0 and at step 1. In step 0 there was a very highly

statistically significant relationship between VO2 MAX and age, the F -value being 30.15. After

duration enters the predictive equation, in step 1 we see that the statistical significance has

disappeared, with the F -to-enter decreasing to 2.53. This occurs because age is very closely

related to duration and is also highly related to VO2 MAX. The explanatory power of age may,

equivalently, be explained by the explanatory power of duration. We see that when a variable

does not enter a predictive model, this does not mean that the variable is not related to the

dependent variable but possibly that other variables in the model can account for its predictive

power. An equivalent way of viewing this is that the partial correlation has dropped from −0.65

to −0.24. There is another column labeled “tolerance”. The tolerance is 1 minus the square of

the multiple correlation between the particular variable being considered and all of the variables

already in the stepwise equation. Recall that if this correlation is large, it is very difficult to

estimate the regression coefficient [see equation (14)]. The tolerance is the term (1 − R

2
j

) in

equation (14). If the tolerance becomes too small, the numerical accuracy of the model is in

doubt.

In step 1, scanning the F -to-enter column, we see the variable weight, which is statistically

significantly related to VO2 MAX at the 5% level. This variable enters at step 2. After this

variable has entered, there are no statistically significant relationships left between the variables

not in the equation and the dependent variable after adjusting for the variables in the model.

The stepwise regression would stop at this point unless directed to do otherwise.

It is possible to modify the stepwise procedure so that rather than starting with 0 variables and

building up, we start with all potential predictive variables in the equation and work down. In

this case, at the first step we discard from the model the variable whose regression coefficient has

the largest p-value, or equivalently, the variable whose correlation with the dependent variable

after adjusting for the other variables in the model is as small as possible. At each step, this

process continues removing a variable as long as there are variables to remove from the model

that are not statistically significantly related to the response variable at some particular level.

The procedure of adding in variables that we have discussed in this chapter is called a step-up

stepwise procedure, while the opposite procedure of removing variables is called a step-down

stepwise procedure. Further, as the model keeps building, it may be that a variable entered earlier

in the stepwise procedure no longer is statistically significantly related to the dependent variable

in the presence of the other variables. For this reason, when performing a step-up regression,

most regression programs have the ability at each step to remove variables that are no longer

statistically significant. All of this aims at a simple model (in terms of the number of variables)

which explains as much of the variability as possible. The step-up and step-down procedures

do not look at as many alternatives as the C

p

plot procedure, and thus may not be as prone to

overfitting the data because of the many models considered. If we perform a step-up or step-

down fit for the anesthesia data discussed above, the resulting model is the same as the model

picked by the C

p

plot.

11.7 POLYNOMIAL REGRESSION

We motivate this section by an example. Consider the data of Bruce et al. [1973] for 44 active

males with a maximal exercise treadmill test. The oxygen consumption VO2 MAX was regressed

on, or explained by, the age of the participants. Figure 11.4 shows the residual plot.

Examination of the residual plot shows that the majority of the points on the left are positive

with a downward trend. The points on the right have generally higher values with an upward

trend. This suggests that possibly the simple linear regression model does not fit the data well.
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Figure 11.4 Residual plot of the regression of VO2 MAX on age, active males.

The fact that the residuals come down and then go up suggests that possibly rather than being

linear, the regression curve should be a second-order curve, such as

Y = a + b1X + b2X
2
+ e

Note that this equation looks like a multiple linear regression equation. We could write this

equation as a multiple regression equation,

Y = a + b1X1 + b2X2 + e

with X1 = X and X2 = X

2. This simple observation allows us to fit polynomial equations to data

by using multiple linear regression techniques. Observe what we are doing with multiple linear

regression: The equation must be linear in the unknown parameters, but we may insert known

functions of an explanatory variable. If we create the new variables X1 = X and X2 = X

2 and

run a multiple regression program, we find the following results:

t-statistic

Variable or Constant b
j

SE(b
j
) (t41,0.975

.
= 2.02)

Age −1.573 0.452 −3.484

Age2 0.011 0.005 2.344

Constant 89.797 11.023

We note that both terms age and age2 are statistically significant. Recall that the t-test for the

age2 term is equivalent to the partial correlation of the age squared, with VO2 MAX adjusting

for the effect of age. This is equivalent to considering the hypothesis of linear regression nested

within the hypothesis of quadratic regression. Thus, we reject the hypothesis of linear regression
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and could use this quadratic regression formula. A plot of the residuals using the quadratic

regression shows no particular trend and is not presented here. One might wonder, now that we

have a second-order term, whether perhaps a third-order term might help the situation. If we

run a multiple regression with three variables (X3 = X

3
), the following results obtain:

t-statistic

Variable or Constant b
j

SE(b
j
) (t40,0.975

.

= 2.02)

Age −0.0629 2.3971 −0.0264

Age2
−0.0203 0.0486 −0.4175

Age3 0.0002 0.0003 0.6417

Constant 1384.49 783.15

Since the age3 term, which tests the nested hypothesis of the quadratic equation within the

cubic equation, is nonsignificant, we may accept the quadratic equation as appropriate.

Figure 11.5 is a scatter diagram of the data as well as the linear and quadratic curves. Note

that the quadratic curve is higher at the younger ages and levels off more around 50 to 60.

Within the high range of the data, the quadratic or second-order curve increases. This may be

an artifact of the curve fitting because all physiological knowledge tells us that the capacity for

conditioning does not increase with age, although some subjects may improve their exercise

performance with extra training. Thus, the second-order curve would seem to indicate that in

a population of healthy active males, the decrease in VO2 MAX consumption is not as rapid at

the higher ages as at the lower ages. This is contrary to the impression that one would get from

a linear fit. One would not, however, want to use the quadratic curve to extrapolate beyond or

even to the far end of the data in this particular example.

We see that the real restrictions of multiple regression is not that the equation be linear in

the variables observed, but rather that it be linear in the unknown coefficients. The coefficients
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Figure 11.5 Active males with treadmill test: linear (solid line) and quadratic (dashed line) fits. (From

Bruce et al. [1973].)
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may be multiplied by known functions of the observed variables; this makes a variety of models

possible. For example, with two variables we could also consider as an alternative to a linear

fit (as given below) a second-order equation or polynomial in two variables:

Y = a + b1X1 + b2X2 + e

(linear in X1 and X2), and

Y = a + b1X1 + b2X2 + b3X
2
1 + b4X1X2 + b5X

2
2 + e

(a second-order polynomial in X1 and X2).

Other functions of variables may be used. For example, if we observe a response that we

believe is a periodic function of the variable X with a period of length L, we might try an

equation of the form

Y = a + b1 sin
πX

L

+ b2 cos
πX

L

+ b3 sin
2πX

L

+ b4 cos
2πX

L

+ e

The important point to remember is that not only can polynomials in variables be fit, but any

model may be fit where the response is a linear function of known functions of the variables

involved.

11.8 GOODNESS-OF-FIT CONSIDERATIONS

As in the one-dimensional case, we need to check the fit of the regression model. We need to

see that the form of the model roughly fits the data observed; if we are engaged in statistical

inference, we need to see that the error distribution looks approximately normal. As in simple

linear regression, one or two outliers can greatly skew the results; also, an inappropriate func-

tional form can give misleading conclusions. In doing multiple regression it is harder than in

simple linear regression to check the assumptions because there are more variables involved.

We do not have nice two-dimensional plots that display our data completely. In this section we

discuss some of the ways in which multiple regression models may be examined.

11.8.1 Residual Plots and Normal Probability Plots

In the multiple regression situation, a variety of plots may be useful. We discussed in Chapter 9

the residual plots of the predicted value for Y vs. the residual. Also useful is a normal probability

plot of the residuals. This is useful for detecting outliers and for examining the normality

assumption. Plots of the residual as a function of the independent or explanatory variables may

point out a need for quadratic terms or for some other functional form. It is useful to have such

plots even for potential predictor variables not entered into the predictive equation; they might

be omitted because they are related to the response variable in a nonlinear fashion. This might

be revealed by such residual plots.

Example 11.3. (continued ) We return to the healthy normal active females. Recall that the

VO2 MAX in a stepwise regression was predicted by duration and weight. Other variables

considered were maximum heart rate, age, and height. We now examine some of the residual

plots as well as normal probability plots. The left panel of Figure 11.6 is a plot of residuals vs.

fitted values. The residuals look fairly good except for the point circled on the right-hand margin,

which lies farther from the value of zero than the rest of the points. The right-hand panel gives

the square of the residuals. These values will have approximately a chi-square distribution with
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Figure 11.6 Residual plots.

one degree of freedom if normality holds. If the model is correct, there will not be a change

in the variance with increasing predicted values. There is no systematic change here. However,

once again the one value has a large deviation.

Figure 11.7 gives the normal probability plot for the residuals. In this output, the values

predicted are on the horizontal axis rather than on the vertical axis, as plotted previously. Again,

the residuals look quite nice except for the point on the far left; this point corresponds to the

circled value in Figure 11.6. This raises the possibility of rerunning the analysis omitting the

one outlier to see what effect it had on the analysis. We discuss this below after reviewing more

graphical data.

Figures 11.8 to 11.12 deal with the residual values as a function of the five potential predictor

variables. In each figure the left-hand panel presents the observed and predicted values for the

data points and the right-hand panel for the observed values of those data present the residual

values. In Figure 11.7, for duration, note that the values predicted are almost linear. This is

because most of the predictive power comes from the duration variable, so that the value

predicted is not far removed from a linear function of duration. The residual plot looks nice,

with the possible exception of the outlier. In Figure 11.8, with respect to weight, we have the

same sort of behavior as we do in the last three figures for age, maximal heart rate, and

height. In no case does there appear to be systematic unexplained variability than might be

explained by adding a quadratic term or other terms to the equation.

If we rerun these data removing the potential outlier, the results change as given below.

All Data Removing the Outlier Point

Variable or Constant b
j

t b
j

t

duration 0.0515 8.67 0.0544 10.17

weight −0.127 −2.17 −0.105 −2.02

Constant 10.300 7.704
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Figure 11.8 Duration vs. residual plots.
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Figure 11.9 Weight vs. residual plots.
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Figure 11.10 Age vs. residual plots.

We see a moderate change in the coefficient for weight; the change increases the importance

of duration. The t statistic for weight is now right on the precise edge of statistical significance

of the 0.05 level. Thus, although the original model did not mislead us, part of the contribution

from weight came from the data point that was removed. This brings up the issue of how

such data might be presented in a scientific paper or talk. One possibility would be to present

both results and discuss the issue. The removal of outlying values may allow one to get a
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Figure 11.11 Maximum heart rate vs. residual plots.
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Figure 11.12 Height vs. residual plots.

closer fit to the data, and in this case the residual variability decreased from an estimated σ

2

of 2.97 to 2.64. Still, if the outlier is not considered to be due to bad data, but rather is due

to an exceptional individual, in applying such relationships, other exceptional individuals may

be expected to appear. In such cases, interpretation necessarily becomes complex. This shows,

again, that although there is a nice precision to significance levels, in practice, interpretation of

the statistical analysis is an art as well as a science.
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11.8.2 Nesting in More Global Hypothesis

Since it is difficult to inspect multidimensional data visually, one possibility for testing the

model fit is to embed the model in a more global hypothesis; that is, nest the model used within

a more general model. One example of this would be adding quadratic terms and cross-product

terms as discussed in Section 11.7. The number of such possible terms goes up greatly as the

number of variables increases; this luxury is available only when there is a considerable amount

of data.

11.8.3 Splitting the Samples; Jackknife Procedures

An estimated equation will fit data better than the true population equation because the estimate

is designed to fit the data at hand. One way to get an estimate of the precision in a multi-

ple regression model is to split the sample size into halves at random. One can estimate the

parameters from one-half of the data and then predict the values for the remaining unused half

of the data. The evaluation of the fit can be performed using the other half of the data. This

gives an unbiased estimate of the appropriateness of the fit and the precision. There is, however,

the problem that one-half of the data is “wasted” by not being used for the estimation of the

parameters. This may be overcome by estimating the precision in this split-sampling manner

but then presenting final estimates based on the entire data set.

Another approach, which allows more precision in the estimate, is to delete subsets of the

data and to estimate the model on the remaining data; one then tests the fit on the smaller

subsets removed. If this is done systematically, for example by removing one data point at a

time, estimating the model using the remaining data and then examining the fit to the data point

omitted, the procedure is called a jackknife procedure (see Efron [1982]). Resampling from the

observed data, the bootstrap method may also be used [Efron and Tibshirani, 1986]. We will

not go further into such issues here.

11.9 ANALYSIS OF COVARIANCE

11.9.1 Need for the Analysis of Covariance

In Chapter 10 we considered the analysis of variance. Associated with categorical classification

variables, we had a continuous response. Let us consider the simplest case, where we have

a one-way analysis of variance consisting of two groups. Suppose that there is a continuous

variable X in the background: a covariate. For example, the distribution of the variable X may

differ between the groups, or the response may be very closely related to the value for the

variable X. Suppose further that the variable X may be considered a more fundamental cause of

the response pattern than the grouping variable. We illustrate some of the potential complications

by two figures.

On the left-hand side of Figure 11.13, suppose that we have data as shown. The solid circles

show the response values for group 1 and the crosses the response values for group 2. There

is clearly a difference in response between the two groups. Suppose that we think that it is not

the grouping variable that is responsible but the covariate X. On the right-hand side we see

a possible pattern that could lead to the response pattern given. In this case we see that the

observations from both groups 1 and 2 have the same response pattern when the value of X

is taken into account; that is, they both fall around one fixed regression line. In this case, the

difference observed between the groups may alternatively be explained because they differ in

the covariate value X. Thus in certain situations, in the analysis of variance one would like to

adjust for potential differing values of a covariate. Another way of stating the same thing is: In

certain analysis of variance situations there is a need to remove potential bias, due to the fact

that categories differ in their values of a covariate X. (See also Section 11.5.)
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Figure 11.13 One-way analysis of variance with two categories: group difference because of bias due to

different distribution on the covariate X.

δ

Figure 11.14 Two groups with close distribution on the covariate X. By using the relationship of the

response to X separately in each group, a group difference obscured by the variation in X is revealed.

Figure 11.14 shows a pattern of observations on the left for groups 1 and 2. There is no

difference between the response in the groups given the variability of the observations. Consider

the same points, however, where we consider the relationship to a covariate X as plotted on the

right. The right-hand figure shows that the two groups have parallel regression lines that differ by

an amount delta. Thus for a fixed value of the covariate X, on the average, the observations from

the two groups differ. In this plot, there is clearly a statistically significant difference between
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the two groups because their regression lines will clearly have different intercepts. Although the

two groups have approximately the same distribution of the covariate values, if we consider the

covariate we are able to improve the precision of the comparison between the two groups. On

the left, most of the variability is not due to intrinsic variability within the groups, but rather

is due to the variability in the covariate X. On the right, when the covariate X is taken into

account, we can see that there is a difference. Thus a second reason for considering covariates

in the analysis of variance is: Consideration of a covariate may improve the precision of the

comparison of the categories in the analysis of variance.

In this section we consider methods that allow one or more covariates to be taken into

account when performing an analysis of variance. Because we take into account those variables

that vary with the variables of interest, the models and the technique are called the analysis of

covariance.

11.9.2 Analysis of Covariance Model

In this section we consider the one-way analysis of covariance. This is a sufficient introduction

to the subject so that more general analysis of variance models with covariates can then be

approached.

In the one-way analysis of covariance, we observe a continuous response for each of a fixed

number of categories. Suppose that the analysis of variance model is

Y

ij

= µ + α

i

+ ε

ij

where i = 1, . . . , I indexes the I categories; α

i

, the category effect, satisfies
∑

i

α

i

= 0; and

j = 1, . . . , n

i

indexes the observations in the ith category. The ε

ij

are independent N(0, σ

2
)

random variables.

Suppose now that we wish to take into account the effect of the continuous covariate X. As

in Figures 11.13 and 11.14, we suppose that the response is linearly related to X, where the

slope of the regression line, γ , is the same for each of the categories (see Figure 11.15). That

is, our analysis of covariance model is

Y

ij

= µ + α

i

+ γX

ij

+ ε

ij

(20)

with the assumptions as before.

Although we do not pursue the matter, the analogous analysis of covariance model for the

two-way analysis of variance without interaction may be given by

Y

ijk

= µ + α

i

+ β

j

+ γX

ijk

+ ε

ijk

Analysis of covariance models easily generalize to include more than one covariate. For example,

if there are p covariates to adjust for, the appropriate equation is

Y

ij

= µ + α

i

+ γ1Xij

(1) + γ2Xij

(2) + · · · + γ

p

X

ij

(p) + ε

ij

where X

ij

(k) is the value for the kth covariate when the observation comes from the ith category

and the j th observation in that category. Further, if the response is not linear, one may model a

different form of the response. For example, the following equation models a quadratic response

to the covariate X

ij

:

Y

ij

= µ + α

i

+ γ1Xij

+ γ2X
2
ij

+ ǫ

ij

In each case in the analysis of covariance, the assumption is that the response to the covariates

is the same within each of the strata or cells for the analysis of covariance.
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Figure 11.15 Parallel regression curves are assumed in the analysis of covariance.

It is possible to perform both the analysis of variance and the analysis of covariance by using

the methods of multiple linear regression analysis, as given earlier in this chapter. The trick to

thinking of an analysis of variance problem as a multiple regression problem is to use dummy

or indicator variables, which allow us to consider the unknown parameters in the analysis of

variance to be parameters in a multiple regression model.

Definition 11.11. A dummy, or indicator variable for a category or condition is a variable

taking the value 1 if the observation comes from the category or satisfies the condition; otherwise,

taking the value zero.

We illustrate this definition with two examples. A dummy variable for the male gender is

X =

{

1, if the subject is male

0, otherwise

A series of dummy variables for blood types (A, B, AB, O) are

X1 =

{

1, if the blood type is A

0, otherwise

X2 =

{

1, if the blood type is B

0, otherwise

X3 =

{

1, if the blood type is AB

0, otherwise

X4 =

{

1, if the blood type is O

0, otherwise

By using dummy variables, analysis of variance models may be turned into multiple regression

models. We illustrate this by an example.
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Consider a one-way analysis of variance with three groups. Suppose that we have two

observations in each of the first two groups and three observations in the third group. Our

model is
Y

ij

= µ + α

i

+ ε

ij

(21)

where i denotes the group and j the observation within the group. Our data are Y11, Y12, Y21,

Y22, Y31, Y32, and Y33. Let X1, X2, and X3 be indicator variables for the three categories.

X1 =

{

1, if the observation is in group 1

0, otherwise

X2 =

{

1, if the observation is in group 2

0, otherwise

X3 =

{

1, if the observation is in group 3

0, otherwise

Then equation (21) becomes (omitting subscript on Y and e)

Y = µ + α1X1 + α2X2 + α3X3 + ε (22)

Note that X1, X2, and X3 are related. If X1 = 0 and X2 = 0, then X3 must be 1. Hence there

are only two independent dummy variables. In general, for k groups there are k −1 independent

dummy variables. This is another illustration of the fact that the k treatment effects in the one-

way analysis of variance have k−1 degrees of freedom. Our data, renumbering the Y

ij

to be Y

k

,

k = 1, . . . , 7, are given in Table 11.14. For technical reasons, we do not estimate equation (22).

Since
∑

i

X

i

= 1, R

2
X1(X2,X3)

= 1

Recall that we cannot estimate regression coefficients well if the multiple correlation is near 1.

Instead, an equivalent model

Y = δ + γ1X1 + γ2X2 + ǫ

is used. Here δ = µ + α3, γ1 = α1 − α3, and γ2 = α2 − α3. That is, all effects are compared

relative to group 3. We may now use a multiple regression program to perform the one-way

analysis of variance.

To move to an analysis of covariance, we use Y = δ+γ1X1 +γ2X2 +βX+ǫ, where X is the

covariate. If there is no group effect, we have the same expected value (for fixed X) regardless

of the group; that is, γ1 = γ2 = 0.

Table 11.14 Data Using

Dummy Variables

Y

k

Y

ij

X1 X2 X3

Y1 Y11 1 0 0

Y2 Y12 1 0 0

Y3 Y21 0 1 0

Y4 Y22 0 1 0

Y5 Y31 0 0 1

Y6 Y32 0 0 1

Y7 Y33 0 0 1
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More generally, for I groups the model is

Y = δ + γ1X1 + · · · + γ

I−1XI−1 + βX + ǫ

The null hypothesis is H0:γ1 = γ2 = · · · = γ

I−1 = 0. This is tested using nested hypotheses.

Let SSREG(X) be the regression sum of squares for the model Y = δ + βX + e. Let

SSREG(γ |X) = SSREG(X1, . . . , X

I−1, X) − SSREG(X)

and

SSRESID(γ, X) = SSTOTAL − SSREG(X1, . . . , X

I−1, X)

The analysis of covariance table is:

Source d.f. SS MS F -Ratio

Regression on X 1 SSREG(X) MSREG(X)

MSREG(X)

MSRESID

Groups adjusted for X I − 1 SSREG(γ |X) MSREG(γ |X)

MSREG(γ |X)

MSRESID

Residual n − I − 1 SSRESID(γ |X) MSRESID

Total n − 1 SSTOTAL

The F -test for the equality of group means has I − 1 and n − I − 1 degrees of freedom. If

there is a statistically significant group effect, there is an interest in the separation of the parallel

regression lines. The regression lines are:

Group Line

1 ̂

δ + γ̂1 + ̂

βX

2 ̂

δ + γ̂2 + ̂

βX

.

.

.

.

.

.

I − 1 ̂

δ + γ̂

I−1 + ̂

βX

I

̂

δ + ̂

βX

where the “hat” denotes the usual least squares multiple regression estimate. Customarily, these

values are calculated for X equal to the average X value over all the observations. These

values are called adjusted means for the group. This is in contrast to the mean observed for the

observations in each group. Note again that group I is the reference group. It may sometimes

be useful to rearrange the groups to have a specific group be the reference group. For example,

suppose that there are three treatment groups and one reference group. Then the effects γ1, γ2,

and γ3 are, naturally, the treatment effects relative to the reference group.

We illustrate these ideas with two examples. In each example there are two groups (I = 2)

and one covariate for adjustment.

Example 11.1. (continued ) The data of Cullen and van Belle [1975] are considered again.

In this case a larger set of data is used. One group received general anesthesia (n1 = 35)

and another group regional anesthesia (n2 = 42). The dependent variable, Y , is the percent
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Figure 11.16 Relationship of postoperative depression of lymphocyte transformation to the level of

trauma. Each point represents the response of one patient.

depression of lymphocyte transformation following surgery. The covariate, X, is the degree of

trauma of the surgical procedure.

Figure 11.16 shows the data with the estimated analysis of covariance regression lines. The

top line is the regression line for the general anesthesia group (which had a higher average

trauma, 2.4 vs. 1.4). The analysis of covariance table is:

Source d.f. SS MS F -Ratio

Regression on trauma 1 4,621.52 4,621.52 7.65

General vs. regional anesthesia

adjusted for trauma

1 1,249.78 1,249.78 2.06

Residual 74 44,788.09 605.24

Total 76 56,201.52

Note that trauma is significantly related to the percent depression of lymphocyte transforma-

tion, F = 7.65 > F1,74,0.95. In testing the adjusted group difference,

F = 2.06 < 3.97 = F1,74,0.95

so there is not a statistically significant difference between regional and general anesthesia after

adjusting for trauma.
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The two regression lines are

Y1 = 25.6000 + 8.4784(X − 2.3714)

Y2 = 6.7381 + 8.4784(X − 1.2619)

At the average value of X = 1.7552, the predicted or adjusted means are

̂

Y1 = 25.6000 + (−5.1311) = 20.47

̂

Y2 = 6.7381 + (4.2757) = 11.01

The original difference is Y 1· −Y 2· = 25.6000 − 6.7381 = 18.86. The adjusted (nonsignificant)

difference is ̂

Y1 − ̂

Y2 = 20.47 − 11.01 = 9.46, a considerable drop. In fact the unadjusted one-

way analysis of variance, or equivalently unpaired t-test, is significant: p < 0.01. The observed

difference may be due to bias in the differing amount of surgical trauma in the two groups.

Example 11.8. Do men and women use the same level of oxygen when their maximal

exercise limit is the same? The Bruce et al. [1973] maximal exercise data are used. The limit

of exercise is expressed by the duration on the treadmill. Thus we wish to know if there is a

VO2 MAX difference between genders when adjusting for the duration of exercise. The analysis

of covariance table is:

Source d.f. SS MS F -Ratio

Duration 1 6049.51 6049.51 504.97

Gender, adjusting for duration 1 229.83 229.83 19.18

Residual 84 1006.05 11.98

Total 86 7285.39

The gender difference is highly statistically significant after adjusting for the treadmill dura-

tion. The estimated regression lines are:

Females: VO2 MAX = −1.59 + 0.0595 × duration

Males: VO2 XMAX = 2.27 + 0.0595 × duration

The overall duration mean is 581.89. The means are:

VO2 MAX Means

Observed Adjusted

Female 29.05 33.03

Male 40.80 36.89

The fact that at maximum exercise normal males use more oxygen per unit of body weight

is not accounted for entirely by their average longer duration on the treadmill (647 s vs. 515 s).

Even when adjusting for duration, more oxygen per kilogram per minute is used.

Model assumptions may be tested by residual plots and normal probability plots as above.

One assumption was that the regression lines were parallel. This may be tested by using the

model (in the one-way anova)

Y = δ + γ1X1 + · · · + γ

I−1XI−1 + βX + β1X · X1 + · · · + β

I

X · X

I

+ ǫ
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If an observation is in group i(i = 1, . . . , I − 1), this reduces to

Y = δ + γ

i

+ β

i

X + ǫ

Nested within this model is the special case β1 = β2 = · · · = β

I

.

Source d.f. SS MS F -Ratio

Model with

γ1, . . . , γ

I−1, β

I SSREG

(γ1, . . . , γ

I−1)

MSREG(γ

′s)

Model with

γ1, . . . , γ

I−1,

β, β1, . . . , β

I

;

extra ss

I − 1 SSREG

(β1, . . . , β

I

|γ1,

. . . , γ

I−1, β)

MSREG(β

′

i

s|γ ′

i

s, β)

MSREG(β

′

i

s|γ ′

i

s, β)

MSRESID(γ

′

i

s, β ′

i

s)

Residual n − 2I SSRESID(γ1, . . . ,

γ

I−1, β1, . . . , β

I

)

MSRESID(γ

′

i

s, β ′

i

s)

Total n − 1 SSTOTAL

For the exercise test example, we have:

Source d.f. SS MS F -Ratio

Model with group, equal slopes, and

duration

2 6279.34 3139.67

Model with unequal slopes (minus SS

for nested equal-slope model)

1 29.40 29.40 2.50

Residual 83 976.65 11.77

Total 86 7285.39

As F = 2.50 < F1,83,0.95, the hypothesis of equal slopes (parallelism) is reasonable and the

analysis of covariance was appropriate. This use of a nested hypothesis is an example of the

method of Section 11.8.2 for testing the goodness of fit of a model.

11.10 ADDITIONAL REFERENCES AND DIRECTIONS FOR FURTHER STUDY

11.10.1 There Are Now Many References on Multiple Regression Methods

Draper and Smith [1981] present extensive coverage of the topics of this chapter, plus much

more material and a large number of examples with solutions. The text is on a more advanced

mathematical level, making use of matrix algebra. Kleinbaum and Kupper [1998] present mate-

rial on a level close to that of this chapter; taking more pages for the topics of this chapter,

they have a more leisurely presentation. The text is an excellent supplementary reference to the

material of this chapter. Another useful text is Daniel and Wood [1999].

11.10.2 Time-Series Data

It would appear that the multiple regression methods of this chapter would apply when one of

the explanatory variables is time. This may be true in certain limited cases, but it is not usually

true. Analyzing data with time as an independent variable is called time-series analysis. Often,

in time, the errors are dependent at different time points. Box, Jenkins, and Reinsel [1994] are

one source for time-series methods.
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11.10.3 Causal Models: Structural Models and Path Analysis

In many studies, especially observational studies of human populations, one might conjecture

that certain variables contribute in a causal fashion to the value of another variable. For example,

age and gender might be hypothesized to contribute to hospital bed use, but not vice versa. In

a statistical analysis, bed use would be modeled as a linear function of age and gender plus

other unexplained variability. If only these three variables were considered, we would have a

multiple regression situation. Bed use with other variables might be considered an explanatory

variable for number of nursing days used. Structural models consist of a series of multiple

regression equations; the equations are selected to model conjectured causal pathways. The

models do not prove causality but can examine whether the data are consistent with certain

causal pathways.

Three books addressing structural models (from most elementary to more complex) are Li

[1975], Kaplan [2000], and Goldberger and Duncan [1973]. Issues of causality are addressed in

Blalock [1985], Cook et al. [2001], and Pearl [2000].

11.10.4 Multivariate Multiple Regression Models

In this chapter we have analyzed the response of one dependent variable as explained by a

linear relationship with multiple independent or predictor variables. In many circumstances

there are multiple (more than one) dependent variables whose behavior we want to explain in

terms of the independent variables. When the models are linear, the topic is called multivariate

multiple regression. The mathematical complexity increases, but in essence each dependent

variable is modeled by a separate linear equation. Morrison [1976] and Timm [1975] present

such models.

11.10.5 Nonlinear Regression Models

In certain fields it is not possible to express the response of the dependent variable as a linear

function of the independent variables. For example, in pharmacokinetics and compartmental

analysis, equations such as

Y = β1e
β2x

+ β3e
β4x

+ e

and

Y =

β1

x − β2
+ e

may arise where the β

i

’s are unknown coefficients and the e is an error (unexplained variability)

term. See van Belle et al. [1989] for an example of the latter equation. Further examples of

nonlinear regression equations are given in Chapters 13 and 16.

There are computer programs for estimating the unknown parameters.

1. The estimation proceeds by trying to get better and better approximations to the “best”

(maximum likelihood) estimates. Sometimes the programs do not come up with an esti-

mate; that is, they do not converge.

2. Estimation is much more expensive (in computer time) than it is in the linear models

program.

3. The interpretation of the models may be more difficult.

4. It is more difficult to check the fit of many of the models visually.
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NOTES

11.1 Least Squares Fit of the Multiple Regression Model

We use the sum of squares notation of Chapter 9. The regression coefficients b

j

are solutions

to the k equations

[x2
1 ]b1 + [x1x2]b2 + · · · + [x1xk

]b
k

= [x1y]

[x1x2]b1 + [x2
2 ]b2 + · · · + [x2xk

]b
k

= [x2y]

.

.

.

[x1xk

]b1 + [x2xk

]b2 + · · · + [x2
k

]b
k

= [x
k

y]

For readers familiar with matrix notation, we give a Y vector and covariate matrix.

Y =







Y1

.

.

.

Y

n






, X =











X11 · · · X1k

X21 · · · X2k

.

.

.

.

.

.

.

.

.

X

n1 · · · X

nk











The b

j

are given by






b1

.

.

.

b

k






= (X′X)

−1X′Y

where the prime denotes the matrix transpose and −1 denotes the matrix inverse. Once the b

j

’s

are known, a is given by

a = Y − (b1X1 + · · · + b

k

X

k

)

11.2 Multivariate Normal Distribution

The density function for multivariate normal distribution is given for those who know matrix

algebra. Consider jointly distributed variables

Z =







Z1

.

.

.

Z

p







written as a vector. Let the mean vector and covariance matrix be given by

µ =







E(Z1)

.

.

.

E(Z

p

)






, � =







var(Z1) cov(Z1, Z2) · · · cov(Z1, Zp

)

.

.

.

.

.

.

cov(Z

p

, Z1) · · · · · · var(Z
p

)







The density is

f (z1, . . . , z

p

) = (2π)

−p/2
|�|

−1/2 exp[−(Z − µ)

′

−1
∑

(Z − µ)/2]

where |�| is the determinant of � and −1 denotes the matrix inverse. See Graybill [2000] for

much more information about the multivariate normal distribution.
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Table 11.15 anova Table Incorporating Pure Error

Source d.f. SS MS F -Ratio

Regression p SSREG MSREG
MSREG

MSRESID

Residual n − p − 1 SSRESID MSRESID

∗Model ∗d.f.MODEL SSMODEL MSMODEL
MSMODEL

MSPURE ERROR
∗Pure error ∗d.f.PURE ERROR SSPURE ERROR MSPURE ERROR

Total n − 1 SSTOTAL

11.3 Pure Error

We have seen that it is difficult to test goodness of fit without knowing at least one large model

that fits the data. This allows estimation of the residual variability. There is a situation where one

can get an accurate estimate of the residual variability without any knowledge of an appropriate

model. Suppose that for some fixed value of the X

i

’s, there are repeated measurements of Y .

These Y variables will be multiple independent observations with the same mean and variance.

By subtracting the sample mean for the point in question, we can estimate the variance. More

generally, if more than one X

i

combination has multiple observations, we can pool the sum of

squares (as in one-way anova) to estimate the residual variability.

We now show how to partition the sum of squares. Suppose that there are K combinations of

the covariates X

i

for which we observe two or more Y values. Let Y

ik

denote the ith observation

(i = 1, 2, . . . , n

k

) at the kth covariate values. Let Y

k

be the mean of the Y

ik

:

Y

k

=

n

k

∑

i=1

Y

ik

n

k

We define the pure error sum of squares and model of squares as follows:

SSPURE ERROR =

K

∑

k=1

n

k

∑

i=1

(Y

ik

− Y

k

)

2

SSMODEL FIT = SSRESID − SSPURE ERROR

Also,

MSPURE ERROR =

SSPURE ERROR

d.f.PURE ERROR

MSMODEL FIT =

SSMODEL

d.f.MODEL

where

d.f.PURE ERROR =

K

∑

k=1

n

k

− K

d.f.MODEL = n + K −

K

∑

k=1

n

k

− p − 1

n is the total number of observations, and p is the number of covariates in the multiple regression

model. The analysis of variance table becomes that shown in Table 11.15. The terms with an
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asterisk further partition the residual sum of squares. The F -statistic MSMODEL/MSPURE ERROR

with d.f.MODEL and d.f.PURE ERROR degrees of freedom tests the model fit. If the model is not

rejected as unsuitable, the usual F -statistic tests whether or not the model has predictive power

(i.e., whether all the β

i

= 0).

PROBLEMS

Problems 11.1 to 11.7 deal with the fitting of one multiple regression equation. Perform each

of the following tasks as indicated. Note that various parts are from different sections of the

chapter. For example, tasks (e) and (f) are discussed in Section 11.8.

(a) Find the t-value for testing the statistical significance of each of the regres-

sion coefficients. Do we reject β

j

= 0 at the 5% significance level? At the 1%

significance level?

(b) i. Construct a 95% confidence interval for each β

j

.

ii. Construct a 99% confidence interval for each β

j

.

(c) Fill in the missing values in the analysis of variance table. Is the regression

significant at the 5% significance level? At the 1% significance level?

(d) Fill in the missing values in the partial table of observed, predicted, and residual

values.

(e) Plot the residual plot of Y vs. Y − ̂

Y . Interpret your plot.

(f) Plot the normal probability plot of the residual values. Do the residuals seem

reasonably normal?

11.1 The 94 sedentary males with treadmill tests of Problems 9.9 to 9.12 are considered

here. The dependent and independent variables were Y = VO2 MAX, X1 = duration,

X2 = maximum heart rate, X3 = height, X4 = weight.

Constant or Covariate b
j

SE(b
j
)

X1 0.0510 0.00416

X2 0.0191 0.0258

X3 −0.0320 0.0444

X4 0.0089 0.0520

Constant 2.89 11.17

Source d.f. SS MS F -Ratio

Regression ? 4314.69 ? ?

Residual ? ? ?

Total ? 5245.31

Do tasks (a), (b-i), and (c). What is R

2?

11.2 The data of Mehta et al. [1981] used in Problems 9.13 to 9.22 are used here. The aorta

platelet aggregation percent under dipyridamole, using epinephrine, was regressed on

the control values in the aorta and coronary sinus. The results were:
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Constant or Covariate b
j

SE(b
j
)

Aorta control −0.0306 0.301

Coronary sinus control 0.768 0.195

Constant 15.90

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? 231.21 ?

Total ? 1787.88

Y ̂Y Residual Y ̂Y Residual

89 81.58 7.42 69 ? ?

45 ? ? 83 88.15 −5.15

96 86.68 ? 84 88.03 −4.03

70 ? 2.34 85 88.92 −3.92

Do tasks (a), (b-ii), (c), (d), (e), and (f) [with small numbers of points, the interpretation

in (e) and (f) is problematic].

11.3 This problem uses the 20 aortic valve surgery cases of Chapter 9; see the introduction

to Problems 9.30 to 9.33. The response variable is the end diastolic volume adjusted

for body size, EDVI. The two predictive variables are the EDVI before surgery and the

systolic volume index, SVI, before surgery; Y = EDVI postoperatively, X1 = EDVI

preoperatively, and X2 = SVI preoperatively. See the following tables and Table 11.16.

Do tasks (a), (b-i), (c), (d), (f). Find R

2.

Constant or Covariate b
j

SE(b
j
)

X1 0.889 0.155

X2 −1.266 0.337

Constant 65.087

Source d.f. SS MS F -Ratio

Regression ? 21,631.66 ? ?

Residual ? ? ?

Total ? 32,513.75

Problems 11.4 to 11.7 refer to data of Hossack et al. [1980, 1981]. Ten normal men and

11 normal women were studied during a maximal exercise treadmill test. While being

exercised they had a catheter (tube) inserted into the pulmonary (lung) artery and a short

tube into the left radial or brachial artery. This allowed sampling and observation of
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Table 11.16 Data for Problem 11.3

Y ̂Y Residual Y ̂Y Residual

111 112.8 0.92 70 84.75 −14.75

56 ? ? 149 165.13 −16.13

93 ? −39.99 55 ? ?

160 148.78 11.22 91 88.89 2.11

111 ? 5.76 118 103.56 −11.56

83 86.00 ? 63 ? ?

59 ? 4.64 100 86.14 13.86

68 93.87 ? 198 154.74 43.26

119 62.27 56.73 176 166.39 9.61

71 86.72 ?

arterial pressures and the oxygen content of the blood. From this, several parameters as

described below were measured or calculated. The data for the 11 women are given in

Table 11.17; the data for the 10 normal men are displayed in Table 11.18. Descriptions

of the variables follow.

• Activity: a subject who routinely exercises three or more times per week until per-

spiring was active (Act); otherwise, the subject was sedentary (Sed).

• Wt : weight in kilograms.

• Ht : height in centimeters.

• VO2MAX: oxygen (in millimeters per kilogram of body weight) used in 1 min at

maximum exercise.

• FAI : functional aerobic impairment. For a patient’s age and activity level (active

or sedentary) the expected treadmill duration (ED) is estimated from a regression

equation. The excess of observed duration (OD) to expected duration (ED) as a

percentage of ED is the FAI. FAI = 100 × (OD − ED)/ED.

•
Q̇

MAX

: output of the heart in liters of blood per minute at maximum.

•
HR

MAX

: heart rate in beats per minute at maximum exercise.

•
SV

MAX

: volume of blood pumped out of the heart in milliliters during each stroke

(at maximum cardial output).

•
CaO2 : oxygen content of the arterial system in milliliters of oxygen per liter of

blood.

•
CvO2 : oxygen content of the venous (vein) system in milliliters of oxygen per liter

of blood.

•
avO2 D

MAX

: difference in the oxygen content (in milliliters of oxygen per liter of

blood) between the arterial system and the venous system (at maximum exercise);

thus, avO2DMAX = CaO2 − CvO2.

•
P SA, MAX: average pressure in the arterial system at the end of exercise in milliliters

of mercury (mmHg).

•
P PA, MAX: average pressure in the pulmonary artery at the end of exercise in mmHg.
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Table 11.18 Physical and Hemodynamic Variables in 10 Normal Men

Age

Case (yr) Wt Ht VO2 MAX FAI Q̇MAX HRMAX SVMAX PSA,MAX PPA,MAX

1 64 73.6 170 30.3 −4 13.4 156 85 114 24

2 61 90.9 191 27.1 12 17.8 156 115 104 30

3 38 76.8 180 44.4 5 19.4 190 102 100 24

4 62 92.7 185 24.6 18 15.8 173 91 78 33

5 59 92.0 183 41.2 −18 21.1 167 127 133 36

6 47 83.2 185 48.9 −20 22.4 173 132 160 22

7 24 69.8 178 62.1 −2 24.9 188 133 127 25

8 26 78.6 191 50.9 5 20.1 169 119 115 15

9 54 95.9 183 33.2 9 19.2 154 125 108 31

10 20 83.0 176 32.5 34 15.0 196 77 120 18

Mean 46 83.7 182 39.2 4 18.9 169 114 117 26

SD 17 8.9 7 12.0 16 3.5 21 25 22 7

11.4 For the 10 men, let Y = VO2 MAX, X1 = weight, X2 = HRMAX, and X3 = SVMAX.

(In practice, one would not use three regression variables with only 10 data points.

This is done here so that the small data set may be presented in its entirety.)

Constant or Covariate b
j

SE(b
j
)

Weight −0.699 0.128

HRMAX 0.289 0.078

SVMAX 0.448 0.0511

Constant −1.454

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? 55.97 ?

Total ? 1305.08

Y ̂Y Residual Y ̂Y Residual

30.3 30.38 −0.08 48.9 ? −0.75

27.1 ? −4.64 62.1 63.80 −1.70

44.4 45.60 −1.20 50.9 45.88 ?

24.6 24.65 ? 33.2 32.15 1.05

41.2 39.53 1.67 32.5 ? ?

Do tasks (a), (c), (d), (e), and (f).

11.5 After examining the normal probability plot of residuals, the regression of Problem 11.4

was rerun omitting cases 2 and 8. In this case we find:
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Constant or Covariate b
j

SE(b
j
)

Weight −0.615 0.039

HRMAX 0.274 0.024

SVMAX 0.436 0.015

Constant −4.486

Source d.f. SS MS F -Ratio

Regression ? 1017.98 ? ?

Residual ? ? ?

Total ? 1021.18

Y ̂Y Residual Y ̂Y Residual

30.3 ? ? 48.9 49.35 ?

44.4 ? −0.45 62.1 ? ?

24.6 25.62 ? 33.2 33.28 −0.08

41.2 ? 1.09 32.5 31.77 0.73

Do tasks (a), (b-i), (c), (d), and (f). Comment : The very small residual (high R

2)

indicates that the data are very likely highly “over fit.” Compute R

2.

11.6 Selection of the regression variables of Problems 11.4 and 11.5 was based on Mallow’s

C

p

plot. With so few cases, the multiple comparison problem looms large. As an

independent verification, we try the result on the data of the 11 normal women. We find:

Constant or Covariate b
j

SE(b
j
)

Weight −0.417 0.201

HRMAX 0.441 0.098

SVMAX 0.363 0.160

Constant −51.96

Source d.f. SS MS F -Ratio

Regression ? 419.96 ? ?

Residual ? 117.13 ?

Total ? ?

Y ̂Y Residual Y ̂Y Residual

28.81 ? −1.75 23.72 23.89 −0.15

24.04 ? −1.72 28.72 31.14 −2.42

26.66 27.99 ? 20.77 16.30 4.46

24.34 29.63 ? 24.77 23.60 1.17

21.42 ? ? 47.72 40.77 6.95

26.72 ? ?

Do tasks (a), (b-i), (c), (d), (e), and (f). Do (e) or (f) look suspicious? Why?
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11.7 Do another run with the data of Problem 11.6 omitting the last point.

Constant or Covariate b
j

SE(b
j
)

Weight −0.149 0.074

HRMAX 0.233 0.042

SVMAX 0.193 0.056

Constant −20.52

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? ? ?

Total ? ?

Note the large change in the b

j

’s when omitting the outlier.

Y ̂Y Residual Y ̂Y Residual

28.81 27.54 1.27 26.72 ? −0.11

24.04 24.59 −0.55 23.72 ? 0.57

26.66 ? ? 28.72 28.08 ?

24.34 26.70 −2.36 20.77 20.23 ?

21.42 ? ? 24.77 23.96 0.81

Do tasks (a), (c), and (d). Find R

2. Do you think the female findings roughly support

the results for the males?

11.8 Consider the regression of Y on X1, X2, . . . , X6. Which of the following five hypothe-

ses are nested within other hypotheses?

H1: β1 = β2 = β3 = β4 = β5 = β6 = 0

H2: β1 = β5 = 0

H3: β1 = β5

H4: β2 = β5 = β6 = 0

H5: β5 = 0

11.9 Consider a hypothesis H1 nested within H2. Let R

2
1 be the multiple correlation coeffi-

cient for H1 and R

2
2 the multiple correlation coefficient for H2. Suppose that there are

n observations and H2 regresses on Y and X1, . . . , X

k

, while H1 regresses Y only on

the first j X

i

’s (j < k). Show that the F statistic for testing β

j+1 = · · · = β

k

= 0 may

be written as

F =

(R

2
2 − R

2
1)/(k − j)

(1 − R

2
2)/(n − k − 1)
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Table 11.19 Simple Correlation Coefficients between Nine Variables for Black Men, United States,

1960–1962a

Variable 1 2 3 4 5 6 7 8 9

1. Height —

2. Weight 0.34 —

3. Right triceps skinfold −0.04 0.61 —

4. Infrascapular skinfold −0.05 0.72 0.72 —

5. Arm girth 0.10 0.89 0.60 0.70 —

6. Glucose −0.20 −0.05 0.09 0.10 −0.03 —

7. Cholesterol −0.08 0.15 0.17 0.20 0.17 0.12 —

8. Age −0.23 −0.09 −0.05 0.02 −0.10 0.37 0.34 —

9. Systolic blood pressure −0.18 0.11 0.07 0.12 0.12 0.29 0.20 0.47 —

10. Diastolic blood pressure −0.09 0.17 0.08 0.16 0.18 0.20 0.17 0.33 0.79

aNumber of observations for samples: N = 358 and N = 349. Figures underlined were derived from persons in the sample
for whom glucose and cholesterol measurements were available.

Florey and Acheson [1969] studied blood pressure as it relates to physique, blood

glucose, and serum cholesterol separately for males and females, blacks and whites.

Table 11.19 presents sample correlation coefficients for black males on the following

variables:

• Height: in inches

• Weight: in pounds

• Right triceps skinfold: in thickness in centimeters of skin folds on the back of the

right arm, measured with standard calipers

• Infrascapular skinfold: skinfold thickness on the back below the tip of the right

scapula

• Arm girth: circumference of the loose biceps

• Glucose: taken 1 hour after a challenge of 50 g of glucose in 250 cm3 of water

• Total serum cholesterol concentration

• Age: in years

• Systolic blood pressure (mmHg)

• Diastolic blood pressure (mmHg)

An additional variable considered was the ponderal index, defined to be the height

divided by the cube root of the weight. Note that the samples sizes varied because of

a few uncollected blood specimens. For Problem 11.10, use N = 349.

11.10 Using the Florey and Acheson [1969] data above, the correlation squared of systolic

blood pressure, variable 9, with the age and physical variables (variables 1, 2, 3, 4,

5, and 8) is 0.266. If we add variables 6 and 7, the blood glucose and cholesterol

variables, R

2 increases to 0.281. Using the result of Problem 11.9, is this a statistically

significant difference?

11.11 Suppose that the following description of a series of multiple regression runs was pre-

sented. Find any incorrect or inconsistent statements (if they occur). Forty-five people
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were given a battery of psychological tests. The dependent variable of self-image was

analyzed by multiple regression analysis with five predictor variables: 1, tension index;

2, perception of success in life; 3, IQ; 4, aggression index; and 5, a hypochondriacal

index. The multiple correlation with variables 1, 4, and 5 was −0.329, p < 0.001.

When variables 2 and 3 were added to the predictive equation, R

2
= 0.18, p > 0.05.

The relationship of self-image to the variables was complex; the correlation with vari-

ables 2 and 3 was low (0.03 and −0.09, respectively), but the multiple correlation of

self-image with variables 2 and 3 was higher than expected, R

2
= 0.22, p < 0.01.

11.12 Using the definition of R

2 (Definition 11.4) and the multiple regression F test in Section

11.2.3, show that

R

2
=

kF

kF + n − k − 1

and

F =

(n − k − 1)R

2

k(1 − R

2
)

Haynes et al. [1978] consider the relationship of psychological factors and coronary

heart disease. As part of a long ongoing study of coronary heart disease, the Framingham

study, from 1965 to 1967, questionnaires were given to 1822 individuals. Of particular

interest was type A behavior. Roughly speaking, type A individuals feel considerable

time pressure, are very driving and aggressive, and feel a need for perfection. Such

behavior has been linked with coronary artery disease. The questions used in this study

follow. The scales (indicated by the superscript numbers) are explained following the

questions.

Psychosocial Scale and Items Used in the Framingham Study

Note: The superscript numbers in this list refer to the response sets that follow item 17.

1. Framingham type A behavior pattern:

Traits and qualities which describe you:1

Being hard-driving and competitive

Usually pressed for time

Being bossy and dominating

Having a strong need to excel in most things

Eating too quickly

Feeling at the end of an average day of work:

Often felt very pressed for time

Work stayed with you so you were thinking about it after hours

Work often stretched you to the very limits of your energy and capacity

Often felt uncertain, uncomfortable, or dissatisfied with how you were doing

Do you get upset when you have to wait for anything?

2. Emotional lability:

Traits and qualities which describe you:1

Having feelings easily hurt

Getting angry very easily
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Getting easily excited

Getting easily sad or depressed

Worrying about things more than necessary

Do you cry easily?

Are you easily embarrassed?

Are your feeling easily hurt?

Are you generally a high-strung person?

Are you usually self-conscious?

Are you easily upset?

Do you feel sometimes that you are about to go to pieces?

Are you generally calm and not easily upset?

3. Ambitiousness:

Traits and qualities which describe you:1

Being very socially ambitious

Being financially ambitious

Having a strong need to excel in most things

4. Noneasygoing:

Traits and qualities which describe you:1

Having a sense of humor

Being easygoing

Having ability to enjoy life

5. Nonsupport from boss:

Boss (the person directly above you):2

Is a person you can trust completely

Is cooperative

Is a person you can rely upon to carry his or her load

Is a person who appreciates you

Is a person who interferes with you or makes it difficult for you to get your

work done

Is a person who generally lets you know how you stand

Is a person who takes a personal interest in you

6. Marital dissatisfaction:

Everything considered, how happy would you say that your marriage has been?3

Everything considered, how happy would you say that your spouse has found

your marriage to be?3

About marriage, are you more satisfied, as satisfied, or less satisfied than most

of your close friends are with their marriages?4

7. Marital disagreement:

How often do you and your spouse disagree about:5

Handling family finances or money matters

How to spend leisure time

Religious matters

Amount of time that should be spent together
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Gambling

Sexual relations

Dealings with in-laws

On bringing up children

Where to live

Way of making a living

Household chores

Drinking

8. Work overload:

Regular line of work fairly often involves:2

Working overtime

Meeting deadlines or rigid time schedules

9. Aging worries:

Worry about:6

Growing old

Retirement

Sickness

Death

Loneliness

10. Personal worries:

Worry about:6

Sexual problems

Change of life

Money matters

Family problems

Not being a success

11. Tensions:

Often troubled by feelings of tenseness, tightness, restlessness, or inability to

relax?5

Often bothered by nervousness or shaking?

Often have trouble sleeping or falling asleep?

Feel under a great deal of tension?

Have trouble relaxing?

Often have periods of restlessness so that you cannot sit for long?

Often felt difficulties were piling up too much for you to handle?

12. Reader’s daily stress:

At the end of the day I am completely exhausted mentally and physically1

There is a great amount of nervous strain connected with my daily activities

My daily activities are extremely trying and stressful

In general I am usually tense and nervous

13. Anxiety symptoms:

Often become tired easily or feel continuously fatigued?2

Often have giddiness or dizziness or a feeling of unsteadiness?
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Often have palpitations, or a pounding or racing heart?

Often bothered by breathlessness, sighing respiration or difficulty in getting a

deep breath?

Often have poor concentration or vagueness in thinking?

14. Anger symptoms:

When really angry or annoyed:7

Get tense or worried

Get a headache

Feel weak

Feel depressed

Get nervous or shaky

15. Anger-in:

When really angry or annoyed:7

Try to act as though nothing much happened

Keep it to yourself

Apologize even though you are right

16. Anger-out:

When really angry or annoyed:7

Take it out on others

Blame someone else

17. Anger-discuss:

When really angry or annoyed:7

Get it off your chest

Talk to a friend or relative

Response Sets

1. Very well, fairly well, somewhat, not at all

2. Yes, no

3. Very happy, happy, average, unhappy, very unhappy

4. More satisfied, as satisfied, less satisfied

5. Often, once in a while, never

6. A great deal, somewhat, a little, not at all

7. Very likely, somewhat likely, not too likely

The correlations between the indices are reported in Table 11.20.

11.13 We use the Haynes et al. [1978] data of Table 11.20. The multiple correlation squared

of the Framingham type A variable with all 16 of the other variables is 0.424. Note

the high correlations for variables 2, 3, 14, 15, and 17.

R

2
1(2,3,14,15,17)

= 0.352
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(a) Is there a statistically significant (p < 0.05) gain in R

2 by adding the remainder

of the variables?

(b) Find the partial correlation of variables 1 and 2 after adjusting for variable 15.

That is, what is the correlation of the Framingham type A index and emotional

lability if adjustment is made for the amount of tension?

Stoudt et al. [1970] report on the relationship between certain body size mea-

surements and anthropometric indices. As one would expect, there is considerable

correlation among such measurements. The details of the measurements are reported in

the reference above. The correlation for women are given in Table 11.21.

11.14 This problem deals with partial correlations.

(a) For the Stoudt et al. [1970] data, the multiple correlation of seat breadth with

height and weight is 0.64826. Find

rseat breadth, height.weight and rseat breadth, weight.height

(b) The Florey and Acheson [1969] data show that the partial multiple correlation

between systolic blood pressure and the two predictor variables glucose and

cholesterol adjusting for the weight and measurement variables is

R

2
9(6,7).1,2,3,4,5,8 = 0.207, R = 0.144

What are the numerator and denominator degrees of freedom for testing statistical

significance? What is (approximately) the 0.05 (0.01) critical value? Find F in

terms of R

2. Do we reject the null hypothesis of no correlation at the 5% (1%)

level?

11.15 Suppose that you want to regress Y on X1, X2, . . . , X8. There are 73 observations.

Suppose that you are given the following sums of squares:

SSTOTAL, SSREG(X1), SSREG(X4), SSREG(X1, X5),

SSREG(X3, X6), SSREG(X7, X8), SSREG(X1, X5, X6),

SSREG(X1, X3, X6), SSREG(X4, X7, X8), SSREG(X3, X5, X6, X8),

SSREG(X3, X4, X7, X8), SSREG(X3, X5, X6, X7, X8)

For each of the following: (1) state that the quantity cannot be estimated, or (2) show

(a) how to compute the quantity in terms of the sums of squares, and (b) give the

F -statistic in terms of the sums of squares, and give the degrees of freedom.

(a) r

2
Y,X3

(b) R

2
Y(X1,X5,X6)

(c) R

2
Y(X1,X5,X6).X3

(d) R

2
Y(X3,X4,X7,X8)

(e) r

2
Y,X6.X1,X5

(f) R

2
Y(X5,X6).X3,X4

(g) R

2
Y(X3,X4).X7,X8

(h) R

2
Y(X3,X5,X6).X7,X8
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11.16 Suppose that in the Framingham study [Haynes et al., 1978] we want to examine the

relationship between type A behavior and anger (as given by the four anger variables).

We would like to be sure that the relationship does not occur because of joint relation-

ships with the other variables; that is, we want to adjust for all the variables other than

type A (variable 1) and the anger variables 11, 12, 13, and 17.

(a) What quantity would you use to look at this?

(b) If the value (squared) is 0.019, what is the value of the F -statistic to test for

significance? The degrees of freedom?

11.17 Suppose that using the Framingham data, we decide to examine emotional lability. We

want to see how it is related to four areas characterized by variables as follows:

Work : variables 5 and 6

Worry and anxiety : variables 9, 10, and 16

Anger : variables 11, 12, 13, and 17

Stress and tension : variables 14 and 15

(a) To get a rough idea of how much relationship one might expect, we calculate

R

2
2(5,6,9,10,16,11,12,13,17,14,15)

= 0.49

(b) To see which group or groups of variables may be contributing the most to this

relationship, we find

R

2
2(5,6)

= 0.01 work

R

2
2(9,10,16)

= 0.26 worry/anxiety

R

2
2(11,12,13,17)

= 0.38 anger

R

2
2(14,15)

= 0.39 stress/tension

(c) As the two most promising set of variables were the anger and the stress/tension,

we compute

R

2
2(11,12,13,14,15,17)

= 0.48

(i) Might we find a better relationship (larger R

2) by working with indices such

as the average score on variables 11, 12, 13, and 17 for the anger index? Why

or why not?

(ii) After using the anger and stress/tension variables, is there statistical signif-

icance left in the relationship of lability and work and work/anxiety? What

quantity would estimate this relationship? (In Chapter 14 we show some other

ways to analyze these data.)

11.18 The Jensen et al. [1980] data of 19 subjects were used in Problems 9.23 to 9.29. Here

we consider the data before training. The exercise VO2, MAX is to be regressed upon

three variables.

Y = VO2, MAX

X1 = maximal ejection fraction

X2 = maximal heart rate

X3 = maximal systolic blood pressure
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The residual mean square with all three variables in the model is 73.40. The residual

sums of squares are:

SSRESID(X1, X2) = 1101.58

SSRESID(X1, X3) = 1839.80

SSRESID(X2, X3) = 1124.78

SSRESID(X1) = 1966.32

SSRESID(X2) = 1125.98

SSRESID(X3) = 1885.98

(a) For each model, compute C

p

.

(b) Plot C

p

vs. p and select the best model.

(c) Compute and plot the average mean square residual vs. p.

11.19 The 20 aortic valve cases of Problem 11.3 give the data about the values of C

p

and

the residual mean square as shown in Table 11.22.

Table 11.22 Mallow’s Cp for Subset of Data from Example 11.3

Numbers of the Numbers of the

Explanatory Residual Mean Explanatory Residual Mean

Variables p C

p

Square Variables p C

p

Square

None 1 14.28 886.99 2,4,5 4 2.29 468.36

1,4,5 2.41 472.20

4 2 3.87 578.92 3,4,5 2.69 481.50

5 11.60 804.16 1,3,4 6.91 619.81

3 13.63 863.16 1,2,4 6.91 619.90

2 14.14 877.97 2,3,4 7.80 648.81

1 16.00 932.21 2,3,5 14.14 856.68

1,3,5 14.40 866.45

4,5 3 0.72 454.10 1,2,5 14.45 866.75

1,4 4.94 584.23 1,2,3 15.21 891.72

2,4 5.82 611.35

3,4 5.87 612.75 1,2,4,5 5 4.05 491.14

1,5 12.76 825.45 2,3,4,5 4.16 494.92

3,5 12.96 831.53 1,3,4,5 4.41 503.66

2,5 13.17 838.17 1,2,3,4 8.90 660.65

2,3 13.23 839.87 1,2,3,5 15.83 903.14

1,3 15.60 912.88

1,2 15.96 924.03 1,2,3,4,5 6 6 524.37

(a) Plot Mallow’s C

p

plot and select the “best” model.

(b) Plot the average residual mean square vs. p. Is it useful in this context? Why or

why not?

11.20 The blood pressure, physique, glucose, and serum cholesterol work of Florey and Ache-

son [1969] was mentioned above. The authors first tried using a variety of regression

analyses. It was known that the relationship between age and blood pressure is often

curvilinear, so an age2 term was used as a potential predictor variable. After exploratory
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analyses, stepwise regression of blood pressure (systolic or diastolic) upon five vari-

ables (age, age2, ponderal index, glucose, and cholesterol) was run. The four regressions

(black and white, female and male) for systolic blood pressure are given in Tables 11.23

to 11.26. The “standard error of the estimate” is the estimate of σ

2 at each stage.

(a) For the black men, give the values of the partial F -statistics and the degrees of

freedom as each variable entered the equation.

(b) Are the F values in part (a) significant at the 5% significance level?

(c) For a fixed ponderal index of 32 and a glucose level of 125 mg%, plot the

regression curve for systolic blood pressure for white women aged 20 to 70.

(d) Can you determine the partial correlation of systolic blood pressure and glucose

adjusting for age in black women from these data? If so, give the value.

*(e) Consider all the multiple regression R

2 values of systolic blood pressure with

subsets of the five variables used. For white males and these data, give all possible

Table 11.23 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of White Men, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.439 0.193 0.193 0.0104 17.9551

2 Ponderal index 0.488 0.238 0.045 −6.1775 17.4471

3 Glucose 0.499 0.249 0.011 0.0500 17.3221

4 Cholesterol 0.503 0.253 0.004 0.0351 17.2859

5 Age 0.507 0.257 0.004 −0.5136 17.2386

aDependent variable, systolic blood pressure. Constant term = 194.997; N = 2599.

Table 11.24 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of Black Men, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.474 0.225 0.225 0.6685 21.9399

2 Ponderal index 0.509 0.259 0.034 −6.4515 21.4769

3 Glucose 0.523 0.273 0.014 0.0734 21.3048

aDependent variable = systolic blood pressure. Constant term = 180.252; N = 349.

Table 11.25 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of White Women, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.623 0.388 0.388 0.00821 18.9317

2 Ponderal index 0.667 0.445 0.057 −7.3925 18.0352

3 Glucose 0.676 0.457 0.012 0.0650 17.8445

aDependent variable = systolic blood pressure. Constant term = 193.260; N = 2931.
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Table 11.26 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of Black Women, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.590 0.348 0.348 0.9318 24.9930

2 Ponderal index 0.634 0.401 0.053 0.1388 23.9851

3 Glucose 0.656 0.430 0.029 −6.0723 23.4223

aDependent variable = systolic blood pressure. Constant term = 153.149; N = 443.

inequalities that are not of the obvious form

R

2
Y(X

i1
,... ,X

i

m

)

≤ R

2
Y(X

j1
,... ,X

j

n

)

where X

i1
, . . . , X

i

m

is a subset of X

j1
, . . . , X

j

n

.

11.21 From a correlation matrix it is possible to compute the order in which variables enter

a stepwise multiple regression. The partial correlations, F statistics, and regression

coefficients for the standardized variables (except for the constant) may be computed.

The first 18 women’s body dimension variables (as given in Stoudt et al. [1970] and

mentioned above) were used. The dependent variable was weight, which we are trying

to predict in terms of the 17 measured dimension variables. Because of the large sample

size, it is “easy” to find statistical significance. In such cases the procedure is sometimes

terminated while statistically significant predictor variables remain. In this case, the

addition of predictor variables was stopped when R

2 would increase by less than 0.01

for the next variable. The variable numbers, the partial correlation with the dependent

variable (conditioning upon variables in the predictive equation) for the variables not

in the model, and the corresponding F -value for step 0 are given in Table 11.27, those

for step 1 in Table 11.28, those for step 5 in Table 11.29, and those for the final step

in Table 11.30.

(a) Fill in the question marks in Tables 11.27 and 11.28.

(b) Fill in the question marks in Table 11.29.

(c) Fill in the question marks in Table 11.30.

(d) Which variables entered the predictive equation?

*(e) What can you say about the proportion of the variability in weight explained by

the measurements?

Table 11.27 Values for Step 0a

var PCORR F -Ratioa var PCORR F -Ratioa

1 0.1970 144.506 10 0.8050 6589.336

2 ? 100.165 11 0.4430 873.872

3 0.3230 ? 12 0.8820 12537.104

4 −0.0350 4.390 13 0.8440 8862.599

5 0.2530 244.755 14 0.8880 13346.507

6 0.6930 3306.990 15 0.6410 2496.173

7 0.6200 ? 16 0.7290 4059.312

8 0.4900 1130.830 17 0.1890 132.581

9 ? 8862.599

aThe F -statistics have 1 and 3579 d.f.
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Table 11.28 Values for Step 1a

var PCORR F -Ratioa var PCORR F -Ratioa

1 0.3284 432.622 9 0.4052 ?

2 0.2933 ? 10 0.4655 989.824

3 0.4568 943.565 11 0.3435 478.797

4 0.3554 517.351 12 0.5394 1467.962

5 0.1246 56.419 13 0.4778 1058.297

6 ? 501.893 15 −0.0521 9.746

7 0.5367 1447.655 16 ? 74.882

8 0.4065 708.359 17 0.4614 967.603

aThe F -statistics have 1 and 3578 d.f.

Table 11.29 Values for Step 5a

var PCORR F -Ratioa var PCORR F -Ratioa

1 ? 323.056 8 0.0051 0.093

2 0.2285 196.834 9 0.0083 0.252

3 0.1623 96.676 11 0.1253 ?

4 0.1157 48.503 15 −0.1298 61.260

5 ? 183.520 16 −0.0149 ?

6 0.2382 214.989 17 0.3131 388.536

aThe F -statistics have 1 and ? d.f.

Table 11.30 Values for the Final Stepa

var PCORR F -Ratioa var PCORR F -Ratioa

1 ? 5.600 8 −0.0178 1.143

2 −0.0289 2.994 9 0.0217 1.685

3 −0.0085 0.263 11 0.0043 0.067

4 −0.0172 1.062 15 −0.1607 94.635

5 0.0559 ? 16 −0.0034 0.042

aThe F -statistics have 1 and 3572 d.f.

(f) What can you say about the p-value of the next variable that would have entered

the stepwise equation? (Note that this small p has less than 0.01 gain in R

2 if

entered into the predictive equation.)

11.22 Data from Hossack et al. [1980, 1981] for men and women (Problems 11.4 to 11.7)

were combined. The maximal cardiac output, QDOT, was regressed on the maximal

oxygen uptake, VO2 MAX. From other work, the possibility of a curvilinear relationship

was entertained. Polynomials of the zeroth, first, second, and third degree (or highest

power of X ) were considered. Portions of the BMDP output are presented below, with

appropriate questions (see Figures 11.17 to 11.19).

(a) Goodness-of-fit test : For the polynomial of each degree, a test is made for addi-

tional information in the orthogonal polynomials of higher degree, with data as

shown in Table 11.31. The numerator sum of squares for each of these tests is

the sum of squares attributed to all orthogonal polynomials of higher degree,
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Figure 11.17 Polynomial regression of QDOT on VO2 MAX. Figure for Problem 11.22.
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Figure 11.18 Figure for Problem 11.22.

and the denominator sum of squares is the residual sum of squares from the fit to

the highest-degree polynomial (fit to all orthogonal polynomials). A significant F -

statistic thus indicates that a higher-degree polynomial should be considered. What

degree polynomial appears most appropriate? Why do the degrees of freedom in

Table 11.31 add up to more than the total number of observations (21)?
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Figure 11.19 Figure for Problem 11.22.

Table 11.31 Goodness of Fit for Figure 11.22

Tail

Degree SS d.f. MS F -Ratio Probability

0 278.50622 4 69.62656 12.04 0.00

1 12.23208 3 4.07736 0.70 0.56

2 10.58430 2 5.29215 0.91 0.42

3 5.22112 1 5.22112 0.90 0.36

Residual 92.55383 16 5.78461

(b) For a linear equation, the coefficients, observed and predicted values, residual

plot, and normal residual are:

Regression Standard

Degree Coefficient Error t-Value

0 4.88737 1.58881 3.08

1 0.31670 0.04558 6.95

What would you conclude from the normal probability plot? Is the most outlying

point a male or female? Which subject number in its table?

(c) For those with access to a polynomial regression program: Rerun the problem,

removing the outlying point.

11.23 As in Problem 11.22, this problem deals with a potential polynomial regression equation.

Weight and height were collected from a sample of the U.S. population in surveys done in
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Table 11.34 Coefficients and t-values for

Problem 11.23

Regression Standard

Degree Coefficient Error t-Value

0 61.04225 0.60868 100.29

1 0.04408 0.00355 12.40

0 50.89825 3.85106 13.22

1 0.16548 0.04565 3.62

2 −0.00036 0.00013 −2.67

0 34.30283 25.84667 1.33

1 0.46766 0.46760 1.00

2 −0.00216 0.00278 −0.78

3 0.00000 0.00001 0.65

1960–1962 [Roberts, 1966] and in 1971–1974 [Abraham et al., 1979]. The data for

males 25 to 34 years of age are given in Tables 11.32 and 11.33. In this problem we

use only the 1960–1962 data. Both data sets are used in Problem 11.36. The weight cat-

egories were coded as values 124.5, 134.5, . . . , 204.5, 214.5 and the height categories

as 62, 63, . . . , 72, 73. The contingency table was replaced by 675 “observations.” As

before, we present some of the results from a BMDP computer output. The height was

regressed upon weight.

(a) Goodness-of-Fit Test: For the polynomial of each degree, a test is made for addi-

tional information in the orthogonal polynomials of higher degree. The numerator

sum of squares attributed to all orthogonal polynomials of higher degree and the

denominator sum of squares is the residual sum of squares from the fit to the

highest-degree polynomial (fit to all polynomials). A significant F -statistic thus

indicates that a higher-degree polynomial should be considered.

Tail

Degree SS d.f. MS F -Ratio Probability

0 900.86747 3 300.28916 54.23 0.00

1 41.69944 2 20.84972 3.77 0.02

2 2.33486 1 2.33486 0.42 0.52

Residual 3715.83771 671 5.53776

Which degree polynomial appears most satisfactory?

(b) Coefficients with corresponding t-statistics are given in Table 11.34 for the first-,

second-, and third-degree polynomials. Does this confirm the results of part (a)?

How can the second-order term be significant for the second-degree polynomial,

but neither the second or third power has a statistically significant coefficient

when a third-order polynomial is used?

(c) The normal probability plot of residuals for the second-degree polynomials is

shown in Figure 11.20. What does the tail behavior indicate (as compared to

normal tails)? Think about how we obtained those data and how they were gener-

ated. Can you explain this phenomenon? This may account for the findings. The

original data would be needed to evaluate the extent of this problem.
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Figure 11.20 Normal probability plot of residuals of degree 2. Figure for Problem 11.23.

Table 11.35 Data for Problems 11.24 to 11.29

Indices of Variables Indices of Variables

in the Multiple Regression Sum in the Multiple Regression Sum

Regression Equation of Squares SSREG Regression Equation of Squares SSREG

(SSTOTAL) (SSTOTAL = 32513.75) (SSTOTAL) (SSTOTAL = 32513.75)

1 671.04 1,5 2,397.10

2 926.11 2,3 2,547.67

3 1,366.28 2,4 12,619.61

4 12,619.27 2,5 1,145.53

5 658.21 3,4 13,090.47

1,2 1,607.06 3,5 2,066.16

1,3 1,620.17 4,5 21,631.66

1,4 14,973.55

Most multiple regression analyses (other than examining fit and model assumptions)

use sums of squares rather than the original data. Problems 11.24 to 11.29 illustrate this

point. The problems and the data in Table 11.35 are based on the 20 aortic valve surgery

cases of Chapter 9 (see the introduction to Problems 9.30 to 9.33); Problem 11.3 uses

these data. We consider the regression sums of squares for all possible subsets of

five predictor variables. Here Y = EDVI postoperative, X1 = age in years, X2 =

heart rate, X3 = systolic blood pressure, X4 = EDVI preoperative, X5 = SVI

preoperative.

11.24 From the regression sums of squares, compute and plot C

p

-values for the smallest

C

p

-value for each p (i.e., for the largest SSREG). Plot these values. Which model

appears best?

11.25 From the regression sums of squares, perform a step-up stepwise regression. Use the

0.05 significance level to stop adding variables. Which variables are in the final model?
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*11.26 From the regression sums of squares, perform a stepdown stepwise regression. Use the

0.10 significance level to stop removing variables. What is your final model?

11.27 Compute the following multiple correlation coefficients:

R

Y(X4,X5)
, R

Y(X1,X2,X3,X4,X5)
, R

Y(X1,X2,X3)

Which are statistically significant at the 0.05 significance level?

11.28 Compute the following squared partial correlation coefficients and test their statistical

significance at the 1% level.

r

2
Y,X4·X1,X2,X3,X5

, r

2
Y,X5·X1,X2,X3,X4

11.29 Compute the following partial multiple correlation coefficients and test their statistical

significance at the 5% significance level.

R

Y(X4,X5)·X1,X2,X3
, R

Y(X1,X2,X3,X4)·X5

Data on the 94 sedentary males of Problems 9.9 to 9.12 are used here. The dependent

variable was age. The idea is to find an equation that predicted age; this equation

might give an approximation to an “exercise age.” Subjects might be encouraged, or

convinced, to exercise if they heard a statement such as “Mr. Jones, although you are

28, your exercise performance is that of a 43-year-old sedentary man.” The potential

predictor variables with the regression sum of squares is given below for all combina-

tions.

Y = age in years, X1 = duration in seconds

X2 = VO2 MAX, X3 = heart rate in beats/minute

X4 = height in centimeters, X5 = weight in kilograms

SSTOTAL = 11, 395.74

Problems 11.30 to 11.35 are based on the data listed in Table 11.36.

11.30 Compute and plot for each p, the smallest C

p

-value. Which predictive model would

you choose?

11.31 At the 10% significance level, perform stepwise regression (do not compute the regres-

sion coefficients) selecting variables. Which variables are in the final model? How does

this compare to the answer to Problem 11.30?

*11.32 At the 0.01 significance level, select variables using a step-down regression equation

(no coefficients computed).

11.33 What are the values of the following correlation and multiple coefficients? Are they

significantly nonzero at the 5% significance level?

R

Y(X1,X2)
, R

Y(X3,X4,X5)
,

R

YX1
, R

YX2
, R

Y(X4,X5)
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Table 11.36 Data for Problems 11.30 to 11.35

Indexes of Variables Indexes of Variables

in Multiple Regression Sum in Multiple Regression Sum

Regression Equation of Squares SSREG Regression Equation of Squares SSREG

1 5382.81 1,2,4 5658.66

2 4900.82 1,2,5 5777.12

3 4527.51 1,3,4 6097.58

4 295.26 1,3,5 6151.91

5 54.80 1,4,5 5723.50

1,2 5454.48 2,3,4 5851.44

1,3 5953.18 2,3,5 5923.41

1,4 5597.08 2,4,5 5243.27

1,5 5685.88 3,4,5 4630.28

2,3 5731.40 1,2,3,4 6128.27

2,4 5089.15 1,2,3,5 6201.39

2,5 5221.73 1,2,4,5 5805.06

3,4 4628.83 1,3,4,5 6179.52

3,5 4568.73 2,3,4,5 5940.03

4,5 299.81 1,2,3,4,5 6223.12

1,2,3 5988.09

11.34 Compute the following squares of partial correlation coefficients. Are they statistically

significant at the 0.10 level?

r

2
Y,X1·X2

, r

2
Y,X2·X1

, r

2
Y,X3X1·X2

Describe these quantities in words.

11.35 Compute the following partial multiple correlation coefficients. Are they significant at

the 5% level?

R

Y(X1,X2,X3)X4·X5
, R

Y(X1,X3)·X2
,

R

Y(X2,X3)·X1
, R

Y(X1,X2)·X3

Problems 11.36 and 11.38 are analysis of covariance problems. They use BMDP com-

puter output, which is addressed in more detail in the first problem. This problem should

be done before Problem 11.38.

11.36 This problem uses the height and weight data of 25 to 34-year-old men as measured in

1960–1962 and 1971–1974 samples of the U.S. populations. These data are described

and presented in Problem 11.23.

(a) The groups are defined by a year variable taking on the value 1 for the 1960

survey and the value 2 for the 1971 survey. Means for the data are:

Estimates of Means

1960 1971 Total

Height 1 68.5081 68.9353 68.7403

Weight 2 169.3890 171.4030 170.4838
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Which survey had the heaviest men? The tallest men? There are at least two

possible explanations for weight gain: (1) the weight is increasing due to more

overweight and/or building of body muscle; (2) the taller population naturally

weighs more.

(b) To distinguish between two hypotheses, an analysis of covariance adjusting for

height is performed. The analysis produced the following output, where the depen-

dent variable is weight.

Covariate Regression Coefficient Standard Error t-Value

Height 4.22646 0.22742 18.58450

Group Adjusted Standard

Group N Mean Group Mean Error

1960 675 169.38904 170.37045 0.89258

1971 804 171.40295 170.57901 0.91761

The anova table is as follows:

Tail Area

Source d.f. SS MS F -Ratio Probability

Equality of adjusted

cell means

1 15.7500 15.7500 0.0294 0.8639

Zero slope 1 185,086.0000 185,086.0000 345.3833 0.0000

Error 1475 790,967.3750 535.8857

Equality of slopes 1 0.1250 0.1250 0.0002 0.9878

Error 1475 790,967.2500 536.2490

Data for the slope within each group:

1960 1971

Height 1 4.2223 4.2298

The t-test matrix for adjusted group means on 1476 degrees of freedom looks

as follows:

1960 1971

1960 1 0.0000

1971 2 0.1720 0.0000

The probabilities for the t-values above are:

19601 19712

19601 1.0000

19712 0.8634 1.0000

(i) Note the “equality of slopes” line of output. This gives the F -test for the

equality of the slopes with the corresponding p-value. Is the hypothesis of

the equality of the slopes feasible? If estimated separately, what are the two

slopes?
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(ii) The test for equal (rather than just parallel) regression lines in the groups

corresponds to the line labeled “equality of adjusted cell means.” Is there a

statistically significant difference between the groups? What are the adjusted

cell means? By how many pounds do the adjusted cell means differ? Does

hypothesis (1) or (2) seem more plausible with these data?

(iii) A t-test for comparing each pair of groups is presented. The p-value 0.8643

is the same (to round off) as the F -statistic. This occurs because only two

groups are compared.

11.37 The cases of Bruce et al. [1973] are used. We are interested in comparing VO2,MAX,

after adjusting for duration and age, in three groups: active males, sedentary males, and

active females. The analysis gives the following results:

Number of Cases per Group

ACTMALE 44

SEDMALE 94

ACTFEM 43

Total 181

The estimates of means is as follows:

ACTMALE SEDMALE ACTFEM Total

VO2, MAX 1 40.8046 35.6330 29.0535 35.3271

Duration 2 647.3864 577.1067 514.8837 579.4091

Age 3 47.2046 49.7872 45.1395 48.0553

Data are as follows when the dependent variable is VO2, MAX:

Regression Standard

Covariate Coefficient Error t-Value

Duration 0.05242 0.00292 17.94199

Age −0.06872 0.03160 −2.17507

Group Adjusted Standard

Group N Mean Group Mean Error

ACTMALE 44 40.80456 37.18298 0.52933

SEDMALE 94 35.63297 35.87268 0.34391

ACTFEM 43 29.05349 32.23531 0.56614
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The anova table is:

Tail Area

Source DF SS MS F -Ratio Probability

Equality of adjusted cell

means

2 422.8359 211.4180 19.4336 0.0000

Zero slope 2 7612.9980 3806.4990 349.6947 0.0000

Error 176 1914.7012 10.8790

Equality of slopes 4 72.7058 18.1765 1.6973 0.1528

Error 172 1841.9954 10.7093

Values of the slopes within each group are:

ACTMALE SEDMALE ACTFEM

Duration 2 0.0552 0.0522 0.0411

Age 3 −0.1439 −0.0434 −0.1007

The t-test matrix for adjusted group means on 176 degrees of freedom looks as

follows:

ACTMALE SEDMALE ACTFEM

ACTMALE 1 0.0000

SEDMALE 2 −2.1005 0.0000

ACTFEM 3 −5.9627 −5.3662 0.0000

The probabilities for the t-values above are:

ACTMALE SEDMALE ACTFEM

ACTMALE 1 1.0000

SEDMALE 2 0.0371 1.0000

ACTFEM 3 0.0000 0.0000 1.0000

(a) Are the slopes of the adjusting variables (covariates) statistically significant?

(b) Is the hypothesis of parallel regression equations (equal β’s in the groups) tenable?

(c) Does the adjustment bring the group means closer together?

(d) After adjustment, is there a statistically significant difference between the groups?

(e) If the answer to part (d) is yes, which groups differ at the 10%, 5%, and 1%

significance level?

11.38 This problem deals with the data of Example 10.7 presented in Tables 10.20, 10.21,

and 10.22.
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(a) Using the quadratic term of Table 10.21 correlate this term with height, weight,

and age for the group of females and for the group of males. Are the correlations

comparable?

(b) Do part (a) by setting up an appropriate regression analysis with dummy variables.

(c) Test whether gender makes a significant contribution to the regression model of

part (b).

(d) Repeat the analyses for the linear and constant terms of Table 10.21.

(e) Do your conclusions differ from those of Example 10.7?

11.39 This problem examines the heart rate response in normal males and females as reported

in Hossack et al. [1980, 1981]. As heart rate is related to age and the males were older,

this was used as an adjustment covariate. The data are:

Number of Cases per Group

Male 11

Female 10

Total 21

The estimates of means are:

Male Female Total

Heart rate 1 180.9091 172.2000 176.7619

Age 2 50.4546 45.5000 48.0952

The dependent variable is heart rate:

Regression Standard

Covariate Coefficient Error t-Value

Age −0.75515 0.17335 −4.35610

Group Adjusted Standard

Group N Mean Group Mean Error

Male 11 180.90909 182.69070 3.12758

Female 10 172.19998 170.24017 3.28303

The anova table:

Tail Area

Source d.f. SS MS F -Ratio Probability

Equality of adjusted

cell means

1 783.3650 783.3650 7.4071 0.0140

Zero slope 1 2006.8464 2006.8464 18.9756 0.0004

Error 18 1903.6638 105.7591

Equality of slopes 1 81.5415 81.5415 0.7608 0.3952

Error 17 1822.1223 107.1837
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The slopes within each group are:

Age Male Female

2 −1.0231 −0.6687

(a) Is it reasonable to assume equal age response in the two groups?

(b) Are the adjusted cell means closer or farther apart than the unadjusted cell means?

Why?

(c) After adjustment what is the p-value for a difference between the two groups? Do

men or women have a higher heart rate on maximal exercise (after age adjustment)

in these data?
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C H A P T E R 12

Multiple Comparisons

12.1 INTRODUCTION

Most of us are aware of the large number of coincidences that appear in our lives. “Imagine

meeting you here!” “The ticket number is the same as our street address.” One explanation of

such phenomena is statistical. There are so many different things going on in our lives that a

few events of small probability (the coincidences) are likely to happen at the same time. See

Diaconis and Mosteller [1989] for methods for studying coincidences.

In a more formal setting, the same phenomenon can occur. If many tests or comparisons

are carried out at the 0.05 significance level (with the null hypothesis holding in all cases), the

probability of deciding that the null hypothesis may be rejected in one or more of the tests is

considerably larger. If many 95% confidence intervals are set up, there is not 95% confidence

that all parameters are “in” their confidence intervals. If many treatments are compared, each

comparison at a given significance level, the overall probability of a mistake is much larger. If

significance tests are done continually while data accumulate, stopping when statistical signif-

icance is reached, the significance level is much larger than the nominal “fixed sample size”

significance level. The category of problems being discussed is called the multiple comparison

problem: Many (or multiple) statistical procedures are being applied to the same data. We note

that one of the most important practical cases of multiple comparisons, the interim monitoring

of randomized trials, is discussed in Chapter 19.

This chapter provides a quantitative feeling for the problem. Statistical methods to handle the

situation are also described. We first describe the multiple testing or multiple comparison problem

in Section 12.2. In Section 12.3 we present three very common methods for obtaining simulta-

neous confidence intervals for the regression coefficients of a linear model. In Section 12.4 we

discuss how to choose between them. The chapter concludes with notes and problems.

12.2 MULTIPLE COMPARISON PROBLEM

Suppose that n statistically independent tests are being considered in an experiment. Each test

is evaluated at significance level α. Suppose that the null hypothesis holds in each case. What is

the probability, α

∗, of incorrectly rejecting the null hypothesis in one or more of the tests? For

n = 1, the probability is α, by definition. Table 12.1 gives the probabilities for several values

of α and n. Note that if each test is carried out at a 0.05 level, then for 20 tests, the probability

is 0.64 of incorrectly rejecting at least one of the null hypotheses.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Table 12.1 Probability, α
∗, of Rejecting One

or More Null Hypotheses When n independent

Tests Are Carried Out at Significance Level α

and Each Null Hypothesis Is True

Number
α

of Tests, n 0.01 0.05 0.10

1 0.01 0.05 0.10

2 0.02 0.10 0.19

3 0.03 0.14 0.27

4 0.04 0.19 0.34

5 0.05 0.23 0.41

6 0.06 0.26 0.47

7 0.07 0.30 0.52

8 0.08 0.34 0.57

9 0.09 0.37 0.61

10 0.10 0.40 0.65

20 0.18 0.64 0.88

50 0.39 0.92 0.99

100 0.63 0.99 1.00

1000 1.00 1.00 1.00

The table may also be related to confidence intervals. Suppose that each of n100(1 − α)%

confidence intervals comes from an independent data set. The table gives the probability that

one or more of the estimated parameters is not straddled by its confidence interval. For example,

among five 90% confidence intervals, the probability is 0.41 that at least one of the confidence

intervals does not straddle the parameter being estimated.

Now that we see the magnitude of the problem, what shall we do about it? One solution is

to use a smaller α level for each test or confidence interval so that the probability of one or

more mistakes over all n tests is the desired (nominal) significance level. Table 12.2 shows the

α level needed for each test in order that the combined significance level, α

∗, be as given at the

column heading.

The values of α and α

∗ are related to each other by the equation

α

∗
= 1 − (1 − α)

n or α = 1 − (1 − α

∗
)

1/n (1)

where (1 − α)

1/n is the nth root of 1 − α.

If p-values are being used without a formal significance level, the p-value from an individual

test is adjusted by the opposite of equation (1). That is, p

∗, the overall p-value, taking into

account the fact that there are n tests, is given by

p

∗
= 1 − (1 − p)

n (2)

For example, if there are two tests and the p-value of each test is 0.05, the overall p-value

is p

∗
= 1 − (1 − 0.05)

2
= 0.0975. For small values of α (or p) and n by the binominal

expansion α

∗
= 1/nα (and p

∗
= np), a relationship that will also be derived in the context of

the Bonferroni inequality.

Before giving an example, we introduce some terminology and make a few comments. We

consider an “experiment” in which n tests or comparisons are made.

Definition 12.1. The significance level at which each test or comparison is carried out in

an experiment is called the per comparison error rate.
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Table 12.2 Significance Level, α, Needed for Each Test

or Confidence Interval So That the Overall Significance

Level (Probability of One or More Mistakes) Is α
∗

When Each Null Hypothesis Is True

Number
α

∗

of Tests, n 0.01 0.05 0.10

1 0.010 0.05 0.10

2 0.005 0.0253 0.0513

3 0.00334 0.0170 0.0345

4 0.00251 0.0127 0.0260

5 0.00201 0.0102 0.0209

6 0.00167 0.00851 0.0174

7 0.00143 0.00730 0.0150

8 0.00126 0.00639 0.0131

9 0.00112 0.00568 0.0116

10 0.00100 0.00512 0.0105

20 0.00050 0.00256 0.00525

50 0.00020 0.00103 0.00210

100 0.00010 0.00051 0.00105

1000 0.00001 0.00005 0.00011

Definition 12.2. The probability of incorrectly rejecting at least one of the true null hypothe-

ses in an experiment involving one or more tests or comparisons is called the per experiment

error rate.

The terminology is less transparent than it seems. In particular, what defines an “experiment”?

You could think of your life as an experiment involving many comparisons. If you wanted to

restrict your “per experiment” error level to, say, α

∗
= 0.05, you would need to carry out each

of the comparisons at ridiculously low values of α. This has led some to question the entire

idea of multiple comparison adjustment [Rothman, 1990; O’Brien, 1983; Proschan and Follman,

1995]. Frequently, groups of tests or comparisons form a natural unit and a suitable adjustment

can be made. In some cases it is reasonable to control the total error rate only over tests that in

some sense ask the same question.

Example 12.1. The liver carries out many complex biochemical tasks in the body. In par-

ticular, it modifies substances in the blood to make them easier to excrete. Because of this,

it is very susceptible to damage by foreign substances that become more toxic as they are

metabolized. As liver damage often causes no noticeable symptoms until far too late, bio-

chemical tests for liver damage are very important in investigating new drugs or monitoring

patients with liver disease. These include measuring substances produced by the healthy liver

(e.g., albumin), substances removed by the healthy liver (e.g., bilirubin), and substances that

are confined inside liver cells and so not found in the blood when the liver is healthy (e.g.,

transaminases).

It is easy to end up with half a dozen or more indicators of liver function, creating a multiple

comparison problem if they are to be tested. Appropriate solutions to the problem vary with the

intentions of the analyst. They might include:

1. Controlling the Type I error rate. If a deterioration in any of the indicators leads to the

same qualitative conclusion — liver damage — they form a single hypothesis that deserves

a single α.
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2. Controlling the Type II error rate. When a new drug is first being tested, it is important

not to miss even fairly rare liver damage. The safety monitoring program must have a

low Type II error rate.

3. Controlling Type I error over smaller groups. Different indicators are sensitive to various

types of liver damage. For a researcher interested in the mechanism of the toxicity,

separating the indicators into these groups would be more appropriate.

4. Combining the indicators. In some cases the multiple comparison problem can be avoided

by creating a composite outcome such as some sort of weighted sum of the indicators. This

will typically increase power for alternatives where more than one indicator is expected

to be affected.

The fact that different strategies are appropriate for different people suggests that it is useful

to report p-values and confidence intervals without adjustment, perhaps in addition to adjusted

versions.

Two of the key assumptions in the derivation of equations (1) and (2) are (1) statistical

independence and (2) the null hypothesis being true for each comparison. In the next two sections

we discuss their relevance and ways of dealing with these assumptions when controlling Type

I error rates.

Example 12.2. To illustrate the methods, consider responses to maximal exercise testing

within eight groups by Bruce et al. [1974]. The subjects were all males. An indication of exercise

performance is functional aerobic impairment (FAI). This index is age- and gender-adjusted to

compare the duration of the maximal treadmill test to that expected for a healthy person of the

subject’s age and gender. A larger score indicates more exercise impairment. Working at a 5%

significance level, it is desired to compare the average levels in the eight groups. The data are

shown in Table 12.3.

Because it was expected that the healthy group would have a smaller variance, a one-way

anova was not performed (in the next section you will see how to handle such problems).

Instead, we construct eight simultaneous 95% confidence intervals. Hence, α = 1 − (1 −

0.05)

1/8 .

= 0.0064 is to be the α-level for each interval. The intervals are given by

Y ±

SD
√

n

t

n−1,1−(0.0064/2)

The t-values are estimated by interpolation from the table of t-critical values and the normal

table (n > 120). The eight confidence intervals work out to be as shown in Table 12.4. Displaying

these intervals graphically and indicating which group each interval belongs to gives Figure 12.1.

Table 12.3 Functional Aerobic Impairment Data for

Example 12.2

Standard

Group N Mean Deviation

1 Healthy individuals 1275 0.6 11

2 Hypertensive subjects (HT) 193 8.5 19

3 Postmyocardial infarction (PMI) 97 24.5 21

4 Angina pectoris, chest pain (AP) 306 30.3 24

5 PMI + AP 228 36.9 26

6 HT + AP 138 36.6 23

7 HT + PMI 20 27.6 18

8 PMI + AP + HT 75 44.9 22
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Table 12.4 FAI Confidence Intervals by

Group for Example 12.2

Limits

Group Critical t-Value Lower Upper

1 2.73 −0.2 1.4

2 2.73 4.8 12.2

3 2.79 18.5 30.5

4 2.73 26.6 34.0

5 2.73 32.2 41.6

6 2.77 31.2 42.0

7 3.06 15.3 39.9

8 2.81 37.7 52.1

Figure 12.1 Functional aerobic impairment level.

Since all eight groups have a simultaneous 95% confidence interval, it is sufficient (but

not necessary) to decide that any two means whose confidence intervals do not overlap are

significantly different. Let µ1, µ2, . . . , µ8, be the population means associated with groups

1, 2, . . . , 8, respectively. The following conclusions are in order:

1. µ1 has the smallest mean (µ1 < µ

i

, i = 2, . . . , 8).

2. µ2 is the second smallest mean (µ1 < µ2 < µ

i

, i = 3, . . . , 8).

3. µ3 < µ5, µ3 < µ6, µ3 < µ8.

4. µ4 < µ8.

There are seeming paradoxes. We know that µ3 < µ5, but we cannot decide whether µ7 is

larger or smaller than those two means.

Restating the conclusions in words: The healthy group had the best exercise performance,

followed by the hypertensive subjects, who were better than the rest. The postmyocardial infarc-

tion group performed better than the PMI + AP, PMI + AP + HT, and HT + AR groups. The

angina pectoris group had better performance than angina pectoris plus an MI and hypertension.

The other orderings were not clear from this data set.

12.3 SIMULTANEOUS CONFIDENCE INTERVALS AND TESTS FOR LINEAR

MODELS

12.3.1 Linear Combinations and Contrasts

In the linear models, the estimates of the parameters are usually not independent. Even when the

estimates of the parameters are independent, the same error mean square, MS
e

, is used for each
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test or confidence interval. Thus, the method of Section 12.2 does not apply. In this section,

several techniques dealing with the linear model are considered.

Before introducing the Scheffé method, we need additional concepts of linear combinations

and contrasts.

Definition 12.3. A linear combination of the parameters β1, β2, . . . , β

p

is a sum θ =

c1β1 + c2β2 + · · · + c

p

β

p

, where c1, c2, . . . , c

p

are known constants.

Associated with any parameter set β1, β2, . . . , β

p

is a number that is equal to the number

of linearly estimated independent parameters. In anova tables, this is the number of degrees of

freedom associated with a particular sum of squares.

A linear combination is a parameter. An estimate of such a parameter is a statistic, a random

variable. Let b1, b2, . . . , b

p

be unbiased estimates of β1, β2, . . . , β

p

; then ̂

θ = c1b1 + c2b2 +

· · ·+c

p

b

p

is an unbiased estimate of θ . If b1, b2, . . . , b

p

are jointly normally distributed, ̂θ will

be normally distributed with mean θ and variance σ
̂

θ

2 . The standard error of ̂

θ is usually quite

complex and depends on possible relationships among the β’s as well as correlations among the

estimates of the β’s. It will be of the form

constant
√

MS
e

where MS
e

is the residual mean square from either the regression analysis or the analysis of

variance. A simple set of linear combinations can be obtained by having only one of the c

i

take

on the value 1 and all others the value 0.

A particular class of linear combinations that will be very useful is given by:

Definition 12.4. A linear combination θ = c1β1 + c2β2 + · · · + c

p

β

p

is a contrast if

c1 + c2 + · · · + c

p

= 0. The contrast is simple if exactly two constants are nonzero and equal

to 1 and −1.

The following are examples of linear combinations that are contrasts: β1 − β2 (a simple

contrast); β1 −
1
2
(β2 + β3) = β1 −

1
2
β2 −

1
2
β3, and (β1 + β8) − (β2 + β4) = β1 + β8 − β2 − β4.

The following are linear combinations that are not contrasts: β1, β1 + β6, and β1 +
1
2
β2 +

1
2
β3. The linear combinations and contrasts have been defined and illustrated using regression

notation. They are also applicable to analysis of variance models (which are special regression

models), so that the examples can be rewritten as µ1 − µ2, µ1 −
1
2
(µ2 + µ3), and so on.

The interpretation is now a bit more transparent: µ1 − µ2 is a comparison of treatment 1 and

treatment 2; µ1 −
1
2
(µ2 + µ3) is a comparison of treatment 1 with the average of treatment 2

and treatment 3.

Since hypothesis testing and estimation are equivalent, we state most results in terms of

simultaneous confidence intervals.

12.3.2 Scheffé Method (S-Method)

A very general method for protecting against a large per experiment error rate is provided by

the Scheffé method. It allows unlimited “fishing,” at a price.

Result 12.1. Given a set of parameters β1, β2, . . . , β

p

, the probability is 1 − α that simul-

taneously all linear combinations of β1, β2, . . . , β

p

, say, θ = c1β1 + c2β2 + · · · + c

p

β

p

, are in

the confidence intervals
̂

θ ±

√

dF

d,m,1−α

σ̂
̂

θ
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where the estimate of θ is ̂

θ = c1b1 + c2b2 + · · · + c

p

b

p

with estimated standard error σ̂
̂

θ

, F

is the usual F -statistic with (d,m) degrees of freedom, d is the number of linearly independent

parameters, and m is the number of degrees of freedom associated with MS
e

.

Note that these confidence intervals are of the usual form, “statistic ± constant × standard

error of statistic,” the only difference being the constant, which now depends on the number

of parameters involved as well as the degrees of freedom for the error sum of squares. When

d = 1, for any α,

√

dF

d,m,1−α

=

√

F1,m,1−α

= t

m,1−α

That is, the constant reduces to the usual t-statistic with m degrees of freedom. After discussing

some examples, we assess the price paid for the unlimited number of comparisons that can be

made.

The easiest way to understand the S-method is to work through some examples.

Example 12.3. In Table 12.5 we present part of the computer output from Cullen and

van Belle [1975] discussed in Chapters 9 and 11. We construct simultaneous 95% confidence

intervals for the slopes β

i

. In this case, the first linear combination is

θ1 = 1 × β1 + 0 × β2 + 0 × β3 + 0 × β4 + 0 × β5

the second linear combination is

θ2 = 0 × β1 + 1 × β2 + 0 × β3 + 0 × β4 + 0 × β5

and so on.

The standard errors of these linear combinations are simply the standard errors of the

slopes. There are five slopes β1, β2, . . . , β5, which are linearly independent, but their esti-

mates b1, b2, . . . , b5 are correlated. The MS
e

upon which the standard errors of the slopes are

based has 29 degrees of freedom. The F -statistic has value F5,29,0.95 = 2.55.

The 95% simultaneous confidence intervals will be of the form

b

i

±

√

(5)(2.55)s

b

i

Table 12.5 Analysis of Variance, Regression Coefficients, and Confidence Intervals

Analysis of Variance

Source d.f. SS MS F -Ratio Significance

Regression 5.0 95,827 18,965 12.9 0.000

Residual 29.0 42,772 1,474

95% Limits

Variable b Standard-Error b t Lower Upper

DPMB 0.575 0.0834 6.89 0.404 0.746

Trauma −9.21 11.6 −0.792 −33.0 14.6

Lymph B −8.56 10.2 −0.843 −29.3 12.2

Time −4.66 5.68 −0.821 −16.3 6.96

Lymph A −4.55 6.72 −0.677 −18.3 9.19

Constant −96.3 36.4 2.65 22.0 171
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or

b

i

± 3.57s

b

i

, i = 1, 2, . . . , 5

For the regression coefficient of DPMB the interval is

0.575 ± (3.57)(0.0834)

resulting in 95% confidence limits of (0.277, 0.873).

Computing these values, the confidence intervals are as follows:

Limits Limits

Variable Lower Upper Variable Lower Upper

DPMB 0.277 0.873 Time −24.9 15.6

Trauma −50.8 32.3 Lymph A −28.5 19.4

Lymph B −44.8 27.7

These limits are much wider than those based on a per comparison t-statistic. This is due

solely to the replacement of t29,0.975 = 2.05 by
√

5F5,29,0.95 = 3.57. Hence, the confidence

interval width is increased by a factor of 3.57/2.05 = 1.74 or 74%.

Example 12.4. In a one-way anova situation, using the notation of Section 10.2.2, if we

wish simultaneous confidence intervals for all I means, then d = I , m = n·−I , and the standard

error of the estimate of µ

i

is

√

MS
e

n

i

, i = 1, . . . , I

Thus, the confidence intervals are of the form

Y

i· ±

√

IF

I,n·−I,1−α

√

MS
e

n

i

, i = 1, . . . , I

Suppose that we want simultaneous 99% confidence intervals for the morphine binding data of

Problem 10.1. The confidence interval for the chronic group is

31.9 ±

√

(4) (4.22)

︸ ︷︷ ︸

F4,24,0.99

√

9.825

18
= 31.9 ± 3.0

or

31.9 ± 3.0

The four simultaneous 99% confidence intervals are:

Limits Limits

Group Lower Upper Group Lower Upper

µ1 = Chronic 28.9 34.9 µ3 = Dialysis 22.0 36.8

µ2 = Acute 21.0 39.2 µ4 = Anephric 19.2 30.8
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As all four intervals overlap, we cannot conclude immediately from this approach that the

means differ (at the 0.01 level). To compare two means we can also consider confidence intervals

for µ

i

− µ

′

i

. As the Scheffé method allows us to look at all linear combinations, we may also

consider the confidence interval for µ

i

− µ

′

i

.

The formula for the simultaneous confidence intervals is

Y

i· − Y

i

′· ±

√

IF

I,n·−I,1−α

√

MS
e

(

1

n

i

+

1

n

i

′

)

, i, i

′
= 1, . . . , I, i �= i

′

In this case, the confidence intervals are:

Limits Limits

Contrast Lower Upper Contrast Lower Upper

µ1 − µ2 −7.8 11.4 µ2 − µ3 −11.1 12.5

µ1 − µ3 −5.5 10.5 µ2 − µ4 −5.7 15.9

µ1 − µ4 0.4 13.4 µ3 − µ4 −5.0 13.8

As the interval for µ1 −µ4 does not contain zero, we conclude that µ1 −µ4 > 0 or µ1 > µ4.

This example is typical in that comparison of the linear combination of interest is best done

through a confidence interval for that combination.

The comparisons are in the form of contrasts but were not considered so explicitly. Suppose

that we restrict ourselves to contrasts. This is equivalent to deciding which mean values differ,

so that we are no longer considering confidence intervals for a particular mean. This approach

gives smaller confidence intervals.

Contrast comparisons among the means µ

i

, i = 1, . . . , I are equivalent to comparisons of

α

i

, i = 1, . . . , I in the one-way anova model Y

ij

= µ+α

i

+ ǫ

ij

, i = 1, . . . , I , j = 1, . . . , n

i

;

for example, µ1 −µ2 = α1 −α2. There are only (I − 1) linearly independent values of α

i

since

we have the constraint
∑

i

α

i

= 0. This is, therefore, the first example in which the parameters

are not linearly independent. (In fact, the main effects are contrasts.) Here, we set up confidence

intervals for the simple contrasts µ

i

−µ

′

i

. Here d = 3 and the simultaneous confidence intervals

are given by

Y

i· − Y

i

′· ±

√

(I − 1)F

I−1,n·−I,1−α

√

MS
e

(

1

n

i

+

1

n

i

′

)

, i, i

′
= 1, . . . , I, i �= i

′

In the case at hand, the intervals are:

Limits Limits

Contrast Lower Upper Contrast Lower Upper

µ1 − µ2 −7.0 10.6 µ2 − µ3 −10.1 11.5

µ1 − µ3 −4.9 9.9 µ2 − µ4 −4.8 15.0

µ1 − µ4 0.9 12.9 µ3 − µ4 −1.9 10.7

As the µ1 − µ4 interval does not contain zero, we conclude that µ1 > µ4. Note that these

intervals are shorter then in the first illustration. If you are interested in comparing each pair

of means, this method will occasionally detect differences not found if we require confidence

intervals for the mean as well.
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Example 12.5.

1. Main effects. In two-way anova situations there are many possible sets or linear combi-

nations that may be studied; here we consider a few. To study all cell means, consider the

IJ cells to be part of a one-way anova and use the approach of Example 12.2 or 12.4.

Now consider Example 10.5 in Section 10.3.1. Suppose that we want to compare the

differences between the means for the different days at a 10% significance level. In this

case we are working with the β

j

main effects. The intervals for µ·j − µ·j ′ = β

j

− β

j

′

are given by

Y ·j· − Y ·j ′· ±

√

(J − 1)F

J−1,n··−IJ,1−α

√

MS
e

(

1

n·j

+

1

n·j ′

)

The means are 120.4, 158.1, and 118.4, respectively. The following contrasts are of

interest:

90% Limits

Contrast Estimate Lower Upper

β1 − β2 −37.7 −70.7 −4.7

β2 − β3 39.7 5.5 73.9

β1 − β3 2.0 −31.0 35.0

At the 10% significance level, we conclude that µ·1 − µ·2 < 0 or µ·1 < µ·2, and that

µ·3 < µ·2. Thus, the means (combining cases and controls) of days 10 and 14 are less

than the means of day 12.

2. Main effects assuming no interaction. We illustrate the procedure using Problem 10.12 as

an example. This example discussed the effect of histamine shock on the medullary blood

vessel surface of the guinea pig thymus.

The sex of the animal was used as a covariate. The anova table is shown in Table 12.6.

There is little evidence of interaction. Suppose that we want to fit the model

Y

ijk

= µ + α

i

+ β

j

+ ǫ

ijk

,

i = 1, . . . , I

j = 1, . . . , J

k = 1, . . . , n

ij

That is, we ignore the interaction term. It can be shown that the appropriate estimates

in the balanced model for the cell means µ + α

i

+ β

j

are

Y ··· + a

i

+ b

j

,

i = 1, . . . , I

j = 1, . . . , J

Table 12.6 anova Table for Control vs. Histamine

Shock

Source d.f. Mean Square F -Ratio p-Value

Treatment 1 11.56 5.20 <0.05

Sex 1 1.26 0.57 >0.05

Treatment by sex 1 5.40 2.43 >0.05

Error 36 2.225

Total 39
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or

Y ··· + (Y

i·· − Y ···) + (Y ·j· − Y ···) = Y

i·· + Y ·j· − Y ···

The estimates are Y ··· = 6.53, Y 1·· = 6.71, Y 2·· = 6.35, Y ·1· = 5.99, Y ·2· = 7.07. The

estimated cell means fitted to the model E(Y

ijk

) = µ + α

i

+ β

j

by Y ··· + a

i

+ b

j

are:

Treatment

Sex Control Shock

Male 6.17 7.25

Female 5.81 6.89

For multiple comparisons the appropriate formula for simultaneous confidence intervals

for each cell mean assuming that the interaction term is zero is given by the formula

Y

i·· + Y ·j· − Y ··· ±

√

(I + J − 1)F

I+J−1,n··−IJ+1,1−α

√

MS
e

(

1

n

i·

+

1

n·j

−

1

n··

)

The degrees of freedom for the F -statistic are (I +J −1) and (n··−IJ +1) because there

are I + J − 1 linearly independent cell means and the residual MS
e

has (n·· − IJ + 1)

degrees of freedom. This MS
e

can be obtained by pooling the SSinteraction and SSresidual

in the anova table. For our example,

MS
e

=

1 × 5.40 + 36 × 2.225

37
= 2.311

We will construct the 95% confidence intervals for the four cell means. The confidence

interval for the first cell is given by

6.17 ±

√

(2 + 2 − 1) F3,37,0.95
︸ ︷︷ ︸

2.86

√

2.311

(

1

20
+

1

20
−

1

40

)

yielding 6.17 ± 1.22 for limits (4.95, 7.39). The four simultaneous 95% confidence lim-

its are:

Treatment

Sex Control Shock

Male (4.95, 7.39) (6.03, 8.47)

Female (4.59, 7.03) (5.67, 8.11)

Requiring this degree of confidence gives intervals that overlap. However, using the

Scheffé method, all linear combinations can be examined. With the same 95% con-

fidence, let us examine the sex and treatment differences. The intervals for sex are

defined by

Y 1·· − Y 2·· ±

√

3F3,37,0.95

√

MS
e

(

1

n1·
+

1

n2·

)
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or 0.36 ± 1.41 for limits (−1.05, 1.77). Thus, in these data there is no reason to reject

the null hypothesis of no difference in sex. The simultaneous 95% confidence interval

for treatment is −1.08 ± 1.41 or (−2.49, 0.33). This confidence interval also straddles

zero, and at the 95% simultaneous confidence level we conclude that there is no differ-

ence in the treatment. This result nicely illustrates a dilemma. The two-way analysis of

variance did indicate a significant treatment effect. Is this a contradiction? Not really, we

are “protecting” ourselves against an increased Type I error. Since the results are “bor-

derline” even with the analysis of variance, it may be best to conclude that the results are

suggestive but not clearly significant. A more substantial point may be made by asking

why we should test the effect of sex anyway? It is merely a covariate or blocking factor.

This argument raises the question of the appropriate set of comparisons. What do you

think?

3. Randomized block designs. Usually, we are interested in the treatment means only and

not the block means. The confidence interval for the contrast τ

j

− τ

′

j

has the form

Y ·j − Y ·j ′ ±

√

(J − 1)F

J−1,IJ−I−J+1,1−α

√

MS
e

2

I

The treatment effect τ

j

has confidence interval

Y ·j − Y ·· ±

√

(J − 1)F

J−1,IJ−I−J+1,1−α

√

MS
e

(

1 −

1

J

)

1

I

Problem 12.16 uses these formulas in a randomized block analysis.

12.3.3 Tukey Method (T-Method)

Another method that holds in nicely balanced anova situations is the Tukey method, which is

based on an extension of the Student t-test. Recall that in the two-sample t-test, we use

t =

√

n1n2

n1 + n2

Y 1· − Y 2·

s

where Y 1· is the mean of the first sample, Y 2· is the mean of the second sample, and s =

√

MS
e

is the pooled standard deviation. The process of dividing by s is called studentizing the range.

For more than two means, we are interested in the sampling distribution of the (largest–

smallest) mean.

Definition 12.5. Let Y1, Y2, . . . , Y

k

be independent and identically distributed (iid)

N(µ, σ

2
). Let s

2 be an estimate of σ

2 with m degrees of freedom, which is independent

of the Y

i

’s. Then the quantity

Q

k,m

=

max(Y1, Y2, . . . , Y

k

) − min(Y1, Y2, . . . , Y

k

)

s

is called the studentized range.

Tukey derived the distribution of Q

k,m

and showed that it does not depend on µ or σ ; a

description is given in Miller [1981]. The distribution of the studentized range is given by some
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statistical packages and is tabulated in the Web appendix. Let q

k,m,1−α

denote the upper critical

value; that is,

P [Q
k,m

≥ q

k,m,1−α

] = 1 − α

You can verify from the table that for k = 2, two groups,

q2,m,1−α

=

√

2t2,m,1−α/2

We now state the main result for using the T-method of multiple comparisons, which will then

be specialized and illustrated with some examples.

The result is stated in the analysis of variance context since it is the most common application.

Result 12.2. Given a set of p population means µ1, µ2, . . . , µ

p

estimated by p inde-

pendent sample means Y 1, Y 2, . . . , Y

p

each based on n observations and residual error s

2

based on m degrees of freedom, the probability is 1 − α that simultaneously all contrasts of

µ1, µ2, . . . , µ

p

, say, θ = c1µ1 + c2µ2 + · · · + c

p

µ

p

, are in the confidence intervals

̂

θ ± q

p,m,1−α

σ̂
̂

θ

where

̂

θ = c1Y 1 + c2Y 2 + · · · + c

p

Y

p

and σ̂
̂

θ

=

s

√

n

p

∑

i=1

|c
i

|

2

The Tukey method is used primarily with pairwise comparisons. In this case, σ̂
̂

θ

reduces to s/

√

n,

the standard error of a mean. A requirement is that there be equal numbers of observations in

each mean; this implies a balanced design. However, reasonably good approximations can be

obtained for some unbalanced situations, as illustrated next.

One-Way Analysis of Variance

Suppose that there are I groups with n observations per group and means µ1, µ2, . . . , µ

I

. We

are interested in all pairwise comparisons of these means. The estimate of µ

i

−µ

′

i

is Y

i· −Y

i

′·,

the variance of each sample mean estimated by MS
e

(1/n) with m = I (n − 1) degrees of

freedom. The 100(1 − α)% simultaneous confidence intervals are given by

Y

i· − Y

i

′· ± q

I,I (n−1),1−α

1
√

n

√

MS
e

, i, i

′
= 1, . . . , I, i �= i

′

This result cannot be applied to the example of Section 12.3.2 since the sample sizes are not

equal. However, Dunnett [1980] has shown that the 100(1 − α)% simultaneous confidence

intervals can be reasonably approximated by replacing

√

MS
e

n

by

√

MS
e

(

1

2

)(

1

n

i

+

1

n

i

′

)

where n

i

and n

i

′ are the sample sizes in groups i and i

′, respectively, and the degrees of freedom

associated with MS
e

are the usual ones from the analysis of variance.

We now apply this approximation to the morphine binding data in Section 12.3.2. For this

example, 1 −α = 0.99, I = 4, and the MS
e

= 9.825 has 24 d.f., resulting in q4,24,0.99 = 4.907.

Simultaneous 99% confidence intervals are listed in Table 12.7.
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Table 12.7 Morphine Binding Data

Estimated 99% Limits
Standard

Contrast n

i

n

′

i

Y

i· − Y

i

′· Error Lower Upper

µ1 − µ2 18 2 1.7833 1.6520 −6.32 9.98

µ1 − µ3 18 3 2.4500 1.3822 −4.33 9.23

µ1 − µ4 18 5 6.8833 1.1205 1.39 12.4

µ2 − µ3 2 3 0.6167 2.0233 −9.31 10.5

µ2 − µ4 2 5 5.0500 1.8544 −4.05 14.1

µ3 − µ4 3 5 4.4333 1.6186 −3.51 12.4

We conclude, at a somewhat stringent 99% confidence level, that simultaneously, only one

of the pairwise contrasts is significantly different: group 1 (normal) differing significantly from

group 4 (anephric).

Two-Way anova with Equal Numbers of Observations per Cell

Suppose that in the two-way anova of Section 10.3.1, there are n observations for each cell.

The T-method may then be used to find intervals for either set of main effects (but not both

simultaneously). For example, to find intervals for the α

i

’s, the intervals are:

Contrast Interval

α

i

Y

i·· − Y ··· ±

1
√

Jn

q

I,IJ (n−1),1−α

√

MS
e

(

1 −

1

I

)

α

i

− α

i

′ Y

i·· − Y

i

′·· ±

1
√

Jn

q

I,IJ (n−1),1−α

√

MS
e

We again consider the last example of Section 12.3.2 and want to set up 95% confidence

intervals for α1, α2, and α1 − α2. In this example I = 2, J = 2, and n = 10. Using q2,36,0.95 =

2.87 (by interpolation), the intervals are:

95% Limits

Contrast Estimate Standard Error Lower Upper

α1 −0.54 0.2358 −1.22 0.68

α2 0.54 0.2358 −0.68 1.22

α1 − α2 −1.08 0.3335 −2.04 −0.12

We have used the MS
e

with 36 degrees of freedom; that is, we have fitted a model with

interaction. The interpretation of the results is that treatment effects do differ significantly at

the 0.05 level; even though there is not enough evidence to reject the null hypothesis that the

treatment effects differ from zero.

Randomized Block Designs

Using the notation of Section 12.3.2, suppose that we want to compare contrasts among the

treatment means (the µ + τ

j

). The τ

j

themselves are contrasts among the means. In this case,

m = (I − 1)(J − 1). The intervals are:
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Table 12.8 Confidence Intervals for

the Six Comparisons

95% Limits

Contrast Estimate Upper Lower

µ1 − µ2 21.6 4.4 38.8

µ1 − µ3 20.7 3.5 37.9

µ1 − µ4 7.0 −10.2 24.2

µ2 − µ3 −0.9 −18.1 16.3

µ2 − µ4 −14.6 −31.8 2.6

µ3 − µ4 −13.7 −30.9 3.5

Contrast Interval

τ

j

Y ·j − Y ·· ±

1
√

I

q

J,(I−1)(J−1),1−α

√

MS
e

(

1 −

1

J

)

τ

j

− τ

j

′ Y ·j − Y ·j ′ ±
1

√

2I

q

J,(I−1)(J−1),1−α

√

MS
e

Consider Example 10.6. We want to compare the effectiveness of pancreatic supplements on

fat absorption. The treatment means are

Y ·1 = 38.1, Y ·2 = 16.5, Y ·3 = 17.4, Y ·4 = 31.1

The estimate of σ

2 is MS
e

= 107.03 with 15 degrees of freedom. To construct simultaneous

95% T-confidence intervals, we need q4,15,0.95 = 4.076. The simultaneous 95% confidence

interval for τ1 − τ2 is

(38.1 − 16.5) ±

1
√

6
(4.076)

√

107.03

or

21.6 ± 17.2

yielding (4.4, 38.8).

Proceeding similarly, we obtain simultaneous 95% confidence intervals for the six pairwise

comparisons (Table 12.8). From this analysis we conclude that treatment 1 differs from treat-

ments 2 and 3 but has not been shown to differ from treatment 4. All other contrasts are not

significant.

12.3.4 Bonferroni Method (B-Method)

In this section a method is presented that may be used in all situations. The method is conser-

vative and is based on Bonferroni’s inequality. Called the Bonferroni method, it states that the

probability of occurrence of one or more of a set of events occurring is less that or equal to the

sum of the probabilities. That is, the Bonferroni inequality states that

P(A1U · · ·UA

n

) ≤

n

∑

i=1

P(A

i

)
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We know that for disjoint events, the probability of one or more of A1, . . . , A

n

is equal to the

sum of probabilities. If the events are not disjoint, part of the probability is counted twice or

more and there is strict inequality.

Suppose now that n simultaneous tests are to be performed. It is desired to have an overall

significance level α. That is, if the null hypothesis is true in all n situations, the probability

of incorrectly rejecting one or more of the null hypothesis is less than or equal to α. Perform

each test at significance level α/n; then the overall significance level is less that or equal to

α. Let A

i

be the event of incorrectly rejecting in the ith test. Bonferroni’s inequality shows

that the probability of rejecting one or more of the null hypotheses is less than or equal to

(α/n + · · · + α/n) (n terms), which is equal to α.

We now state a result that makes use of this inequality:

Result 12.3. Given a set of parameters β1, β2, . . . , β

p

and N linear combinations of these

parameters, the probability is greater than or equal to 1 − α that simultaneously these linear

combinations are in the intervals
̂

θ ± t

m,1−α/2N

σ̂
̂

θ

The quantity ̂

θ is c1b1 + c2b2 + · · · + c

p

b

p

, t

m,1−α/2N

is the 100(1 − α/2N)th percentile of a

t-statistic with m degrees of freedom, and σ̂
̂

θ

is the estimated standard error of the estimate of

the linear combination based on m degrees of freedom.

The value of N will vary with the application. In the one-way anova with all the pairwise

comparisons among the I treatment means N =

(

I

2

)

. Simultaneous confidence intervals, in

this case, are of the form

Y

i· − Y

i

′· ± t

m,1−α/2

(

I

2

)

√

MS
e

(

1

n

i

+

1

n

′

i

)

, i, i

′
= 1, . . . , I, i �= i

′

The value of α need not be partitioned into equal multiples. The simplest is α = α/N+α/N+

· · ·+α/N , but any partitions of α = α1 +α2 +· · ·+α

N

is permissible, yielding a per experiment

error rate of at most α. However, any such decision must be made a priori—obviously, one cannot

decide after seeing one p-value of 0.04 and 14 larger ones to allow all the Type I error to the

0.04 and declare it significant. Partly for this reason, unequal allocation is very unusual outside

group sequential clinical trials (where it is routine but does not use the Bonferroni inequality).

When presenting p-values, when N simultaneous tests are being done, multiplication of the

p-value for each test by N gives p-values allowing simultaneous consideration of all N tests.

An example of the use of Bonferroni’s inequality is given in a paper by Gey et al. [1974].

This paper considers heartbeats that have an irregular rhythm (or arrythmia). The study examined

the administration of the drug procainamide and evaluated variables associated with the maximal

exercise test with and without the drug. Fifteen variables were examined using paired t-tests.

All the tests came from data on the same 23 patients, so the test statistics were not independent.

To correct for the multiple comparison values, the p-values were multiplied by 15. Table 12.9

presents 14 of the 15 comparisons. The table shows that even taking the multiple comparisons

into account, many of the variables differed when the subject was on the procainamide medica-

tion. In particular, the frequency of arrythmic beats was decreased by administration of the drug.

Improved Bonferroni Methods

The Bonferroni adjustment is often regarded as too drastic, causing too great a loss of power.

In fact, the adjustment is fairly close to optimal in any situation where only one of the null

hypotheses is false. When many of the null hypotheses are false, however, there are better

corrections. A number of these are described by Wright [1992]; we discuss two here.
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Table 12.10 Application of the Three Methods

Original p × = Hochberg Holm Bonferroni

0.001 6 0.006 0.006 0.006 0.006

0.01 5 0.05 0.04 0.05 0.06

0.02 4 0.08 0.04 0.08 0.12

0.025 3 0.075 0.04 0.08 0.15

0.03 2 0.06 0.04 0.08 0.18

0.04 1 0.04 0.04 0.08 0.24

Consider a situation where you perform six tests and obtain p-values of 0.001, 0.01, 0.02,

0.025, 0.03, and 0.04, and you wish to use α = 0.05. All the p-values are below 0.05, something

that is very unlikely to occur by chance, but the Bonferroni adjustment declares only one of

them significant.

Given n p-values, the Bonferroni adjustment multiplies each by n. The Hochberg and Holm

adjustments multiply the smallest by n, the next smallest by n − 1, and so on (Table 12.10).

This may change the relative ordering of p-values, so they are then restored to the original

order. For the Hochberg method this is done by decreasing them where necessary; for the Holm

method it is done by increasing them. The Holm adjustment guarantees control of Type I error;

the Hochberg adjustment controls Type I error in most but not all circumstances.

Although there is little reason other than tradition to prefer the Bonferroni adjustment over

the Holm adjustment, there is often not much difference.

12.4 COMPARISON OF THE THREE PROCEDURES

Of the three methods presented, which should be used? In many situations there is not suffi-

cient balance in the data (e.g., equal numbers in each group in a one-way analysis of variance)

to use the T-method; the Scheffé method procedure or the Bonferroni inequality should be

used. For paired comparisons, the T-method is preferable. For more complex contrasts, the

S-method is preferable. A comparison between the B-method and the S-method is more com-

plicated, depending heavily on the type of application. The Bonferroni method is easier to

carry out, and in many situations the critical value will be less than that for the Scheffé

method.

In Table 12.11 we compare the critical values for the three methods for the case of one-way

anova with k treatments and 20 degrees of freedom for error MS. With two treatments (k = 2

and therefore ν = 1) the three methods give identical multipliers (the q statistic has to be divided

by
√

2 to have the same scale as the other two statistics).

Table 12.11 Comparison of the Critical Values for One-Way anova with k Treatmentsa

Number of Treatments, Degrees of Freedom,

k ν = k − 1
√

νF

ν,20,0.95
1

√

2
q

ν,20,0.95 t

20,1−α/2
(

k

2)

2 1 2.09 2.09 2.09

3 2 2.64 2.53 2.61

4 3 3.05 2.80 2.93

5 4 3.39 2.99 3.15

11 10 4.85 3.61 3.89

21 20 6.52 4.07 4.46

aAssume
(

k

2

)

comparisons for the Tukey and Bonferroni procedures. Based on 20 degrees of freedom for error mean
square.
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Hence, if pairwise comparisons are carried out, the Tukey procedure will produce the shortest

simultaneous confidence intervals. For the type of situation illustrated in the table, the B-method

is always preferable to the S-method. It assumes, of course, that the total, N , of comparisons

to be made is known. If this is not the case, as in “fishing expeditions,” the Scheffé method

provides more adequate protection.

For an informative discussion of the issues in multiple comparisons, see comments by O’Brien

[1983] in Biometrics.

12.5 FALSE DISCOVERY RATE

With the rise of high-throughput genomics in recent years there has been renewed concern about

the problem of very large numbers of multiple comparisons. An RNA expression array (gene

chip) can measure the activity of several thousand genes simultaneously, and scientists often

want to ask which genes differ in their expression between two samples. In such a situation it

may be infeasible, but also unnecessary, to design a procedure that prevents a single Type I

error out of thousands of comparisons. If we reject a few hundred null hypotheses, we might

still be content if a dozen of them were actually Type I errors. This motivates a definition:

Definition 12.6. The positive false discovery rate (pFDR) is the expected proportion of

rejected hypotheses that are actually true given that at least some null hypotheses are rejected.

The false discovery rate (FDR) is the positive false discovery rate times the probability that no

null hypotheses are rejected.

Example 12.6. Consider an experiment comparing the expression levels of 12,625 RNA

sequences on an Affymetrix HG-u95A chip, to see which genes had different expression in

benign and malignant colon polyps. Controlling the Type I error rate at 5% means that if we

declare 100 sequences to be significantly different, we are not prepared to take more than a 5%

chance of even 1 of these 100 being a false positive.

Controlling the positive false discovery rate at 5% means that if we declare 100 sequences

to be significantly different, we are not prepared to have, on average, more than 5 of these 100

being false positives.

The pFDR and FDR apparently require knowledge of which hypotheses are true, but we will

see that, in fact, it is possible to control the pFDR and FDR without this knowledge and that

such control is more effective when we are testing a very large number of hypotheses.

Although like many others, we discuss the FDR and pFDR under the general heading of

multiple comparisons, they are very different quantities from the Type I error rates in the rest

of this chapter. The Type I error rate is the probability of making a certain decision (rejecting

the null hypothesis) conditional on the state of nature (the null hypothesis is actually true). The

simplest interpretation of the pFDR is the probability of a state of nature (the null hypothesis is

true) given a decision (we reject it). This should cause some concern, as we have not said what

we might mean by the probability that a hypothesis is true.

Although it is possible to define probabilities for states of nature, leading to the interesting

and productive field of Bayesian statistics, this is not necessary in understanding the false

discovery rates. Given a large number N of tests, we know that in the worst case, when all

the null hypotheses are true, there will be approximately αN hypotheses (falsely) rejected. In

general, fewer that N of the null hypotheses will be true, and there will be fewer than N false

discoveries. If we reject R of the null hypotheses and R > αN , we would conclude that at

least roughly R − αN of the discoveries were correct, and so would estimate the positive false
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discovery rate as

pFDR ≈

R − αN

R

This is similar to a graphical diagnostic proposed by Schweder and Spjøtvoll [1982], which

involves plotting R/N against the p-value, with a line showing the expected relationship. As it

stands, this estimator is not a very good one. The argument can be improved to produce fairly

simple estimators of FDR and pFDR that are only slightly conservative [Storey, 002].

As the FDR and pFDR are primarily useful when N is very large (at least hundreds of tests),

hand computation is not feasible. We defer the computational details to the Web appendix of

this chapter, where the reader will find links to programs for computing the FDR and pFDR.

12.6 POST HOC ANALYSIS

12.6.1 The Setting

A particular form of the multiple comparison problem is post hoc analysis. Such an analysis is not

explicitly planned at the start of the study but suggested by the data. Other terms associated with

such analyses are data driven and subgroup analysis. Aside from the assignment of appropriate

p-values, there is the more important question of the scientific status of such an analysis. Is the

study to be considered exploratory, confirmatory, or both? That is, can the post hoc analysis

only suggest possible connections and associations that have to be confirmed in future studies,

or can it be considered as confirming them as well? Unfortunately, no rigid lines can be drawn

here. Every experimenter does, and should do, post hoc analyses to ensure that all aspects of the

observations are utilized. There is no room for rigid adherence to artificial schema of hypothesis

which are laid out row upon boring row. But what is the status of these analyses? Cox [1977]

remarks:

Some philosophies of science distinguish between exploratory experiments and confirmatory experi-

ments and regard an effect as well established only when it has been demonstrated in a confirmatory

experiment. There are undoubtedly good reasons, not specifically concerned with statistical tech-

nique, for proceeding this way; but there are many fields of study, especially outside the physical

sciences, where mounting confirmatory investigations may take a long time and therefore where it is

desirable to aim at drawing reasonably firm conclusions from the same data as used in exploratory

analysis.

What statistical approaches and principles can be used? In the following discussion we follow

closely suggestions of Cox and Snell [1981] and Pocock [1982, 1984].

12.6.2 Statistical Approaches and Principles

Analyses Must Be Planned

At the start of the study, specific analyses must be planned and agreed to. These may be broadly

outlined but must be detailed enough to, at least theoretically, answer the questions being asked.

Every practicing statistician has met the researcher who has a filing cabinet full of crucial data

“just waiting to be analyzed” (by the statistician, who may also feel free to suggest appropriate

questions that can be answered by the data).

Planned Analyses Must Be Carried Out and Reported

This appears obvious but is not always followed. At worst it becomes a question of scientific

integrity and honesty. At best it is potentially misleading to omit reporting such analyses. If
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the planned analysis is amplified by other analyses which begin to take on more importance,

a justification must be provided, together with suggested adjustments to the significance level

of the tests. The researcher may be compared to the novelist whose minor character develops a

life of his own as the novel is written. The development must be rational and believable.

Adjustment for Selection

A post hoc analysis is part of a multiple-comparison procedure, and appropriate adjustments

can be made if the family of comparisons is known. Use of the Bonferroni adjustment or other

methods can have a dramatic effect. It may be sufficient, and is clearly necessary, to report

analyses in enough detail that readers know how much testing was done.

Split-Sample Approach

In the split-sample approach, the data are randomly divided into two parts. The first part is

used to generate the exploratory analyses, which are then “confirmed” by the second part. Cox

[1977] says that there are “strong objections on general grounds to procedures where different

people analyzing the same data by the same method get different answers.” An additional

aspect of such analyses is that it does not provide a solution to the problem of subgroup

analysis.

Interaction Analysis

The number of comparisons is frequently not defined, and most of the foregoing approaches

will not work very well. Interaction analysis of subgroups provides valid protection in such

post hoc analyses. Suppose that a treatment effect has been shown for a particular subgroup.

To assess the validity of this effect, analyze all subgroups jointly and test for an interaction of

subgroup and treatment. This procedure embeds the subgroup in a meaningful larger family. If

the global test for interaction is significant, it is warranted to focus on the subgroup suggested

by the data. Pocock [1984] illustrates this approach with data from the Multiple Risks Factor

Intervention Trial Research Group [1982] “MR. FIT”. This randomized trial of “12,866 men

at high risk of coronary heart disease compared to special intervention (SI) aimed at affecting

major risk factors (e.g., hypertension, smoking, diet) and usual care (UC). The overall rates

of coronary mortality after an average seven year follow-up (1.79% on SI and 1.93% on UC)

are not significantly different.” The paper presented four subgroups. The extreme right-hand

column in Table 12.12 lists the odds ratio comparing mortality in the special intervention and

usual care groups. The first three subgroups appear homogeneous, suggesting a beneficial effect

of special intervention. The fourth subgroup (with hypertension and ECG abnormality) appears

different. The average odds ratio for the first three subgroups differs significantly from the odds

ratio for the fourth group (p < 0.05). However, this is a post hoc analysis, and a test for the

homogeneity of the odds ratios over all four subgroups shows no significant differences, and

furthermore, the average of the odds ratio does not differ significantly from 1. Thus, on the

basis of the global interaction test there are no significant differences in mortality among the

eight groups. (A chi-square analysis of the 2 × 8 contingency table formed by the two treatment

groups and the eight subgroups shows a value of χ

2
= 8.65 with 7 d.f.) Pocock concludes:

“Taking into account the fact that this was not the only subgroup analysis performed, one should

feel confident that there are inadequate grounds for supposing that the special intervention did

harm to those with hypertension and ECG abnormalities.”

If the overall test of interaction had been significant, or if the comparison had been suggested

before the study was started, the “significant” p-value would have had clinical implications.

12.6.3 Simultaneous Tests in Contingency Tables

In r × c contingency tables, there is frequently interest in comparing subsets of the tables.

Goodman [1964a,b] derived the large sample form for 100(1 − α)% simultaneous contrasts for
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Table 12.12 Interaction Analysis: Data for Four MR. FIT Subgroups

No. of Coronary Death/No. of Men

Hypertension ECG Abnormality Special Intervention (%) Usual Care (%) Odds Ratio

No No 24/1817 (1.3) 30/1882 (1.6) 0.83

No Yes 11/592 (1.9) 15/583 (2.6) 0.72

Yes No 44/2785 (1.6) 58/2808 (2.1) 0.76

Yes Yes 36/1233 (2.9) 21/1185 (1.8) 1.67

all 2 × 2 comparisons. This is equivalent to examining all

(

r

2

)(

c

2

)

possible odds ratios.

The intervals are constructed in terms of the logarithms of the ratio. Let

ω̂ = log n

ij

+ log n

i

′
j

′ − log n

i

′
j

− log n

ij

be the log odds associated with the frequencies indicated. In Chapter 7 we showed that the

approximate variance of this statistic is

σ̂

2
ω̂

.

=

1

n

ij

+

1

n

i

′
j

′

+

1

n

i

′
j

+

1

n

ij

′

Simultaneous 100(1 − α)% confidence intervals are of the form

ω̂ ±

√

χ

2
(r−1)(c−1),(1−α)

σ̂

ω̂

This again is of the same form as the Scheffé approach, but now based on the chi-square

distribution rather that the F -distribution. The price, again, is fairly steep. At the 0.05 level and

a 6 × 6 contingency table, the critical value of the chi-square statistic is

√

χ

2
25,0.95 =

√

37.65 = 6.14

Of course, there are

(

6

2

)(

6

2

)

= 225 such tables. It may be more efficient to use the

Bonferroni inequality. In the example above, the corresponding Z-value using the Bonferroni

inequality is

Z1−0.025/225 = Z0.999889
.

= 3.69

So if only 2 × 2 tables are to be examined, the Bonferroni approach will be more economical.

However, the Goodman approach works and is valid for all linear contrasts. See Goodman

[1964a,b] for additional details.

12.6.4 Regulatory Statistics and Game Theory

In reviewing newly developed pharmaceuticals, the Food and Drug Administration, takes a very

strong view on multiple comparisons and on control of Type I error, much stronger than we

have taken in this chapter. Regulatory decision making, however, is a special case because it is

in part adversarial. Statistical decision theory deals with decision making under uncertainty and

is appropriate for scientific research, but is insufficient as a basis for regulation.

The study of decision making when dealing with multiple rational actors who do not have

identical interests is called game theory. Unfortunately, it is much more complex than statistical

decision theory. It is clear that FDA policies affect the supply of new treatments not only through
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their approval of specific products but also through the resulting economic incentives for various

sorts of research and development, but it is not clear how to go from this to an assessment of

the appropriate p-values.

12.6.5 Summary

Post hoc comparisons should usually be considered exploratory rather than confirmatory, but

this rule should not be followed slavishly. It is clear that some adjustment to the significance

level must be made to maintain the validity of the statistical procedure. In each instance the

p-value will be adjusted upward. The question is whether this should be done by a formal

adjustment, and if so, what groups of hypotheses should the fixed Type I error be divided over.

One important difficulty in specifying how to divide up the Type I error is that different readers

may group hypotheses differently. It is also important to remember that controlling the total

Type I error unavoidably increases the Type II error. If your conclusions are that an exposure

makes no difference, these conclusions are weakened, rather than strengthened, by controlling

Type I error.

When reading research reports that include post hoc analyses, it is prudent to keep in mind

that in all likelihood, many such analyses were tried by the authors but not reported. Thus,

scientific caution must be the rule. To be confirmatory, results from such analyses must not only

make excellent biological sense but must also satisfy the principle of Occam’s razor. That is,

there must not be a simpler explanation that is also consistent with the data.

NOTES

12.1 Orthogonal Contrasts

Orthogonal contrasts form a special group of contrasts. Consider two contrasts:

θ1 = c11β1 + · · · + c1p

β

p

and

θ2 = c21β1 + · · · + c2p

β

p

The two contrasts are said to be orthogonal if

p

∑

j=1

c1j

c2j

= 0

Clearly, if θ1, θ2 are orthogonal, then ̂

θ1, ̂

θ2 will be orthogonal since orthogonality is a property

of the coefficients. Two orthogonal contrasts are orthonormal if, in addition,

∑

c

2
1j

=

∑

c

2
2j

= 1

The advantage to considering orthogonal (and orthonormal) contrasts is that they are uncor-

related, and hence, if the observations are normally distributed, the contrasts are statistically

independent. Hence, the Bonferroni inequality becomes an equality. But there are other advan-

tages. To see those we extend the orthogonality to more than two contrasts. A set of contrasts

is orthogonal (orthonormal) if all pairs of contrasts are orthogonal (orthonormal).

Now consider the one-way analysis of variance with I treatments. There are I − 1 degrees

of freedom associated with the treatment effect. It can be shown that there are precisely I − 1

orthogonal contrasts to compare the treatment means. The set is not unique; let θ1, θ2, . . . , θ

I−1
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form a set of such contrasts. Assume that they are orthonormal, and let ̂

θ1,
̂

θ2, . . . ,

̂

θ

I−1 be the

estimate of the orthonormal contrasts. Then it can be shown that

SSTREATMENTS = ̂

θ

2
1 + ̂

θ

2
2 + · · · + ̂

θ

2
I−1

We have thus partitioned the SSTREATMENTS into I − 1 components (each with one degree of

freedom, it turns out) and uncorrelated as well. This is a very nice summary of the data. To

illustrate this approach, assume an experiment with four treatments. Let the means be µ1, µ2,

µ3, µ4. A possible set of contrasts is given by the following pattern:

Contrast µ1 µ2 µ3 µ4

θ1 1/

√

2 −1/

√

2 0 0

θ2 1/

√

6 1/

√

6 −2/

√

6 0

θ3 1/

√

12 1/

√

12 1/

√

12 −3/

√

12

You can verify that:

• These contrasts are orthonormal.

• There are no additional orthogonal contrasts.

•
θ

2
1 + θ

2
2 + θ

2
3 =

∑

(µ

i

− µ)

2.

The pattern can clearly be extended to any number of means (it is known as the Gram-Schmidt

orthogonalization process).

The nonuniqueness of this decomposition becomes obvious from starting the first contrast,

say, with

θ

∗

1 =

1
√

2
µ1 −

1
√

2
µ4

Sometimes a meaningful set of orthogonal contrasts can be used to summarize an experiment.

This approach, using the statistical independence to determine the significance level, will mini-

mize the cost of multiple testing. Of course, if these contrasts were carefully specified beforehand,

you might argue that each one should be tested at level α!

12.2 Tukey Test

The assumptions underlying the Tukey test include that the variances of the means are equal; this

translates into equal sample sizes in the analysis of variance situation. Although the procedure is

commonly associated with pairwise comparisons among independent means, it can be applied to

arbitrary linear combinations and even allows for a common correlation among the means. For

further discussion, see Miller [1981, pp. 37–48]. There are extensions of the Tukey test similar

in principle to the Holm extension of the Bonferroni adjustment. These are built on the idea of

sequential testing. Suppose that we have tested the most extreme pair of means and rejected the

hypothesis that they are the same. There are two possibilities:

1. The null hypothesis is actually false, in which case we have not used any Type I error.

2. The null hypothesis is actually true, which happens with probability less than α.

In either case, if we now perform the next-most extreme test we can ignore the fact that we have

already done one test without affecting the per experiment Type I error. The resulting procedure

is called the Newman–Keuls or Student–Newman–Keuls test and is available in many statistical

packages.
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12.3 Likelihood Principle

The likelihood principle is a philosophical principle in statistics which says that all the evidence

for or against a hypothesis is contained in the likelihood ratio. It can be derived in various ways

from intuitively plausible assumptions. The likelihood principle implies that the evidence about

one hypothesis does not depend on what other hypotheses were investigated. One view of this

is that it shows that multiple comparison adjustment is undesirable; another is that it shows

the that likelihood principle is undesirable. A fairly balanced discussion of these issues can be

found in Stuart et al. [1999].

There is no entirely satisfactory resolution to this conflict, which is closely related to the

question of what counts as an experiment for the per experiment error rate. One possible res-

olution is to conclude that the main danger in the multiple comparison problem comes from

incomplete publication. That is, the danger is more that other people will be misled than that you

yourself will be misled (see also Problem 12.13). In this case the argument from the likelihood

principle does not hold in any simple form. The relevant likelihood would now be the likelihood

of seeing the results given the selective reporting process as well as the randomness in the data,

and this likelihood does depend on what one does with multiple comparisons. This intermediate

position suggests that multiple comparison adjustments are critical primarily when only selected

results of an exploratory analysis are reported.

PROBLEMS

For the problems in this chapter, the following tasks are defined. Additional tasks are indicated

in each problem. Unless otherwise indicated, assume that α

∗
= 0.05.

(a) Calculate simultaneous confidence intervals as discussed in Section 12.2. Graph

the intervals and state your conclusions.

(b) Apply the Scheffé method. State your conclusions.

(c) Apply the Tukey method. State your conclusions.

(d) Apply the Bonferroni method. State your conclusions.

(e) Compare the methods indicated. Which result is the most reasonable?

12.1 This problem deals with Problem 10.1. Use a 99% confidence level.

(a) Carry out task (a).

(b) Compare your results with those obtained in Section 12.3.2.

(c) A more powerful test can be obtained by considering the groups to be ranked

in order of increasingly severe disorder. A test for trend can be carried out by

coding the groups 1, 2, 3, and 4 and regressing the percentage morphine bound

on the regressor variable and testing for significance of the slope. Carry out this

test and describe its pros and cons.

(d) Carry out task (c) using the approximation recommended in Section 12.3.3.

(e) Carry out task (e).

12.2 This problem deals with Problem 10.2.

(a) Do tasks (a) through (e) for pairwise comparisons of all treatment effects.

12.3 This problem deals with Problem 10.3.

(a) Do tasks (a) through (d) for all pairwise comparisons.

(b) Do task (c) defined in Problem 12.1.

(c) Do task (e).
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12.4 This problem deals with Problem 10.4.

(a) Do tasks (a) through (e) setting up simultaneous confidence intervals on both

main effects and all pairwise comparisons.

(b) A further comparison of interest is control vs. shock. Using the Scheffé approach,

test this effect.

(c) Summarize the results from this experiment in a short paragraph.

12.5 Sometimes we are interested in comparing several treatments against a standard treat-

ment. Dunnett [1954] has considered this problem. If there are I groups, and group 1

is the standard group, I − 1 comparisons can be made at level 1 − α/2(I − 1) to

maintain a per experiment error rate of α. Apply this approach to the data of Bruce

et al. [1974] in Section 12.2 by comparing groups 2, . . . , 8 with group 1, the healthy

individuals. How do your conclusions compare with those of Section 12.2?

12.6 This problem deals with Problem 10.6.

(a) Carry out tasks (a) through (e).

(b) Suppose that we treat these data as a regression problem (as suggested in

Chapter 10). Does it still make sense to test the significance of the differ-

ence of adjacent means? Why or why not? What if the trend was nonlin-

ear?

12.7 This problem deals with Problem 10.7.

(a) Carry out tasks (a) through (e).

12.8 This problem deals with Problem 10.8.

(a) Carry out tasks (b), (c), and (d).

(b) Of particular interest are the comparisons of each of the test preparations A

through D with the standard insulin. The “medium” treatment is not relevant for

this analysis. How does this alter task (d)?

(c) Why would it not be very wise to ignore the “medium” treatment totally? What

aspect of the data for this treatment can be usefully incorporated into the analysis

in part (b)?

12.9 This problem deals with Problem 10.9.

(a) Compare each of the means of the schizophrenic group with the control group

using S, T, and B methods.

(b) Which method is preferred?

12.10 This problem deals with Problem 10.10.

(a) Carry out tasks (b) through (e) on the plasma concentration of 45 minutes, com-

paring the two treatments with controls.

(b) Carry out tasks (b) through (d) on the difference in the plasma concentration at

90 minutes and 45 minutes (subtract the 45-minute reading from the 90-minute

reading). Again, compare the two treatments with controls.

(c) Synthesize the conclusions of parts (a) and (b).

(d) Can you think of a “nice” graphical way of presenting part (c)?



546 MULTIPLE COMPARISONS

(e) Consider parts (a) and (b) combined. From a multiple-comparison point of view,

what criticism could you level at this combination? How would you resolve it?

12.11 Data for this problem are from a paper by Winick et al. [1975]. The paper examines the

development of adopted Korean children differing greatly in early nutritional status.

The study was a retrospective study of children admitted to the Holt Adoption Service

and ultimately placed in homes in the United States. The children were divided into

three groups on the basis of how their height, at the time of admission to Holt, related

to a reference standard of normal Korean children of the same age:

• Group 1. designated “malnourished”—below the third percentile for both height and

weight.

• Group 2. “moderately nourished”—from the third to the twenty-fourth percentile for

both height and weight.

• Group 3.“well-nourished or control”—at or above the twenty-fifth percentile for both

height and weight.

Table 12.13 has data from this paper.

Table 12.13 Current Height (Percentiles, Korean Reference Standard) Comparison of Three

Nutrition Groupsa

t-Test
Group N Mean Percentile SD F Probability Contrast Group t P

1 41 71.32 24.98 0.068 1 vs. 2 −1.25 0.264

2 50 76.86 21.25 1 vs. 3 −2.22 0.029b

3 47 82.81 23.26 2 vs. 3 −1.31 0.194

Total 138 77.24 23.41

aF probability is the probability that the F calculated from the one-way anova ratio would occur by chance
bStatistically significant.

(a) Carry out tasks (a) through (e) for all pairwise comparisons and state your con-

clusions.

(b) Read the paper, then compare your results with that of the authors.

(c) A philosophical point may be raised about the procedure of the paper. Since the

overall F -test is not significant at the 0.05 level (see Table 12.13), it would seem

inappropriate to “fish” further into the data. Discuss the pros and cons of this

argument.

(d) Can you suggest alternative, more powerful analyses? (What is meant by “more

powerful”?)

12.12 Derive equation (1). Indicate clearly how the independence assumption and the null

hypotheses are crucial to this result.

12.13 A somewhat amusing—but also serious—example of the multiple comparison prob-

lem is the following. Suppose that a journal tends to accept only papers that show

“significant” results. Now imagine multiple groups of independent researchers (say, 20

universities in the United States and Canada) all working on roughly the same topic
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and hence testing the same null hypothesis. If the null hypothesis is true, we would

expect only one of the researchers to come up with a “significant” result. Knowing

the editorial policy of the journal, the 19 researchers with nonsignificant results do not

bother to write up their research, but the remaining researcher does. The paper is well

written, challenging, and provocative. The editor accepts the paper and it is published.

(a) What is the per experiment error rate? Assume 20 independent researchers.

(b) Define an appropriate editorial policy in view of an unknown number of com-

parisons.

12.14 This problem deals with the data of Problem 10.13. The primary interest in these data

involves comparisons of three treatments; that is, the experiments represent blocks.

Carry out tasks (a) through (e) focusing on comparison of the means for tasks (b)

through (d).

12.15 This problem deals with the data of Problem 10.14.

(a) Carry out the Tukey test for pairwise comparisons on the total analgesia score

presented in part (b) of that question. Translate your answers to obtain confidence

intervals applicable to single readings.

*(b) The sum of squares for analgesia can be partitioned into three orthogonal contrasts

as follows:

µ1 µ2 µ3 µ4 Divisor

θ1 −1 −1 −1 3
√

12

θ2 1 −1 −1 1
√

4

θ3 −1 3 −3 1
√

20

(c) Verify that these contrasts are orthogonal. If the coefficients are divided by the

divisors at the right, verify that the contrasts are orthonormal.

*(d) Interpret the contrasts θ1, θ2, θ3 defined in part (b).

*(e) Let ̂

θ1, ̂

θ2, ̂

θ3 be the estimates of the orthonormal contrasts. Verify that

SSTREATMENTS = ̂

θ

2
1 + ̂

θ

2
2 + ̂

θ

2
3

Test the significance of each of these contrasts and state your conclusion.

12.16 This problem deals with Problem 10.15.

(a) Carry out tasks (b) through (e) on all pairwise comparisons of treatment means.

*(b) How would the results in part (a) be altered if the Tukey test for additivity is

used? Is it worth reanalyzing the data?

12.17 This problem deals with Problem 10.16.

(a) Carry out tasks (b) through (e) on the treatment effects and on all pairwise

comparisons of treatment means.

*(b) Partition the sums of squares of treatments into two pieces, a part attributable

to linear regression and the remainder. Test the significance of the regression,

adjusting for the multiple comparison problem.
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*12.18 This problem deals with the data of Problem 10.18.

(a) We are going to “mold” these data into a regression problem as follows; define

six dummy variables I1 to I6.

I

i

=

{

1, data from subject i, i = 1, . . . , 6

0, otherwise

In addition, define three further dummy variables:

I7 =

{

1, recumbent position

0, otherwise

I8 =

{

1, placebo

0, otherwise

I9 = I7 × I8

(b) Carry out the regression analyses of part (a) forcing in the dummy variables

I1 to I6 first. Group those into one SS with six degrees of freedom. Test the

significance of the regression coefficients of I7, I8, I9 using the Scheffé proce-

dure.

(c) Compare the results of part (c) of Problem 10.18 with the analysis of part (b).

How can the two analyses be reconciled?

12.19 This problem deals with the data of Example 10.5 and Problem 10.19.

(a) Carry out tasks (c) and (d) on pairwise comparisons.

(b) In the context of the Friedman test, suggest a multiple-comparison approach.

12.20 This problem deals with Problem 10.4.

(a) Set up simultaneous 95% confidence intervals on the three regression coefficients

using the Scheffé method.

(b) Use the Bonferroni method to construct comparable 95% confidence intervals.

(c) Which method is preferred?

(d) In regression models, the usual tests involve null hypotheses of the form H0: β

i

=

0, i = 1, . . . , p. In general, how do you expect the Scheffé method to behave

as compared with the Bonferroni method?

(e) Suppose that we have another kind of null hypothesis, for example, H0: β1 =

β2 = β3 = 0. Does this create a multiple-comparison problem? How would you

test this null hypothesis?

(f) Suppose that we wanted to test, simultaneously, two null hypotheses, H0: β1 =

β2 = 0 and H0: β3 = 0. Carry out this test using the Scheffé procedure. State

your conclusion. Also use nested hypotheses; how do the two tests compare?

*12.21 (a) Verify that the contrasts defined in Problem 10.18, parts (c), (d), and (e) are

orthogonal.

(b) Define another set of orthogonal contrasts that is also meaningful. Verify that

SSTREATMENTS can be partitioned into three sums of squares associated with this

set. How do you interpret these contrasts?
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C H A P T E R 13

Discrimination and Classification

13.1 INTRODUCTION

Discrimination or classification methods attempt to use measured characteristics to divide people

or objects into prespecified groups. As in regression modeling for prediction in Chapter 11,

the criteria for assessing classification models are accuracy of prediction and possibly cost of

measuring the relevant characteristics. There need not be any relationship between the model

and the actual causal processes involved. The computer science literature refers to classification

as supervised learning, as distinguished from cluster analysis or unsupervised learning, in which

groups are not prespecified and must be discovered as part of the analysis. We discuss cluster

analysis briefly in Note 13.5.

In this chapter we discuss the general problem of classification. We present two simple tech-

niques, logistic and linear discrimination, and discuss how to choose and evaluate classification

models. Finally, we describe briefly a number of more modern classification methods and give

references for further study.

13.2 CLASSIFICATION PROBLEM

In the classification problem we have a group variable Y for each individual, taking values

1, 2, . . . , K , called classes, and a set of characteristics X1, X2, . . . , X

p

. Both X and Y are

observed for a training set of data, and the goal is to create a rule to predict Y from X for new

observations and to estimate the accuracy of these predictions.

The most common examples of classification problems in biostatistics have just two classes:

with and without a given disease. In screening and diagnostic testing, the classes are based on

whether the disease is currently present; in prognostic models, the classes are those who will

and will not develop the disease over some time frame.

For example, the Framingham risk score [Wilson et al., 1998] is used widely to determine

the probability of having a heart attack over the next 10 years based on blood pressure, age,

gender, cholesterol levels, and smoking. It is a prognostic model used in screening for heart

disease risk, to help choose interventions and motivate patients. Various diagnostic classification

rules also exist for coronary heart disease. A person presenting at a hospital with chest pain may

be having a heart attack, in which case prompt treatment is needed, or may have muscle strain

or indigestion-related pain, in which case the clot-dissolving treatments used for heart attacks

would be unnecessary and dangerous. The decision can be based on characteristics of the pain,

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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blood enzyme levels, and electrocardiogram abnormalities. Finally, for research purposes it is

often necessary to find cases of heart attack from medical records. This retrospective diagnosis

can use the same information as the initial diagnosis and later follow-up information, including

the doctors’ conclusions at the time of discharge from a hospital.

It is useful to separate the classification problem into two steps:

1. Estimate the probability p

k

that Y = k.

2. Choose a predicted class based on these probabilities.

It might appear that the second step is simply a matter of choosing the most probable class,

but this need not be the case when the consequences of making incorrect decisions depend on

the decision. For example, in cancer screening a false positive, calling for more investigation

of what turns out not to be cancer, is less serious than a false negative, missing a real case

of cancer. About 10% of women are recalled for further testing after a mammogram [Health

Canada, 2001], but the great majority of these are false positives and only 6 to 7% of these

women are diagnosed with cancer.

The consequences of misclassification can be summarized by a loss function L(j, k), which

gives the relative seriousness of choosing class j when in fact class k is the correct one. The

loss function is defined to be zero for a correct decision and positive for incorrect decisions.

If L(j, k) has the same value for all incorrect decisions, the correct strategy is to choose the

most likely class. In some cases these losses might be actual monetary costs; in others the losses

might be probabilities of dying as a result of the decision, or something less concrete. What the

theory requires is that a loss of 2 is twice as bad as a loss of 1. In Note 13.3 we discuss some

of the practical and philosophical issues involved in assigning loss functions.

Finally, the expected proportion in each class may not be the same in actual use as in training

data. This imbalance may be deliberate: If some classes are very rare, it will be more efficient

if they are overrepresented in the training data. The imbalance may also be due to a variation

in frequency of classes between different times or places; for example, the relative frequency

of common cold and influenza will depend on the season. We will write π

k

for the expected

proportion in class k if it is specified separately from the training data. These are called prior

probabilities.

Given a large enough training set, the classification problem is straightforward (assume

initially that we do not have separately specified proportions π

k

). For any new observations

with characteristics x1, . . . , x

p

, we find all the observations in the training set that have exactly

the same characteristics and estimate p

k

, the probability of being in class k, as the proportion

of these observations that are in class k.

Now that we have probabilities for each class k, we can compute the expected loss for each

possible decision. Suppose that there are two classes and we decide on class 1. The probability

that we are correct is p1, in which case there is no loss. The probability that we are incorrect is

p2, in which case the loss is L(1, 2). So the expected loss is 0 ×p1 +L(1, 2)×p2. Conversely,

if we decide on class 2, the expected loss is L(2, 1)×p1 +0×p2. We should choose whichever

class has the lower expected loss. Even though we are assuming unlimited amounts of training

data, the expected loss will typically not be zero. Problems where the loss can be reduced to

zero are called noiseless. Medical prediction problems are typically very noisy.

Bayes’ theorem, discussed in Chapter 6, now tells us how to incorporate separately specified

expected proportions (prior probabilities) into this calculation: We simply multiply p1 by π1,

p2 by π2, and so on. The expected loss from choosing class 1 is 0×p1 ×π1 +L(1, 2)×p2 ×π2.

Classification is more difficult when we do not have enough training data to use this simple

approach to estimation, or when it is not feasible to keep the entire training set available for

making predictions. Unfortunately, at least one of these limitations is almost always present. In

this chapter we consider only the first problem, the most important in biostatistical applications.

It is addressed by building regression models to estimate the probabilities p

k

and then following

the same strategy as if p

k

were known. The accuracy of prediction, and thus the actual average
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loss, will be greater than in our ideal setting. The error rates in the ideal setting give a lower

bound on the error rates attainable by any model; if these are low, improving a model may have

a large payoff; if they are high, no model can predict well and improvements in the model may

provide little benefit in error rates.

13.3 SIMPLE CLASSIFICATION MODELS

Linear and logistic models for classification have a long history and often perform reasonably

well in clinical and epidemiologic classification problems. We describe them for the case of

two classes, although versions for more than two classes are available. Linear and logistic

discrimination have one important restriction in common: They separate the classes using a

linear combination of the characteristics.

13.3.1 Logistic Regression

Example 13.1. Pine et al. [1983] followed patients with intraabdominal sepsis (blood poison-

ing) severe enough to warrant surgery to determine the incidence of organ failure or death (from

sepsis). Those outcomes were correlated with age and preexisting conditions such as alcoholism

and malnutrition. Table 13.1 lists the patients with the values of the associated variables. There

are 21 deaths in the set of 106 patients. Survival status is indicated by the variable Y . Five

potential predictor variables: shock, malnutrition, alcoholism, age, and bowel infarction were

labeled X1, X2, X3, X4, and X5, respectively. The four variables X1, X2, X3, and X5 were

binary variables, coded 1 if the symptom was present and 0 if absent. The variable X4 = age in

years, was retained as a continuous variable. Consider for now just variables Y and X1; a 2 × 2

table could be formed as shown in Table 13.2.

With this single variable we can use the simple approach of matching new observations

exactly to the training set. For a patient with shock, we would estimate a probability of death

of 7/10 = 0.70; for a patient without shock, we would estimate a probability of 14/96 = 0.15.

Once we start to incorporate the other variables, this simple approach will break down.

Using all four binary variables would lead to a table with 25 cells, and each cell would have

too few observations for reliable estimates. The problem would be enormously worse when age

is added to the model—there might be no patient in our training set who was an exact match

on age.

We clearly need a way to simplify the model. One approach is to assume that to a reasonable

approximation, the effect of one variable does not depend on the values of other variables,

leading to a linear regression model:

P(death) = π = α + β1X1 + β2X2 + · · · + β5X5

This model is unlikely to be ideal: If having shock increases the risk of death by 0.55, and

the probability can be no larger than 1, the effects of other variables are severely limited. For

this reason it is usual to transform the probability to a scale that is not limited by 0 and 1.

The most common reexpression of π leads to the logistic model

log
e

π

1 − π

= α + β1X1 + β2X2 + · · · + β5X5 (1)

commonly written as

logit(π) = α + β1X1 + β2X2 + · · · + β5X5 (2)
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Table 13.1 Survival Status of 106 Patients Following Surgery and Associated Preoperative

Variablesa

ID Y X1 X2 X3 X4 X5 ID Y X1 X2 X3 X4 X5

1 0 0 0 0 56 0 301 1 0 1 0 50 1

2 0 0 0 0 80 0 302 0 0 0 0 20 0

3 0 0 0 0 61 0 303 0 0 0 0 74 1

4 0 0 0 0 26 0 304 0 0 0 0 54 0

5 0 0 0 0 53 0 305 1 0 1 0 68 0

6 1 0 1 0 87 0 306 0 0 0 0 25 0

7 0 0 0 0 21 0 307 0 0 0 0 27 0

8 1 0 0 1 69 0 308 0 0 0 0 77 0

9 0 0 0 0 57 0 309 0 0 1 0 54 0

10 0 0 1 0 76 0 401 0 0 0 0 43 0

11 1 0 0 1 66 1 402 0 0 1 0 27 0

12 0 0 0 0 48 0 501 1 0 1 1 66 1

13 0 0 0 0 18 0 502 0 0 1 1 47 0

14 0 0 0 0 46 0 503 0 0 0 1 37 0

15 0 0 1 0 22 0 504 0 0 1 0 36 1

16 0 0 1 0 33 0 505 1 1 1 0 76 0

17 0 0 0 0 38 0 506 0 0 0 0 33 0

19 0 0 0 0 27 0 507 0 0 0 0 40 0

20 1 1 1 0 60 1 508 0 0 1 0 90 0

22 0 0 0 0 31 0 510 0 0 0 1 45 0

102 0 0 0 0 59 1 511 0 0 0 0 75 0

103 0 0 0 0 29 0 512 1 0 0 1 70 1

104 0 1 0 0 60 0 513 0 0 0 0 36 0

105 1 1 0 0 63 1 514 0 0 0 1 57 0

106 0 0 0 0 80 0 515 0 0 1 0 22 0

107 0 0 0 0 23 0 516 0 0 0 0 33 0

108 0 0 0 0 71 0 518 0 0 1 0 75 0

110 0 0 0 0 87 0 519 0 0 0 0 22 0

111 1 1 1 0 70 0 520 0 0 1 0 80 0

112 0 0 0 0 22 0 521 1 0 1 0 85 0

113 0 0 0 0 17 0 523 0 0 1 0 90 0

114 1 0 0 1 49 0 524 1 0 0 1 71 0

115 0 1 0 0 50 0 525 0 0 0 1 51 0

116 0 0 0 0 51 0 526 1 0 1 1 67 0

117 0 0 1 1 37 0 527 0 0 1 0 77 0

118 0 0 0 0 76 0 529 0 0 0 0 20 0

119 0 0 0 1 60 0 531 0 0 0 0 52 1

120 1 1 0 0 78 1 532 1 1 0 1 60 0

122 0 0 1 1 60 0 534 0 0 0 0 29 0

123 1 1 1 0 57 0 535 0 0 0 0 30 1

202 0 0 0 0 28 1 536 0 0 0 0 20 0

203 0 0 0 0 94 0 537 0 0 0 0 36 0

204 0 0 0 0 43 0 538 0 0 1 1 54 0

205 0 0 0 0 70 0 539 0 0 0 0 65 0

206 0 0 0 0 70 0 540 1 0 0 0 47 0

207 0 0 0 0 26 0 541 0 0 0 0 22 0

208 0 0 0 0 19 0 542 1 0 0 1 69 0

209 0 0 0 0 80 0 543 1 0 1 1 68 0

210 0 0 1 0 66 0 544 0 0 1 1 49 0

211 0 0 1 0 55 0 545 0 0 0 0 25 0

214 0 0 0 0 36 0 546 0 1 1 0 44 0

215 0 0 0 0 28 0 549 0 0 0 1 56 0

217 0 0 0 0 59 1 550 0 0 1 1 42 0

Source: Data from Pine et al. [1983].
aSee the text for labels.
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Table 13.2 2 × 2 Table for Survival by

Shock Status

Y

Death Survive

X1 1 0

Shock 1 7 3 10

No Shock 0 14 82 96

21 85 106

Four comments are in order:

1. The logit of p has range (−∞,∞). The following values can easily be calculated:

logit(1) = +∞

logit(0) = −∞

logit(0.5) = 0

2. If we solve for π , the expression that results is

π =

e

α+β1X1+···+β5X5

1 + e

α+β1X1+···+β5X5
=

1

1 + e

−(α+β1X1+···+β5X5)
(3)

3. We will write a for the estimate of α, b1 for the estimate of β1, and so on. Our estimated

probability of death is obtained by inserting these values into equation (3) to get

̂

P(death) = a + b1X1 + b2X2 + · · · + b5X5

4. The estimates are obtained by maximum likelihood. That is, we choose the values of a,

b1, b2, . . . , b5 that maximize the probability of getting the death and survival values

that we observed. In the simple situation where we can estimate a probability for each

possible combination of characteristics, maximum likelihood gives the same answer as

our rule of using the observed proportions. Note 13.1 gives the mathematical details. Any

general-purpose statistical program will perform logistic regression.

We can check that with a single variable, logistic regression gives the same results as our

previous analysis. In the previous analysis we used only the variable X1, the presence of shock.

If we fit this model to the data, we get

logit(π̂) = −1.768 + 2.615X1

If X1 = 0 (i.e., there is no shock),

logit(π̂) = −1.768

or

π̂ =

1

1 + e

−(−1.768)

= 0.146



SIMPLE CLASSIFICATION MODELS 555

If X1 = 1 (i.e., there is shock),

logit(π̂) = −1.768 + 2.615 = 0.847

π̂ =

1

1 + e

−0.847
= 0.700

This is precisely the probability of death given no preoperative shock. The coefficient of X1,

2.615, also has a special interpretation: It is the logarithm of the odds ratio and the quantity

e

b1 = e

2.615
= 13.7 is the odds ratio associated with shock (as compared to no shock). This can

be shown algebraically to be the case (see Problem 13.1).

Example 13.1. (continued ) We now continue the analysis of the data of Pine et al. listed

in Table 13.1. The output and calculations shown in Table 13.3 can be generated for all the

variables. We would interpret these results as showing that in the presence of the remaining

variables, malnutrition, is not an important predictor of survival status. All the other variables

are significant predictors of survival status. All but variable X4 are discrete binary variables.

If malnutrition is dropped from the analysis, the estimates and standard errors are as given in

Table 13.4.

If π̂ is the predicted probability of death, the equation is

logit(π̂) = −8.895 + 3.701X1 + 3.186X3 + 0.08983X4 + 2.386X5

For each of the values of X1, X3, X5 (a total of eight possible combinations), a regression

curve can be drawn for logit(π̂) vs. age. In Figure 13.1 the lines are drawn for each of the eight

combinations. For example, corresponding to X1 = 1 (shock present), X3 = 0 (no alcoholism),

and X5 = 0 (no infarction), the line

Table 13.3 Logistic Regression for Example 13.1

Regression Standard

Variable Coefficient Error Z-Value p-Value

Intercept −9.754 2.534 — —

X1 (shock) 3.674 1.162 3.16 0.0016

X2 (malnutrition) 1.217 0.7274 1.67 0.095

X3 (alcoholism) 3.355 0.9797 3.43 0.0006

X4 (age) 0.09215 0.03025 3.04 0.0023

X5 (infarction) 2.798 1.161 2.41 0.016

Table 13.4 Estimates and Standard

Errors for Example 13.1

Regression Standard

Variable Coefficient Error

Intercept −8.895 2.314

X1 (shock) 3.701 1.103

X3 (alcoholism) 3.186 0.9163

X4 (age) 0.08983 0.02918

X5 (infarction) 2.386 1.071
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Figure 13.1 Logit of estimated probability of death as a function of age in years and category of status

of (X1, X3, X5). (Data from Pine et al. [1983].)
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Figure 13.2 Estimated probability of death as a function of age in years and selected values of

(X1, X3, X5). (Data from Pine et al. [1983].)

logit(π̂) = −8.895 + 3.701 + 0.08983X4

= −5.194 + 0.08983X4

is drawn.

This line is indicated by “(100)” as a shorthand way of writing (X1 = 1, X3 = 0, X5 = 0).

The eight lines seem to group themselves into four groups: the top line representing all three

symptoms present; the next three lines, groups with two symptoms present; the next three lines,

groups with one symptom present; and finally, the group at lowest risk with no symptoms

present. In Figure 13.2 the probability of death is plotted on the original probability scale; only

four of the eight groups have been graphed. The group at highest risk is the one with all three

binary risk factors present. One of the advantages of the model is that we can draw a curve for
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the situation with all three risk factors present even though there are no patients in that category;

but the estimate depends on the model. The curve is drawn on the assumption that the risks are

additive in the logistic scale (that is what we mean by a linear model). This assumption can be

partially tested by including interaction terms involving these three covariates in the model and

testing their significance. When this was done, none of the interaction terms were significant,

suggesting that the additive model is a reasonable one. Of course, as there are no patients with

all three risk factors present, there is no way to perform a complete test of the model.

13.3.2 Linear Discrimination

The first statistical approach to classification, as with so many other problems, was invented by

R. A. Fisher. Fisher’s linear discriminant analysis is designed for continuous characteristics that

have a normal distribution (in fact, a multivariate normal distribution; any sums or differences

of multiples of the variables should be normally distributed).

Definition 13.1. A set of random variables X1, . . . , X

k

is multivariate normal if every

linear combination of X1, . . . , X

k

has a normal distribution.

In addition, we assume that the variances and covariances of the characteristics are the same

in the two groups. Under these assumptions, Fisher’s method finds a combination of variables

(a discriminant function) for distinguishing the classes:

� = α + β1X1 + β2X2 + · · · + β

p

X

p

Assuming equal losses for different errors, an observation is assigned to class 1 if � > 0 and

class 2 if � < 0. Estimation of the parameters β again uses maximum likelihood. It is also

possible to compute probabilities p

k

for membership of each class using the normal cumulative

distribution function: p1 = �(�), p2 = 1 − �(�), where � is the symbol for the cumulative

normal distribution.

Because linear discrimination makes more assumptions about the structure of the X’s than

logistic regression does, it gives more precise estimates of its parameters and more precise pre-

dictions [Efron, 1975]. However, in most medical examples the uncertainty in the parameters

is a relatively small component of the overall prediction error, compared to model uncertainty

and to the inherent unpredictability of human disease. In addition to requiring extra assumptions

to hold, linear discrimination is likely to give substantial improvements only when the char-

acteristics determine the classes very accurately so that the main limitation is the accuracy of

statistical estimation of the parameters (i.e., a nearly “noiseless” problem).

The robustness can be explained by considering another equivalent way to define �. Let D1

and D2 be the mean of � in groups 1 and 2, respectively, and V be the variance of � within

each group (assumed to be the same). � is the linear combination that maximizes

(D1 − D2)
2

V

the ratio of the between-group and within-group variances.

Truett et al. [1967] applied discriminant analysis to the data of the Framingham study. This

was a longitudinal study of the incidence of coronary heart disease in Framingham, Mas-

sachusetts. In their prediction model the authors used continuous variables such as age (years)

and serum cholesterol (mg/100 mL) as well as discrete or categorical variables such as cigarettes

per day (0 = never smoked, 1 = less than one pack a day, 2 = one pack a day, 3 = more

than a pack a day) and ECG (0 = normal, 1 = certain kinds of abnormality). It was found

that the linear discriminant model gave reasonable predictions. Halperin [1971] came to five
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conclusions, which have stood the test of time. If the logistic model holds but the normality

assumptions for the predictor variables are violated, they concluded that:

1. β

i

that are zero will tend to be estimated as zero for large samples by the method of

maximum likelihood but not necessarily by the discrimination function method.

2. If any β

i

are nonzero, they will tend to be estimated as nonzero by either method, but

the discriminant function approach will give asymptotically biased estimates for those β

i

and for α.

3. Empirically, the assessment of significance for a variable, as measured by the ratio of the

estimated coefficient to its estimated standard error, is apt to be about the same whichever

method is used.

4. Empirically, the maximum likelihood method usually gives slightly better fits to the model

as evaluated from observed and expected numbers of cases per decile of risk.

5. There is a theoretical basis for the possibility that the discriminant function will give a

very poor fit even if the logistic model holds.

Some of these empirical conclusions are supported theoretically by Li and Duan [1989] and

Hall and Li [1993], who considered situations similar to this one, where a linear combination

� = β1X1 + β2X2 + · · · + β

p

X

p

is to be estimated under either of two models. They showed that under some assumptions about

the distribution of variables X, using the wrong model would typically lead to estimating

� = cβ1X1 + cβ2X2 + · · · + cβ

p

X

p

for some constant c. When these conditions apply, using linear discrimination would tend to

lead to a similar discriminant function � but to poor estimation of the actual class probabilities.

See also Knoke [1982]. Problems 13.4, 13.6, and 13.7 address some of these issues.

In the absence of software specifically designed for this method, linear discrimination can

be performed with software for linear regression. The details, which are of largely historical

interest, are given in Note 13.4.

13.4 ESTIMATING AND SUMMARIZING ACCURACY

When choosing between classification models or describing the performance of a model, it is

necessary to have some convenient summaries of the error rates. It is usually important to

distinguish between different kinds of errors, although occasionally a simple estimate of the

expected loss will suffice.

Statistical methodology is most developed for the case of two classes. In biostatistics, these

are typically presence and absence of disease.

13.4.1 Sensitivity and Specificity

In assigning people to two classes (disease and no disease) we can make two different types of

error:

1. Detecting disease when none is present

2. Missing disease when it is there

As in Chapter 6, we define the sensitivity as the probability of detecting disease given that

disease is present (avoiding an error of the first kind) and specificity as the probability of not

detecting disease given that no disease is present (avoiding an error of the second kind).
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The sensitivity and specificity are useful because they can be estimated from separate samples

of persons with and without disease, and because they often generalize well between populations.

However, in actual use of a classification rule, we care about the probability that a person has

disease given that disease was detected (the positive predictive value) and the probability that a

person is free of disease given that no disease was detected (the negative predictive value).

It is a common and serious error to confuse the sensitivity and the positive predictive value.

In fact, for a reasonably good test and a rare disease, the positive predictive value depends

almost entirely on the disease prevalence and on the specificity. Consider the mammography

example mentioned in Section 13.2. Of 1000 women who have a mammogram, about 100 will

be recalled for further testing and 7 of those will have cancer. The positive predictive value is

7%, which is quite low, not because the sensitivity of the mammogram is poor but because 93

of those 1000 women are falsely testing positive. Because breast cancer is rare, false positives

greatly outnumber true positives, regardless of how sensitive the test is.

When a single binary characteristic is all that is available, the sensitivity and specificity

describe the properties of the classification rule completely. When classification is based on a

summary criterion such as the linear discriminant function, it is useful to consider the sensitivity

and specificity based on a range of possible thresholds.

Example 13.2. Tuberculosis testing is important in attempts to control the disease, which

can be quite contagious but in most countries is still readily treatable with a long course of

antibiotics. Tests for tuberculosis involve injecting a small amount of antigen under the skin

and looking for an inflamed red area that appears a few days later, representing an active T-cell

response to the antigen. The size of this indurated area varies from person to person both because

of variations in disease severity and because of other individual factors. Some people with HIV

infection have no reaction even with active tuberculosis (a state called anergy). At the other

extreme, migrants from countries where the BCG vaccine is used will have a large response

irrespective of their actual disease status (and since the vaccine is incompletely effective, they

may or may not have disease).

The diameter of the indurated area is used to classify people as disease-free or possibly

infected. It is important to detect most cases of TB (high sensitivity) without too many false

positives being subjected to further investigation and unnecessary treatment (high positive pre-

dictive value). The diameter used to make the classification varies depending on characteristics

of the patient. A 5-mm induration is regarded as positive for close contacts of people with active

TB infection or those with chest x-rays suggestive of infection because the prior probability of

risk is high. A 5-mm induration is also regarded as positive for people with compromised

immune systems due to HIV infection or organ transplant, partly because they are likely to

have weaker T-cell responses (so a lower threshold is needed to maintain sensitivity) and partly

because TB is much more serious in these people (so the loss for a false negative is higher).

For people at moderately high risk because they are occupationally at higher risk or because

they come from countries where TB is common, a 10-mm induration is regarded as positive

(their prior probability is moderately elevated). The 10-mm rule is also used for people with

poor access to health care or those with diseases that make TB more likely to become active

(again, the loss for a false negative is higher in these groups).

Finally, for everyone else, a 15-mm threshold is used. In fact, the recommendation is that

they typically not even be screened, implicitly classifying everyone as negative.

Given a continuous variable predicting disease (whether an observed characteristic or a

summary produced by logistic or linear discrimination), we would like to display the sensitivity

and specificity not just for one threshold but for all possible thresholds. The receiver operating

characteristic (ROC) curve is such a display. It is a graph with “sensitivity” on the y-axis and

“1 − specificity” on the x-axis, evaluated for each possible threshold.

If the variable is completely independent of disease, the probability of detecting disease

will be the same for people with and without disease, so “sensitivity” and “1 − specificity”
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Figure 13.3 Receiver operating characteristic curve for data of Pine et al. [1983]. The solid line is the

prediction from all five variables; the dashed line is the prediction from age alone.

will be the same. This is indicated by a diagonal line in Figure 13.3. If higher values of the

variable are associated with higher risks of disease, the curve will lie above the diagonal line.

By convention, if lower values of the variable are associated with higher risks of disease, the

variable is transformed to reverse this, so ROC curves should always lie above the diagonal line.

The area under the ROC curve is a measure of how well the variable discriminates a disease

state: If you are given one randomly chosen person with disease and one randomly chosen

person without disease, the area under the ROC curve is the probability that the person with

disease has the higher value of the variable. The area under the ROC curve is a good analog

for binary data of the r

2 value for linear models.

Drawing the ROC curve for two classification rules allows you to compare their accuracy

at a range of different thresholds. It might be, for example, that two rules have very different

sensitivity when their specificity is low but very similar sensitivity when their specificity is high.

In that case, the rules would be equivalently useful in screening low-risk populations, where

specificity must be high, but might be very different in clinical diagnostic use.

13.4.2 Internal and External Error Rates

The internal or apparent or training or in-sample error rates are those obtained on the same data

as those used to fit the model. These always underestimate the true error rate, sometimes very

severely. The underestimation becomes more severe when many characteristics are available for

modeling, when the model is very flexible in form, and when the data are relatively sparse.

An extreme case is given by a result from computer science called the perceptron capacity

bound [Cover, 1965]. Suppose that there are d continuous characteristics and n observations

from two classes in the training set, and suppose that the characteristics are purely random,

having no real association whatsoever with the classes. The probability of obtaining an in-

sample error rate of zero for some classification rule based on a single linear combination of

characteristics is then approximately

1 − �

(

n − 2d

√

n

)

If d is large and n/d < 2, this probability will be close to 1. Even without considering non-

linear models and interactions between characteristics, it is quite possible to obtain an apparent

error rate of zero for a model containing no information whatsoever. Note that n/d > 2 does not

guarantee a good in-sample estimate of the error rate; it merely rules out this worst possible case.



ESTIMATING AND SUMMARIZING ACCURACY 561

Estimates of error rates are needed for model selection and in guiding the use of classification

models, so this is a serious problem. The only completely reliable solution is to compute the

error rate on a completely new sample of data, which is often not feasible.

When no separate set of data will be available, there are two options:

1. Use only part of the data for building the model, saving out some data for testing.

2. Use all the data for model building and attempt to estimate the true error rate statistically.

Experts differ on which of these is the best strategy, although the majority probably leans toward

the second strategy. The first strategy has the merit of simplicity and requires less programming

expertise. We discuss one way to estimate the true error rate, cross-validation, and one way to

choose between models without a direct error estimate, the Akaike information criterion.

13.4.3 Cross-Validation

Statistical methods to estimate true error rate are generally based on the idea of refitting a model

to part of the data and using the refitted model to estimate the error rate on the rest of the data.

Refitting the model is critical so that the data left out are genuinely independent of the model

fit. It is important to note that refitting ideally means redoing the entire model selection process,

although this is feasible only when the process was automated in some way.

In 10-fold cross-validation, the most commonly used variant, the data are randomly divided

into 10 equal pieces. The model is then refitted 10 times, each time with one of the 10 pieces left

out and the other nine used to fit the model. The classification errors (either the expected loss

or the false positive and false negative rates) are estimated for the left-out data from the refitted

model. The result is an estimate of the true error rate, since each observation has been classified

using a model fitted to data not including that observation. Clearly, 10-fold cross-validation

takes 10 times as much computer time as a single model selection, but with modern computers

this is usually negligible. Cross-validation gives an approximately unbiased estimate of the true

error rate, but a relatively noisy one.

13.4.4 Akaike’s Information Criterion

Akaike’s information criterion (AIC) [Akaike, 1973] is an asymptotic estimate of expected loss

for a particular loss function, one that is proportional to the logarithm of the likelihood. It is

extremely simple to compute but can only be used for models fitted by maximum likelihood and

requires great caution when used to compare models fitted by different modeling techniques. In

the case of linear regression, model selection with AIC is equivalent to model selection with

Mallow’s C

p

, discussed in Chapter 11, so it can be seen as a generalization of Mallow’s C

p

to

nonlinear models.

The primary difficulty in model selection is that increasing the number of variables always

decreases the apparent error rate even if the variables contain no useful information. The AIC

is based on the observation that for one particular loss function, the log likelihood, the decrease

depends only on the number of variables added to the model. If a variable is uninformative, it

will on average increase the log likelihood by 1 unit. When comparing model A to model B,

we can compute

log(likelihood of A) − log(likelihood of B)

−(no. parameters in A − no. parameters in B) (4)

If this is positive, we choose model A, if it is negative we choose model B. The AIC is most

often defined as

AIC = −2 log(likelihood of model) + 2(no. parameters in model) (5)
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so that choosing the model with the lower AIC is equivalent to our strategy based on equation (4).

Sometimes the AIC is defined without the factor of −2, in which case the largest value indicates

the best model: It is important to check which definition is being used.

Akaike showed that given two fixed models and increasing amounts of data, this criterion

would eventually pick the best model. When the number of candidate models is very large, like

the 2p models in logistic regression with p characteristics, AIC still tends to overfit to some

extent. That is, the model chosen by the AIC tends to have more variables than the best model.

In principle, the AIC can be used to compare models fitted by different techniques, but

caution is needed. The log likelihood is only defined up to adding or subtracting an arbitrary

constant, and different programs or different procedures within the same program may use

different constants for computational convenience. When comparing models fitted by the same

procedure, the choice of constant is unimportant, as it cancels out of the comparison. When

comparing models fitted by different procedures, the constant does matter, and it may be difficult

to find out what constant has been used.

13.4.5 Automated Stepwise Model Selection

Automated stepwise model selection has a deservedly poor reputation when the purpose of a

model is causal inference, as model choice should then be based on a consideration of the probable

cause-and-effect relationships between variables. When modeling for prediction, however, this is

unimportant: We do not need to know why a variable is predictive to know that it is predictive.

Most statistical packages provide tools that will automatically consider a set of variables

and attempt to find the model that gives the best prediction. Some of these use AIC, but more

commonly they use significance testing of predictors. Stepwise model selection based on AIC

can be approximated by significance-testing selection using a critical p-value of 0.15.

Example 13.3. We return to the data of Pine et al. [1983] and fit a logistic model by stepwise

search, optimizing the AIC. We begin with a model using none of the characteristics and giving

the same classification for everyone. Each of the five characteristics is considered for adding

to the model, and the one optimizing the AIC is chosen. At subsequent steps, every variable is

considered either for adding to the model or for removal from the model. The procedure stops

when no change improves the AIC.

This procedure is not guaranteed to find the best possible model but can be carried out much

more quickly than an exhaustive search of all possible models. It is at least as good as, and often

better than, forward or backward stepwise procedures that only add or only remove variables.

Starting with an empty model the possible changes were as follows:

d.f. Deviance AIC d.f. Deviance AIC

+ X4 1 90.341 94.341 + X5 1 97.877 101.877

+ X1 1 91.977 95.977 + X2 1 99.796 103.796

+ X3 1 95.533 99.533 <none> 105.528 107.528

The d.f. column counts the number of degrees of freedom for each variable (in this case,

one for each variable, but more than one if a variable had multiple categories). The deviance is

−2 log likelihood. The best (lowest AIC) choice was to add X4 (age). In the second step, X1

(shock) was added, and then X3 (alcoholism). The possible changes in the fourth step were:

d.f. Deviance AIC d.f. Deviance AIC

+ X5 1 56.073 66.073 − X4 1 76.970 82.970

<none> 61.907 69.907 − X3 1 79.088 85.088

+ X2 1 60.304 70.304 − X1 1 79.925 85.925
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Table 13.5 Step 1 Using Linear Discrimination

d.f. SS RSS AIC

+ X1 1 2.781 14.058 −210.144

+ X4 1 2.244 14.596 −206.165

+ X3 1 1.826 15.014 −203.172

+ X5 1 1.470 15.370 −200.691

+ X2 1 0.972 15.867 −197.312

<none> 16.840 −193.009

Table 13.6 Subsequent Steps Using Linear

Discrimination

d.f. SS RSS AIC

<none> 10.031 −239.922

+ X2 1 0.164 9.867 −239.673

− X5 1 0.733 10.764 −234.447

− X4 1 0.919 10.950 −232.627

− X3 1 1.733 11.764 −225.029

− X1 1 2.063 12.094 −222.095

and the lowest AIC came with adding X5 (infarction) to the model. Finally, adding X2 also

reduced the AIC, and no improvement could be obtained by deleting a variable, so the procedure

terminated. The model minimizing AIC uses all five characteristics.

We can perform the same classification using linear discrimination. The characteristics clearly

do not have a multivariate normal distribution, but it will be interesting to see how well the

robustness of the methods stands up in this example.

At the first step we have the data shown in Table 13.5.

For this linear model the residual sum of squares and the change in residual sum of squares

are given and used to compute the AIC. The first variable added is X1. In subsequent steps X3,

X4, and X5 are added, and then we have the data shown in Table 13.6.

The procedure ends with a model using the four variables X1, X3, X4, and X5. The fifth

variable (malnutrition) is not used. We can now compare the fitted values from the two models

shown in Figure 13.4. It is clear that both discriminant functions separate the surviving and

dying patients very well and that the two functions classify primarily the same people as being

at high risk. Looking at the ROC curves suggests that the logistic discriminant function is very

slightly better, but this conclusion could not be made reliably without independent data.

13.5 MODERN CLASSIFICATION TECHNIQUES

Most modern classification techniques are similar in spirit to automated stepwise logistic regres-

sion. A computer search is made through a very large number of possible models for p

k

, and

a criterion similar to AIC or an error estimate similar to cross-validation is used to choose a

model. All these techniques are capable of approximating any relationship between p

k

and X

arbitrarily well, and as a consequence will give very good prediction if n is large enough in

relation to p.

Modern classification techniques often produce “black-box” classifiers whose internal struc-

ture can be difficult to understand. This need not be a drawback: As the models are designed

for prediction rather than inference about associations, the opaqueness of the model reduces the
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Figure 13.4 Comparison of discriminant functions and ROC curves from logistic and linear models for

data of Pine et al. [1983]. Solid circles are deaths; open circles are survival. The solid line is the logistic

model; the dashed line is the linear model.

temptation to leap to unjustified causal conclusions. On the other hand, it can be difficult to

decide which variables are important in the classification and how strongly the predictions have

been affected by outliers. There is some current statistical research into ways of opening up the

black box, and techniques may become available over the next few years.

At the time of writing, general-purpose statistical packages often have little classification

functionality beyond logistic and linear discrimination. It is still useful for the nonspecialist to

understand the concepts behind some of these techniques; we describe two samples.

13.5.1 Recursive Partitioning

Recursive partitioning is based on the idea of classifying by making repeated binary decisions.

A classification tree such as the left side of Figure 13.5 is constructed step by step:

1. Search every value c of every variable X for the best possible prediction by X > c vs.

X ≤ c.

2. For each of the two resulting subsets of the data, repeat step 1.

In the tree displayed, each split is represented by a logical expression, with cases where the

expression is true going left and others going right, so in the first split in Figure 13.5 the cases

with white blood cell counts below 391.5 mL−1 go to the left.

An exhaustive search procedure such as this is sure to lead to overfitting, so the tree is then

pruned by snipping off branches. The pruning is done to minimize a criterion similar to AIC:

loss + CP × number of splits

The value of CP, called the cost-complexity penalty, is most often chosen by 10-fold cross-

validation (Section 13.4.3). Leaving out 10% of the data, a tree is grown and pruned with many

different values of CP. For each tree pruned, the error rate is computed on the 10% of data left

out. This is repeated for each of the ten 10% subsets of the data. The result is a cross-validation

estimate of the loss (error rate) for each value of CP, as in the right-hand side of Figure 13.5.
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Figure 13.5 Classification tree and cross-validated error rates for differential diagnosis of acute meningitis.

Because cross-validation is relatively noisy (see the standard error bars on the graph), we

choose the largest CP (smallest tree) that gives an error estimate within one standard error of

the minimum, represented by the horizontal dotted line on the graph.

Example 13.4. In examining these methods we use data from Spanos et al. [1989], made

available by Frank Harrell at a site linked from the Web appendix to the chapter. The classifica-

tion problem is to distinguish viral from bacterial meningitis, based on a series of 581 patients

treated at Duke University Medical Center. As immediate antibiotic treatment for acute bacterial

meningitis is often life-saving, it is important to have a rapid and accurate initial classification.

The definitive classification based on culturing bacteria from cerebrospinal fluid samples will

take a few days to arrive. In some cases bacteria can be seen in the cerebrospinal fluid, providing

an easy decision in favor of bacterial meningitis with good specificity but inadequate sensitivity.

The initial analysis used logistic regression together with transformations of the variables,

but we will explore other possibilities. We will use the following variables:

• AGE : in years

• SEX

• BLOODGL: glucose concentration in blood

• GL: glucose concentration in cerebrospinal fluid

• PR: protein concentration in cerebrospinal fluid

• WHITES : white blood cells per milliliter of cerebrospinal fluid

• POLYS : % of white blood cells that are polymorphonuclear leukocytes

• GRAM : result of Gram smear (bacteria seen under microscope): 0 negative, > 0 positive

• ABM : 1 for bacterial, 0 for viral meningitis

The original analysis left GRAM out of the model and used it only to override the predicted

classification if GRAM > 0. This is helpful because the variable is missing in many cases,

and because the decision to take a Gram smear appears to be related to suspicion of bacterial

meningitis.
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In the resulting tree, each leaf is labeled with the probability of bacterial meningitis for cases

ending up in that leaf. Note that they range from 1 down to 0.07, so that in some cases bacterial

meningitis is almost certain, but it is harder to be certain of viral meningitis.

It is interesting to note what happens when Gram smear status is added to the variable list

for growing a tree. It is by far the most important variable, and prediction error is distinctly

reduced. On the other hand, bacterial meningitis is predicted not only in those whose Gram smear

is positive, but also in those whose Gram smear is negative. Viral meningitis is predicted only

in a subset of those whose Gram smear is missing. If the goal of the model were to classify the

cases retrospectively from hospital records, this would not be a problem. However, the original

goal was to construct a diagnostic tool, where it is undesirable to have the prediction strongly

dependent on another physician choice. Presumably, the Gram smear was being ordered based

on other information available to the physician but not to the investigators.

Classification trees are particularly useful where there are strong interactions between char-

acteristics. Completely different variables can be used to split each subset of the data. In our

example tree, blood glucose is used only for those with high white cell counts and high glucose

in the cerebrospinal fluid. This ability is particularly useful when there are missing data.

On the other hand, classification trees do not perform particularly well when there are smooth

gradients in risk with a few characteristics. For example, the prediction of acute bacterial menin-

gitis can be improved by adding a new variable with the ratio of blood glucose to cerebrospinal

fluid glucose.

The best known version of recursive partitioning, and arguably the first to handle overfitting

carefully, is the CART algorithm of Breiman et al. [1984]. Our analysis used the free “rpart”

package [Therneau, 2002], which automates both fitting and the cross-validation analysis. It

follows the prescriptions of Breiman et al. [1984] quite closely.

A relatively nontechnical overview of recursive partitioning in biostatistics is given by Zhang

and Singer [1999]. More recently, techniques using multiple classification trees (bagging, boost-

ing, and random forests) have become popular and appear to work better with very large numbers

of characteristics than do other methods.

13.5.2 Neural Networks

The terminology neural network and the original motivation were based on a model for the

behavior of biological neurons in the brain. It is now clear that real neurons are much more

complicated, and that the fitting algorithms for neural networks bear no detailed relationship to

anything happening in the brain. Neural networks are still very useful black-box classification

tools, although they lack the miraculous powers sometimes attributed to them.

A computational neuron in a neural net is very similar to a logistic discrimination function.

It takes a list of inputs Z1, Z2, . . . , Z

m

and computes an output that is a function of a weighted

combination of the inputs, such as

logit(α + β1Z1 + · · · + β

m

Z

m

) (6)

There are many variations on the exact form of the output function, but this is one widely used

variation. It is clear from equation (6) that even a single neuron can reproduce any classification

from logistic regression.

The real power of neural network models comes from connecting multiple neurons together

in at least two layers, as shown in Figure 13.6. In the first layer the inputs are the characteristics

X1, . . . , X

p

. The outputs of these neurons form a “hidden layer” and are used as inputs to the

second layer, which actually produces the classification probability p

k

.

Example 13.5. A neural net fitted to the acute meningitis data has problems because of

missing observations. Some form of imputation or variable selection would be necessary for a



NOTES 567
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Figure 13.6 Simple neural network with three hidden nodes.

serious analysis of these data. We used the neural network package that accompanies Venables

and Ripley [2002], choosing a logistic output function and two hidden nodes (Z1 and Z2). That

is, the model was

logit(p) = −0.52 + 2.46Z1 − 2.31Z2

logit(Z1) = 0.35 + 0.11POLYS + 0.58WHITES − 0.31SEX + 0.39AGE

− 0.47GL − 2.02BLOODGL − 2.31PR

logit(Z2) = 0.22 + 0.66POLYS + 0.25WHITES − 0.06SEX + 0.31AGE

+ 0.03GL + 0.33BLOODGL − 0.02PR

The sensitivity of the classification was approximately 50% and the specificity nearly 90%.

Two hidden nodes is the minimum interesting number (one hidden node just provides a

transformation of a logistic regression model), and we did not want to use more than this

because of the relatively small size of the data set.

NOTES

13.1 Maximum Likelihood for Logistic Regression

The regression coefficients in the logistic regression model are estimated using the maximum

likelihood criterion. A full discussion of this topic is beyond the scope of this book, but in this

note we outline the procedure for the situation involving one covariate. Suppose first that we

have a Bernoulli random variable, Y , with probability function

P [Y = 1] = p

P [Y = 0] = 1 − p

A mathematical trick allows us to combine these into one expression:

P [Y = y] = p

y

(1 − p)

(1−y)
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using the fact that any number to the zero power is 1. We observe n values of Y, y1, y2, . . . , y

n

(a sequence of zeros and ones). The probability of observing this sequence is proportional to

n

∏

j=1

p

y

j

(1 − p)

1−y

j

= p

�y

j

(1 − p)

n−�y

j (7)

This quantity is now considered as a function of p and defined to be the likelihood. To emphasize

the dependence on p, we write

L

(

p|

∑

y

j

, n

)

= p

�y

j

(1 − p)

n−�y

j (8)

Given the value of
∑

y

j

, what is the “best” choice for a value for p? The maximum likelihood

principle states that the value of p that maximizes L(p|

∑

y

j

, n) should be chosen. It can be

shown by elementary calculus that the value of p that maximizes L(p|

∑

y

j

, n) is equal to
∑

y

j

/n. You will recognize this as the proportion of the n values of Y that have the value 1.

This can also be shown graphically; Figure 13.7 is a graph of L(p|

∑

y

j

, n) as a function of p

for the situation
∑

y = 6 and n = 10. Note that the graph has one maximum and that it is not

quite symmetrical.

In the logistic regression model the probability p is assumed to be a function of an underlying

covariate, X; that is, we model

logit(p) = α + βX

Figure 13.7 Likelihood function, L(π |6, 10).
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where α and β are constants. Conversely,

p =

e

α+βX

1 + e

α+βX

=

1

1 + e

−(α+βX)

(9)

For fixed values of X the probability p is determined (since α and β are parameters to be

estimated from the data). A set of data now consists of pairs of observations: (y

j

, x

j

), j =

1, . . . , n, where y

j

is again a zero–one variable and x

j

is an observed value of X for set j . For

each outcome, indexed by set j , there is now a probability p(j) determined by the value of x

j

.

The likelihood function is written

L(p(1), . . . , p(n)|y1, . . . , y

n

, x1, . . . , x

n

, n) =

n

∏

j=1

p(j)

y

j [1 − p(j)]1−y

j (10)

but p(j) can be expressed as

p(j) =

e

α+βX

j

1 + e

α+βX

j

(11)

where x

j

is the value of the covariate for subject j . The likelihood function can then be written

and expressed as a function of α and β as follows:

L(α, β|y1, . . . , y

n

; x1, . . . , x

n

; n) =

n

∏

j=1

(

e

α+βx

j

1 + e

α+βx

j

)

y

j

(

1

1 + e

α+βx

j

)1−y

j

=

n

∏

j=1

(e

α+βx

j

)

y

j

1 + e

α+βx

j

=

e

�

n

j=1y

j

(α+βx

j

)

∏

n

j=1(1 + e

α+βx

j

)

(12)

The maximum likelihood criterion then requires values for α and β to be chosen so that the

likelihood function above is maximized. For more than one covariate, the likelihood function

can be deduced similarly.

13.2 Logistic Discrimination with More Than Two Groups

Anderson [1972] and Jones [1975], among others, have considered the case of logistic discrim-

ination with more than two groups. Following Anderson [1972], let for two groups

P(G1|X) =

exp(α0 + α1X1 + · · · + α

p

X

p

)

1 + exp(α0 + α1X1 + · · · + α

p

X

p

)

Then

P(G2|X) =

1

1 + exp(α0 + α1X1 + · · · + α

p

X

p

)

This must be so because P(G1|X) + P(G2|X) = 1; that is, the observation X belongs to either

the G1 or G2. For k groups, define

P(G

s

|X) =

exp(α

s0 + α

s1X1 + · · · + α

sp

X

p

)

1 +

∑

k−1
j=1 exp(α

j0 + α

j1X1 + · · · + α

jp

X

p

)
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for groups s = 1, . . . , k − 1, and for group G

k

, let

P(G

k

|X) =

1

1 +

∑

k−1
j=1 exp(α

j0 + α

j1X1 + · · · + α

jp

X

p

)

(13)

Most statistical packages provide this analysis, which is often called polytomous logistic regres-

sion (or occasionally and incorrectly, “polychotomous” logistic regression).

13.3 Defining Losses

In order to say that one prediction is better than another, we need some way to compare the rela-

tive importance of false positive and false negative errors. Even looking at total error rate implic-

itly assigns a relative importance. When the main adverse or beneficial effects are directly com-

parable, this is straightforward. We can compare the monetary costs of false negatives and false

positives, or the probability of death caused by a false positive or false negative. In most cases,

however, there will not be direct comparability. When evaluating a cancer screening program, the

cost of false negatives is an increase in the risk of death, due to untreated cancer. The cost of a

false positive includes the emotional effects and health risks of further testing needed to rule out

disease. Even without weighing monetary costs against health costs we can see that it is not clear

how many false negatives are worth one false positive. The problem is much more controversial,

although perhaps no more difficult when monetary costs are important, as they usually are.

It can be shown [Savage, 1954] that the ability to make consistent choices between courses

of action whose outcome is uncertain implies the ability to rate all the possible outcomes on the

same scale, so this problem cannot be avoided. Perhaps the most important general guidance

we can give is that it is important to recognize that different people will assign different losses

and so prefer different classification rules.

13.4 Linear Discrimination Using Linear Regression Software

Given two groups of size n1 and n2, it has been shown by Fisher [1936] that the discriminant

analysis is equivalent to a multiple regression on the dummy variable Y defined as follows:

Y =

n2

n1 + n2
members of group 1

=

−n1

n1 + n2
members of group 2 (14)

We can now treat this as a regression analysis problem. The multiple regression equation obtained

will define the regions in the sample space identical to these defined by the discriminant analysis

model.

13.5 Cluster Analysis

Cluster analysis is a set of techniques for dividing observations into classes based on a set of

characteristics, without the classes being specified in advance. Cluster analysis may be carried

out in an attempt to discover classes that are hypothesized to exist but whose structure is

unknown, but may also be used simply to create relatively homogeneous subsets of the data.

One application of cluster analysis to clinical epidemiology is in refining the definition of

a new syndrome. The controversial Gulf War syndrome has been analyzed this way by various

authors. Everitt et al. [2002] found five clusters: one healthy cluster and four with different

distributions of symptoms. On the other hand, Hallman et al. [2003] found only two clusters:

healthy and not. Cherry et al. [2001] found six clusters, three of which were relatively healthy
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and three representing distinct clusters of symptoms. This lack of agreement suggests that there

is little evidence for genuine, strongly differentiated clusters.

Cluster analysis has become more visible in biostatistics in recent years with the rise of

genomic data. A popular analysis for RNA expression data is to cluster genes based on their

patterns of expression across tissue samples or experimental conditions, following Eisen et al.

[1998]. The goal of these analyses is intermediate: The clusters are definitely not biologically

meaningful in themselves, but are likely to contain higher concentrations of related genes, thus

providing a useful starting point for further searches.

Another very visible example of cluster analysis is given by the Google News service

(http://news.google.com). Google News extracts news stories from a very large number of tradi-

tional newspapers and other sources on the Web and finds clusters that indicate popular topics.

The most prominent clusters are then displayed on the Web page.

Cluster analysis has a number of similarities to both factor analysis and principal components

analysis, discussed in Chapter 14.

13.6 Predicting Categories of a Continuous Variable

In some cases the categorical outcome being predicted is defined in terms of a continuous

variable. For example, low birthweight is defined as birthweight below 2500 g, diabetes may be

diagnosed by a fasting blood glucose concentration over 140 mg/dL on two separate occasions,

hypertension is defined as blood pressure greater than 140/90 mmHg. An obvious question

is whether it is better to predict the categorical variable directly or to predict the continuous

variable and then divide into categories.

In contrast to the question of whether a predictor should be dichotomized, to which we can

give a clear “no!,” categorizing an outcome variable may be helpful or harmful. Using the con-

tinuous variable has the advantage of making more information available, but the disadvantage

of requiring the model to fit well over the entire range of the response. For example, when

fitting a model to (continuous) birthweight, the parameter values are chosen by giving equal

weight to a 100-g error at a weight of 4000 g as at 2450 g. When fitting a model to (binary)

low birthweight, more weight is placed on errors near 2500 g, where they are more important.

See also Problem 13.5.

13.7 Further Reading

Harrell [2001] discusses regression modeling for prediction, including binary outcomes, in a

medical context. This is a good reference for semiautomatic modeling that uses the avail-

able features of statistical software and incorporates background knowledge about the scientific

problem. Lachenbruch [1977] covers discriminant analysis, and Hosmer and Lemeshow [2000]

discuss logistic regression for prediction (as well as for inference). Excellent but very technical

summaries of modern classification methods are given by Ripley [1996] and Hastie et al. [2001].

Venables and Ripley [2002] describe how to use many of these methods in widely available

software. As already mentioned, Zhang and Singer [1999] describe recursive partitioning and

its use in health sciences. Two excellent texts on screening are Pepe [2003] and Zhou et al.

[2002].

PROBLEMS

13.1 For the logistic regression model logit(π) = α + βX, where X is a dichotomous 0–1

variable, show that e

β is the odds ratio associated with the exposure to X.

13.2 For the data of Table 13.7, the logistic regression model using only the variable X1,

malnutrition, is

logit(π̂) = −0.646 + 1.210X1
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Table 13.8 2 × 2 Table for Vital Status vs.

Nutritional Status

Y

Death Survive

X1 1 0

Malnutrition 1 11 21 32

No malnutrition 0 10 64 74

21 85 106

The 2 × 2 table associated with these data is shown in Table 13.8.

(a) Verify that the coefficient of X1 is equal to the logarithm of the odds ratio for

malnutrition.

(b) Calculate the probability of death given malnutrition using the model above and

compare it with the probability observed.

(c) The standard error of the regression coefficient is 0.5035; test the significance of

the observed value, 1.210. Set up 95% confidence limits on the population value

and translate these limits into limits for the population odds ratio.

(d) Calculate the standard error of the logarithm of the odds ratio from the 2 × 2

table and compare it with the value in part (c).

13.3 The full model for the data of Table 13.2 is given in Section 13.2.

(a) Calculate the logit line for X2 = 0, X3 = 1, and X5 = 1. Plot logit(π̂) vs. age

in years.

(b) Plot π̂ vs. age in years for part (a).

(c) What is the probability of death for a 60-year-old patient with no evidence of

shock, but with symptoms of alcoholism and prior bowel infarction?

13.4 One of the problems in the treatment of acute appendicitis is that perforation of the

appendix cannot be predicted accurately. Since the consequences of perforation are

serious, surgeons tend to be conservative by removing the appendix. Koepsell et al.

[1981] attempted to relate the occurrence (or absence) of perforation to a variety of risk

factors to enable better assessment of the risk of perforation. A consecutive series of

281 surgery patients was selected initially; of these, 192 were appropriate for analysis,

41 of whom had demonstrable perforated appendices according to the pathology report.

The data are listed in Table 13.9. Of the 12 covariates studied, six are listed here, with

the group indicator Y .

Y = perforation status (1 = yes; 0 = no)

X1 = gender (1 = male; 0 = female)

X2 = age (in years)

X3 = duration of symptoms in hours prior to physician contact

X4 = time from physician contact to operation (in hours)

X5 = white blood count (in thousands)

X6 = gangrene (1 = yes; 0 = no)
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Table 13.9 Data for Problem 13.4

Y X1 X2 X3 X4 X5 X6 Y X1 X2 X3 X4 X5 X6

1 0 0 41 19 1 16 0 49 0 1 15 6 6 19 0

2 1 1 42 48 0 24 1 50 0 0 17 10 4 9 0

3 0 0 11 24 5 14 0 51 0 0 10 72 6 17 0

4 0 1 17 12 2 9 0 52 0 1 9 8 999 15 0

5 1 1 45 36 3 99 1 53 1 1 3 4 2 18 1

6 0 0 15 24 5 14 0 54 0 0 7 16 1 24 0

7 0 1 17 11 24 8 0 55 0 1 60 14 2 11 0

8 0 1 52 30 1 13 0 56 0 1 11 48 3 8 0

9 0 1 15 26 6 13 0 57 0 1 8 48 24 14 0

10 1 1 18 48 2 20 1 58 0 1 9 12 1 12 0

11 0 0 23 48 5 14 0 59 0 1 19 36 1 99 0

12 1 1 9 336 11 13 1 60 1 0 44 24 1 11 1

13 0 0 18 24 3 13 0 61 0 0 46 9 4 12 0

14 0 0 30 8 15 11 0 62 0 1 11 36 2 13 0

15 0 0 16 19 9 10 0 63 0 1 18 8 2 19 0

16 0 1 9 8 2 15 0 64 0 0 21 24 5 12 0

17 0 1 15 48 4 12 0 65 0 0 31 24 8 16 0

18 1 1 25 120 4 8 1 66 0 0 14 7 4 12 0

19 0 0 17 7 17 14 0 67 0 1 17 6 6 19 0

20 0 1 17 12 2 14 0 68 0 0 15 24 1 9 0

21 1 0 63 72 7 11 1 69 0 0 18 24 4 9 0

22 0 0 19 8 1 15 0 70 0 0 38 48 2 99 0

23 0 1 9 48 24 9 0 71 0 1 13 18 4 18 0

24 1 0 9 48 12 14 1 72 1 0 23 168 4 18 0

25 0 0 17 5 1 14 0 73 0 0 15 3 2 14 0

26 0 0 12 48 3 15 0 74 1 0 34 48 3 16 1

27 0 1 6 48 1 26 0 75 0 1 21 24 47 8 1

28 0 0 8 48 3 99 0 76 0 1 50 8 4 12 0

29 1 1 17 30 6 12 1 77 0 0 10 23 6 16 1

30 0 0 11 8 7 15 0 78 0 0 14 48 12 15 0

31 0 1 16 48 2 11 0 79 0 1 26 48 12 13 0

32 0 1 15 10 12 12 0 80 1 0 16 22 1 14 1

33 0 1 13 24 11 15 1 81 1 0 9 24 12 16 1

34 1 1 26 48 4 11 1 82 0 1 26 5 1 16 0

35 0 1 14 7 4 16 0 83 0 1 29 24 1 30 0

36 0 0 44 20 2 13 0 84 0 1 35 408 72 6 0

37 1 1 13 168 999 10 1 85 0 0 18 168 16 12 0

38 0 0 13 14 22 13 0 86 0 1 12 18 4 12 0

39 0 1 24 10 2 19 0 87 0 1 14 7 3 21 0

40 1 0 12 72 2 16 1 88 1 1 45 24 3 18 1

41 0 1 18 15 1 16 0 89 0 1 16 5 21 12 0

42 0 0 19 15 0 9 0 90 0 0 19 240 163 6 0

43 0 0 11 336 20 8 0 91 1 1 9 48 7 23 1

44 0 1 13 14 1 99 0 92 1 1 50 30 5 15 1

45 0 1 25 10 10 11 0 93 0 0 18 2 10 15 0

46 0 1 16 72 5 7 0 94 0 0 27 2 24 17 1

47 0 1 25 72 45 7 0 95 0 1 48 27 5 16 0

48 0 1 42 12 33 19 1 96 0 1 7 18 5 14 0

97 0 1 16 13 1 11 0 145 0 1 41 24 4 14 0

98 0 1 29 5 24 19 1 146 0 0 28 6 1 15 0

99 0 1 18 48 3 11 0 147 1 0 13 48 9 15 1
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Table 13.9 (continued)

Y X1 X2 X3 X4 X5 X6 Y X1 X2 X3 X4 X5 X6

100 0 1 18 9 2 14 0 148 0 1 10 15 1 99 0

101 1 1 14 14 1 15 1 149 0 1 16 18 4 14 0

102 0 1 32 240 24 7 0 150 0 1 17 18 10 17 0

103 0 1 23 18 2 17 1 151 0 1 38 9 7 11 0

104 0 1 26 16 2 13 0 152 0 1 12 18 2 13 0

105 0 0 30 24 4 20 0 153 0 0 12 72 3 15 0

106 0 1 44 39 15 11 0 154 0 0 27 16 0 14 1

107 1 1 17 24 4 16 1 155 0 1 31 7 8 14 0

108 0 1 30 36 3 15 1 156 0 0 45 20 4 27 0

109 0 1 18 24 2 11 1 157 1 1 52 48 3 15 1

110 0 1 34 96 1 10 0 158 1 1 26 48 13 16 1

111 0 1 15 12 2 10 0 159 0 0 38 15 1 16 0

112 0 1 10 24 4 99 0 160 0 0 19 24 5 99 0

113 0 1 12 14 13 5 0 161 0 1 14 20 2 15 0

114 0 1 10 12 17 17 0 162 0 0 27 22 8 18 0

115 0 1 28 24 2 15 0 163 0 1 20 21 1 99 0

116 0 1 10 96 8 8 0 164 1 1 11 24 8 10 1

117 0 0 22 12 2 12 0 165 0 1 17 72 20 10 0

118 0 0 30 15 5 12 0 166 0 0 27 24 3 9 0

119 0 1 16 36 3 12 0 167 1 0 52 16 4 13 1

120 0 0 16 30 4 15 0 168 1 1 38 48 2 13 1

121 0 1 9 12 12 15 0 169 0 1 16 19 3 12 0

122 1 1 16 144 4 15 1 170 0 1 19 9 4 17 0

123 0 1 17 36 13 6 0 171 0 0 24 24 2 11 0

124 1 1 12 120 2 11 1 172 0 1 12 17 20 6 1

125 0 1 28 17 26 10 0 173 1 1 51 72 2 16 1

126 1 0 13 48 3 21 1 174 1 1 50 72 6 11 1

127 0 0 23 72 3 13 0 175 0 0 28 12 3 13 0

128 1 0 62 72 2 12 1 176 0 0 19 48 8 14 1

129 0 1 17 24 4 14 0 177 0 1 9 24 999 99 0

130 0 0 12 24 12 15 0 178 0 0 40 48 7 14 0

131 0 1 10 12 10 11 0 179 0 0 17 504 7 99 0

132 0 1 47 48 8 9 0 180 0 1 51 24 1 9 1

133 0 1 43 11 8 13 0 181 0 1 31 24 2 10 0

134 1 1 18 36 2 15 1 182 0 0 25 8 9 8 0

135 0 0 6 24 1 9 0 183 0 0 14 24 8 10 0

136 0 0 24 2 22 10 0 184 0 1 7 24 4 15 0

137 0 0 22 11 24 7 0 185 0 1 27 7 2 14 0

138 1 1 39 36 3 15 1 186 0 1 35 72 3 19 1

139 1 1 43 48 2 11 1 187 0 0 11 12 9 11 0

140 0 1 12 7 1 14 0 188 0 1 20 8 6 12 0

141 0 1 14 48 6 16 0 189 0 1 50 48 27 19 0

142 0 1 21 24 1 17 0 190 0 1 16 6 7 7 0

143 1 1 34 48 12 9 1 191 0 1 45 24 4 20 0

144 1 0 60 24 3 14 1 192 1 1 47 336 4 9 1

For X4 the code 999 is for unknown; for X5 the code 99 is an unknown code.

(a) Compare the means of the continuous variables (X2, X3, X4, X5) in the two

outcome groups (Y = 0, 1) by some appropriate test. Make an appropriate com-

parison of the association of X5 and Y . State your conclusion at this point.
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(b) Carry out a stepwise discriminant analysis. Which variables are useful predic-

tors? How much improvement in prediction is there in using the discriminant

procedure? How appropriate is the procedure?

(c) Carry out a stepwise logistic regression and compare your results with those of

part (b).

(d) The authors introduced two additional variables in their analysis: X7 = log(X2)

and X8 = log(X3). Test whether these variables improve the prediction scheme.

Interpret your findings.

(e) Plot the probability of perforation as a function of the duration of symptoms;

using the logistic model, generate a separate curve for subjects aged 10, 20, 30,

40, and 50 years. Interpret your findings.

13.5 The Web appendix to this chapter has a data set with daily concentrations of partic-

ulate air pollution in Seattle, Washington. The air quality index for fine particulate

pollution below 2.5 µm in diameter (PM2.5) will be “unhealthy for sensitive groups”

at 40 µg/m3 and “moderate” at 20 µg/m3. The Puget Sound Clean Air Agency is

interested in predicting high air pollution days so that it can issue burn bans to reduce

fireplace use. Using information on weather and pollution from previous days and the

time of year, build logistic models to predict when PM2.5 will exceed 20 or 40 µg/m3.

Also build a linear regression model for predicting PM2.5 or log(PM2.5). Summarize

the predictive accuracy of these models. Do you get more accurate prediction using the

logistic model or categorizing the prediction from the linear model? Does the answer

depend on what losses you assign to false positive and false negative predictions?

13.6 A classic in the use of discriminant analysis is the paper by Truett et al. [1967], in

which the authors attempted to predict the risk of coronary heart disease using data from

the Framingham study, a longitudinal study of the incidence of coronary heart disease

in Framingham, Massachusetts. The two groups under consideration were those who

did and did not develop coronary heart disease (CHD) in a 12-year follow-up period.

There were 2669 women and 2187 men, aged 30 to 62, involved in the study and free

from CHD at their first examination. The variables considered were:

• Age (years)

• Serum cholesterol (mg/100 mL)

• Systolic blood pressure (mmHg)

• Relative weight (100 × actual weight ÷ median for sex–height group)

• Hemoglobin (g/100 mL)

• Cigarettes per day, coded as 0 = never smoked, 1 = less than a pack a day, 2 = one

pack a day, and 3 = more than a pack a day

• ECG, coded as 0 = for normal, and 1 = for definite or possible left ventricular

hypertrophy, definite nonspecific abnormality, and intraventricular block

Note that the variables “cigarettes” and “ECG” cannot be distributed normally, as

they are discrete variables. Nevertheless, the linear discriminant function model was

tried. It was found that the predictions (in terms of the risk or estimated probability

of being in the coronary heart disease groups) fitted the data well. The coefficients of

the linear discriminant functions for men and women, including the standard errors,

are shown in Table 13.10.
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Table 13.10 Coefficients and Standard Errors for Predicting Coronary Heart Disease.

Standard Errors of

Risk Factors Women Men Estimated Coefficients

Constant (̂α) −12.5933 −10.8986

Age (years) 0.0765 0.0708 0.0133 0.0083

Cholesterol (mg %) 0.0061 0.0105 0.0021 0.0016

Systolic blood pressure (mmHg) 0.0221 0.0166 0.0043 0.0036

Relative weight 0.0053 0.0138 0.0054 0.0051

Hemoglobin (g %) 0.0355 −0.0837 0.0844 0.0542

Cigarettes smoked (see code) 0.0766 0.3610 0.1158 0.0587

ECG abnormality (see code) 1.4338 1.0459 0.4342 0.2706

(a) Determine for both women and men in terms of the p-value the most significant

risk factor for CHD in terms of the p-value.

(b) Calculate the probability of CHD for a male with the following characteristics:

age = 35 years; cholesterol = 220 mg %; systolic blood pressure = 110 mmHg;

relative weight = 110; hemoglobin = 130 g%; cigarette code = 3; and ECG

code = 0.

(c) Calculate the probability of CHD for a female with the foregoing characteristics.

(d) How much is the probability in part (b) changed for a male with all the charac-

teristics above except that he does not smoke (i.e., cigarette code = 0)?

(e) Calculate and plot the probability of CHD for the woman in part (c) as a function

of age.

13.7 In a paper that appeared four years later, Halperin et al. [1971] reexamined the Fram-

ingham data analysis (see Problem 13.6) by Truett et al. [1967] using a logistic model.

Halperin et al. analyzed several subsets of the data; for this problem we abstract the

data for men aged 29 to 39 years, and three variables: cholesterol, systolic blood

pressure, and cigarette smoking (0 = never smoked; 1 = smoker); cholesterol and

systolic blood pressure are measured as in Problem 13.6. The following coefficients

for the logistic and discriminant models (with standard errors in parentheses) were

obtained:

Cholesterol Systolic

Intercept (mg/100 mL) Blood Pressure Cigarettes

Logistic −11.6246 0.0179(0.0036) 0.0277(0.0085) 1.7346(0.6236)

Discriminant −13.5300 0.0236(0.0039) 0.0302(0.0100) 1.1191(0.3549)

(a) Calculate the probability of CHD for a male with relevant characteristics defined

in Problem 13.6, part (b), for both the logistic and discriminant models.

(b) Interpret the regression coefficients of the logistic model.

(c) In comparing the two methods, the authors state: “Empirically, the assessment of

significance of a variable, as measured by the ratio of the estimated coefficient

to its estimated standard error, is apt to be about the same whichever method is

used.” Verify that this is so for this problem. (However, see also the discussion

in Section 13.3.2.)
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13.8 In a paper in American Statistician, Hauck [1983] derived confidence bands for the

logistic response curve. He illustrated the method with data from the Ontario Exercise

Heart Collaborative Study. The logistic model dealt with the risk of myocardial infarc-

tion (MI) during a study period of four years. A logistic model based on the two most

important variables, smoking (X1) and serum triglyceride level (X2), was calculated

to be

logit(P ) = −2.2791 + 0.7682X1 + 0.001952(X2 − 100)

where P is the probability of an MI during the four-year observation period. The

variable X1 had values X1 = 0 (nonsmoker) and X1 = 1 (smoker). As in ordinary

regression, the confidence band for the entire line is narrowest at the means of X1 and

(X2 −100) and spreads out the farther you go from the means. (See the paper for more

details.)

(a) The range of values of triglyceride levels is assumed to be from 0 to 550. Graph

the probability of MI for smokers and nonsmokers separately.

(b) The standard errors of regression coefficients for smoking and serum triglyceride

are 0.3137 and 0.001608, respectively. Test their significance.

13.9 One of the earliest applications of the logistic model to medical screening by Anderson

et al. [1972] involved the diagnosis of keratoconjunctivitis sicca (KCS), also known

as “dry eyes.” It is known that rheumatoid arthritic patients are at greater risk, but

the definitive diagnosis requires an ophthalmologist; hence it would be advantageous

to be able to predict the presence of KCS on the basis of symptoms such as a burn-

ing sensation in the eye. In this study, 40 rheumatoid patients with KCS and 37

patients without KCS were assessed with respect to the presence (scored as 1) or

absence (scored as 0) of each of the following symptoms: (1) foreign body sensa-

tion; (2) burning; (3) tiredness; (4) dry feeling; (5) redness; (6) difficulty in seeing;

(7) itchiness; (8) aches; (9) soreness or pain; and (10) photosensitivity and excess of

secretion. The data are reproduced in Table 13.11.

(a) Fit a stepwise logistic model to the data. Test the significance of the coeffi-

cients.

(b) On the basis of the proportions of positive symptoms displayed at the bottom of

the table, select that variable that should enter the regression model first.

(c) Estimate the probability of misclassification.

(d) It is known that approximately 12% of patients suffering from rheumatoid arthri-

tis have KCS. On the basis of this information, calculate the appropriate logistic

scoring function.

(e) Define X = number of symptoms reported (out of 10). Do a logistic regression

using this variable. Test the significance of the regression coefficient. Now do a

t-test on the X variable comparing the two groups. Discuss and compare your

results.

13.10 This problem deals with the data of Pine et al. [1983]. Calculate the posterior proba-

bilities of survival for a patient in the fourth decade arriving at the hospital in shock

and history of myocardial infarction and without other risk factors:

(a) Using the logistic model.

(b) Using the discriminant model.
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(c) Graph the two survival curves as a function of age. Use the values 5, 15, 25, . . .

for the ages in the discriminant model.

(d) Assume that the prior probabilities are π1 = P [survival] = 0.60 and π2 =

1 − 0.60 = 0.40. Recalculate the probabilities in parts (a) and (b).

(e) Define a new variable for the data of Table 13.2 as follows: X6 = X1 + X2 +

X3 + X5. Interpret this variable.

(f) Do a logistic regression and discriminant analysis using variables X4 and X6

(defined above). Interpret your results.

(g) Is any information “lost” using the approach of parts (e) and (f)? If so, what is

lost? When is this likely to be important?

13.11 This problem requires some programming. Create 100 observations of 20 independent

random characteristics (e.g., from a uniform distribution) and one random 0–1 variable.

Fit a logistic discrimination model using 1, 2, 5, 10, 15, or 20 of your characteristics,

and 20, 40, 60, 80, and 100 of the observations. Compute the in-sample error rate and

compare it to the true error rate (1/2).

13.12 This problem deals with the data of Problem 5.14, comparing the effect of the drug

nifedipine on vasospasm attacks in patients suffering from Raynaud’s phenomenon. We

want to make a multivariate comparison of the seven patients with a history of digital

ulcers (“yes” in column 4) with the eight patients without a history of digital ulcers

(“no” in column 4). Variables to be used are age, gender, duration of phenomenon,

total number of attacks on placebo, and total number of attacks on nifedipine.

(a) Carry out a stepwise logistic regression on these data.

(b) Which variable entered first?

(c) State your conclusion.

(d) Make a scatter plot of the logistic scores and indicate the dividing point.

*13.13 This problem deals with the data of Problem 10.10, comparing metabolic clearance

rates in three groups of subjects.

(a) Use a discriminant analysis on the three groups.

(b) Interpret your results.

(c) Graph the data using different symbols to denote the three groups.

(d) Suppose you “create” a third variable: concentration at 90 minutes minus con-

centration at 45 minutes. Will this improve the discrimination? Why or why not?

*13.14 Consider two groups, G1 and G2 (e.g., “death,” “survive”; “disease,” “no disease”),

and a binary covariate, X, with values 0 or 1 (e.g., “don’t smoke,” “smoke”; “symptom

absent,” “symptom present”). The data can be arranged in a 2 × 2 table:

Group

X G1 G2

1

0

π1 π2
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Here π1 is the prior probability of group G1 membership; P(X = i|G1) the likelihood

of X = i given G1 membership, i = 0, 1; and P(G1|X = i) the posterior probability

of G1 membership given that X = i, i = 0, 1.

(a) Show that

P(G1|X = i)

P (G2|X = i)

=

π1

π2

P(X = i|G1)

P (X = i|G2)

Hint: Use Bayes’ theorem.

(b) The expression in part (a) can be written as

P(G1|X = i)

1 − P(G1|X = i)

=

π1

1 − π1

P(X = i|G1)

P (X = i|G2)

In words:

posterior odds of group 1 membership = prior odds of group 1 membership ×

ratio of likelihoods of observed values of X.

Relate the ratio of likelihoods to the sensitivity and specificity of the proce-

dure.

(c) Take logarithms of both sides of the equation in part (b). Relate your result to

Note 6.7.

(d) The result in part (b) can be shown to hold for X continuous or multivariate.

What are the assumptions [go back to the simple set-up of part (a)].
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Principal Component Analysis
and Factor Analysis

14.1 INTRODUCTION

In Chapters 10 and 11 we considered the dependence of a specified response variable on other

variables. The response variable identified played a special role among the variables being

considered. This is appropriate in many situations because of the scientific question and/or

experimental design. What do you do, however, if you have a variety of variables and desire to

examine the relationships between them without identifying a specific response variable?

In this chapter we present two methods of examining the relationships among a set of

variables without identifying a specific response variable. For these methods, no single variable

has a more distinguished role or importance than any other variable. The first technique we

examine, principal component analysis, explains as much variability as possible in terms of

a few linear combinations of the variables. The second technique, factor analysis, explains

the relationships between variables by a few unobserved factors. Both methods depend on the

covariances, or correlations, between variables.

14.2 VARIABILITY IN A GIVEN DIRECTION

Consider the 20 observations on two variables X and Y listed in Table 14.1. These data are

such that the original observations had their means subtracted, so that the means of the points

are zero. Figure 14.1 plots these points, that is, plots the data points about their common mean.

Rather than thinking of the data points as X and Y values, think of the data points as a

point in a plane. Consider Figure 14.2(a); when an origin is identified, each point in the plane is

identified with a pair of numbers x and y. The x value is found by dropping a line perpendicular

to the horizontal axis; the y value is found by dropping a line perpendicular to the vertical axis.

These axes are shown in Figure 14.2(b). It is not necessary, however, to use the horizontal and

vertical directions to locate our points, although this is traditional. Lines at any angle θ from

the horizontal and vertical, as shown in Figure 14.2(c), might be used. In terms of these two

lines, the data point has values found by dropping perpendicular lines to these two directions;

Figure 14.2(d ) shows the two values. We will call the new values x

′ and y

′ and the old values

x and y. It can be shown that x

′ and y

′ are linear combinations of x and y. This idea of lines

in different directions with perpendiculars to describe the position of points is used in principal

component analysis.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Table 14.1 Twenty Biometric Observations

Observation X Y Observation X Y

1 −0.52 0.60 11 0.08 0.23

2 0.04 −0.51 12 −0.06 −0.59

3 1.29 −1.19 13 1.25 −1.25

4 −1.12 1.90 14 0.53 −0.45

5 −1.02 0.31 15 0.14 0.47

6 0.10 −1.15 16 0.48 −0.11

7 −0.32 −0.13 17 −0.61 1.04

8 0.08 −0.17 18 −0.47 0.34

9 0.49 0.18 19 0.41 0.29

10 −0.54 0.20 20 −0.22 0.00

Figure 14.1 Plot of the 20 data points of Table 14.1.

For our data set, the variability in x and y may be summarized by the standard deviation

of the x and y values, respectively, as well as the covariance, or equivalently, the correlation

between them. Consider now the data of Figure 14.1 and Table 14.1. Suppose that we draw

a line in a direction of 30◦ to the horizontal. The 20 observations give 20 x

′ values in the

X

′ direction when the perpendicular lines are dropped. Figure 14.3 shows the values in the x

′

direction. Consider now the points along the line in the x

′ direction corresponding to the feet

of the perpendicular lines. We may summarize the variability among these points by our usual

measure of variability, the standard deviation. This would be computed in our usual manner

from the 20 values x

′. The variability of the data may be summarized by plotting the standard

deviation, say s(θ), in each direction θ at a distance s from the origin. When we look at the

standard deviation in all directions, this results in an egg-shaped curve with dents in the side;

or a symmetric curve in the shape of a violin or cello body. For the data at hand, this curve

is shown in Figure 14.4; the curve is identified as the standard deviation curve. Note that the

standard deviation is not the same in all directions. For our data set, the data are spread out more
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(a) (b)

(c) (d)

Figure 14.2 Points in the plane, coordinates, and rotation of axes.

along a northwest–southeast direction than in the southwest–northeast direction. The standard

deviation curve has a minimum distance at about 38◦. The standard deviation increases steadily

to a maximum; the maximum is positioned along the line in Figure 14.4, running from the

upper left to the lower right. These two directions are labeled directions 1 and 2. If we want to

pick one direction that contains as much variability as possible, we would choose direction 1,

because the standard deviation is largest in that direction. If all the data points lie on a line, the

variability will be a maximum in the direction of the line that contains all the data.

There is some terminology used in finding the value of a data point in a particular direction.

The process of dropping a line perpendicular to a direction is called projecting the point onto

the direction. The value in the particular direction [x′ in Figure 14.2(d ) or Figure 14.3] is called

the projection of the point. If we know the values x and y, or if we know the values x

′ and y

′,

we know where the point is in the plane. Two such variables x and y, or equivalently, x

′ and

y

′, which allow us to find the values of the data, are called a basis for the variables.

These concepts may be generalized when there are more than two variables. If we observe

three variables x, y, and z, the points may be thought of as points in three dimensions. Suppose

that we subtract the means from all the data so that the data are centered about the origin of a

three-dimensional plot. As you sit reading this material, picture the points suspended about the
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Figure 14.3 Values in the X-direction. X

′ axis at 30◦ to the x-axis.

room. Pick an origin. You may draw a line through the origin in any direction. For any point that

you have picked in the room, you may drop a perpendicular to the line. Given a line, the point

on the line where the perpendicular meets the line is the projection of the point onto the line.

We may then calculate the standard deviation for this direction. If the standard deviations are

plotted in all directions, a dented egg-shaped surface results. There will be one direction with the

greatest variability. When more than three variables are observed, although we cannot picture

the situation mentally, mathematically the ideas may be extended; the concept of a direction

may be extended in a natural manner. In fact, mathematical statistics is one part of mathematics

that heavily uses the geometry of n-dimensional space when there are n variables observed.

Fortunately, to understand the statistical methods, we do not need to understand the mathematics!

Let us turn our attention again to Figure 14.4. Rather than plotting the standard deviation

curve, it is traditional to summarize the variability in the data by an ellipse. The two perpendicular

axes of the ellipse lie along the directions of the greatest variability and the least variability.

The ellipse, called the ellipsoid of concentration, meets the standard deviation curve along its

axes at the points of greatest and least variation. In other directions the standard deviation curve

will be larger, that is, farther removed from the origin. In three dimensions, rather than plotting

an ellipse we plot an egg-shaped surface, the ellipsoid. (One reason the ellipsoid is used: If you

have a bivariate normal distribution in the plane, take a very large sample, divide the plane up

into small squares as on graph paper, and place columns whose height is proportional to the

number of points; the columns of constant height would lie on an ellipsoid.)

Out of the technical discussion above, we want to remember the following ideas:

1. If we observe a set of variables, we may think of each data point as a point in a space.

In this space, when the points are centered about their mean, there is variability in each

direction.
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Figure 14.4 Standard deviation in each direction and the ellipse of concentration.

2. The variability is a maximum in one direction. In two dimensions (or more) the minimum

lies in a perpendicular direction.

3. The variability is symmetric about each of the particular directions identified.

It is possible to identify the various directions with linear combinations of the variables or

coordinates. Each direction for X1, . . . , X

p

is associated with a sum

Y = a1X1 + a2X2 + · · · + a

p

X

p

(1)

where

a

2
1 + a

2
2 + · · · + a

2
p

= 1

The constants a1, a2, . . . , a

p

are uniquely associated with the direction, except that we may

multiply each a by −1. The sum that is given in equation (1) is the value of the projection of

the points x1 to x

p

corresponding to the given direction.

14.3 PRINCIPAL COMPONENTS

The motivation behind principal component analysis is to find a direction, or a few directions,

that explain as much of the variability as possible. Since each direction is associated with a

linear sum of the variables, we may say that we want to find a few new variables, which are
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linear sums of the old variables, which explain as much of the variability as possible. Thus, the

first principal component is the linear sum corresponding to the direction of greatest variability:

Definition 14.1. The first principal component is the sum

Y = a1X1 + · · · + a

p

X

p

, a

2
1 + · · · + a

2
p

= 1 (2)

corresponding to the direction of greatest variability when variables X1, . . . , X

p

are under

consideration.

Usually, the first principal component will leave much of the variability unexplained. (In

the next section, we discuss a method of quantifying the amount of variability explained.) For

this reason we wish to search for a second principal component that explains much of the

remaining variability. You might think we would take the next linear combination of variables

that explains as much of the variability as possible. But when you examine Figure 14.4, you

see that the closer the direction gets to the first principal component (which would be direction

1 in Figure 14.4), the more variability one would have. Thus, essentially, we would be driven

to the same variable. Therefore, the search for the second principal component is restricted

to variables that are uncorrelated with the first principal component. Geometrically, it can be

shown that this is equivalent to considering directions that are perpendicular to the direction

of the first principal component. In two dimensions such as Figure 14.4, direction 2 would be

the direction of the second principal component. However, in three dimensions, when we have

the line corresponding to the direction of the first principal component, the set of all directions

perpendicular to it correspond to a plane, and there are a variety of possible directions in which

to search for the second principal component. This leads to the following definition:

Definition 14.2. Suppose that we have the first k − 1 principal components for variables

X1, . . . , X

p

. The k th principal component corresponds to the variable or direction that is uncor-

related with the first k − 1 principal components and has the largest possible variance.

As a summary of these difficult ideas, you should remember the following:

1. Each principal component is chosen to explain as much of the remaining variability as

possible after the preceding principal components have been chosen.

2. Each principal component is uncorrelated to the other principal components. In the case of

a multivariate normal distribution, the principal components are statistically independent.

3. Although it is not clear from the above, the following is true: For each k, the first k

principal components explain as much of the variability in a sample as may be explained

by any k directions, or equivalently, k variables.

14.4 AMOUNT OF VARIABILITY EXPLAINED BY THE PRINCIPAL

COMPONENTS

Suppose that we want to perform a principal component analysis upon variables X1, . . . , X

p

.

If we were dealing with only one variable, say variable X

j

, we summarize its variability by the

variance. Suppose that there are a total of n observations, so that for each of the p variables,

we have n values. Let X

ij

be the ith observation on the j th variable. Let X

j

be the mean of

the n observations on the j th variable. Then we estimate the variability, that is, the variance, of
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the variable X

j

by

v̂ar(X
j

) =

n

∑

i=1

(X

ij

− X

j

)

2

n − 1
(3)

A reasonable summary of the variability in the p variables is the sum of the individual variances.

This leads us to the next definition.

Definition 14.3. The total variance, denoted by V, for variables X1, . . . , X

p

is the sum of

the individual variances. That is,

total variance = V =

p

∑

j=1

var(X
j

) (4)

The sample total variance, which we will also denote by V since that is the only type of

total variance used in this section, is

sample total variance = V =

p

∑

j=1

n

∑

i=1

(X

ij

− X

j

)

2

n − 1

We now characterize the amount of variability explained by the principal components. Recall

that the principal components are themselves variables; they are linear combinations of the X

j

variables. Each principal component has a variance itself. It is natural, therefore, to compare

the variance of the principal components with the variance of the X

j

’s. This leads us to the

following definitions.

Definition 14.4. Let Y1, Y2, . . . be the first, second, and subsequent principal components

for the variables X1, . . . , X

p

. In a sample the variance of each Y

k

is estimated by

var(Y
k

) =

n

∑

i=1

(Y

ik

− Y

k

)

2

n − 1
= V

k

(5)

where Y

ik

is the value of the kth principal component for the ith observation. That is, we first

estimate the coefficients for the kth principal component. The value for the ith observation uses

those coefficients and the observed values of the X

j

’s to compute the value of Y

ik

. The variance

for the kth principal component in the sample is then given by the sample variance for Y

ik

,

i = 1, 2, . . . , n. We denote this variance as seen above by V

k

. Using this notation, we have the

following two definitions:

1. The percent of variability explained by the k th principal component is

100V

k

V

2. The percent of the variability explained by the first m principal components is

100

m

∑

k=1

V

k

V

(6)
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The following facts about the principal components can be stated:

1. There are exactly p principal components, where p is the number of X variables consid-

ered. This is because with p uncorrelated variables, there is a one-to-one correspondence

between the values of the principal components and the values of the original data; that

is, we can go back and forth so that all of the variability is accounted for; the percent of

variability explained by the p principal components is 100%.

2. Because we chose the principal components successively to explain more and more of

the variance, we have

V1 ≥ V2 ≥ · · · ≥ V

p

≥ 0

3. The first m principal components explain as much of the total variability as it is possible

to explain by m linear functions of the X

j

variables.

We now proceed to a geometric interpretation of the principal components. Consider the case

where p = 2. That is, we observe two variables X1 and X2. Plot, as previously in this chapter,

the ith data point in the coordinate system that is centered about the means for the X1 and X2

variables. Draw a line in the direction of the first principal component and project the data point

onto the line. This is done in Figure 14.5.

The square of the distance of the data point from the new origin, which is the sample mean,

is given by the following equation, using the Pythagorean theorem:

d

2
i

= (X

i1 − X1)
2
+ (X

i2 − X2)
2

=

2
∑

j=1

(X

ij

− X

j

)

2

The square of the distance f

i

of the projection turns out to be the difference between the value

of the first principal component for the ith observation and the mean of the first principal

component squared. That is,

f

2
i

= (Y

i1 − Y 1)
2

Figure 14.5 Projection of a data point onto the first principal component direction.
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It is geometrically clear that the distance d

i

is larger than f

i

. The ith data point will be

better represented by its position along the line if it lies closer to the line, that is, if f

i

is close

to d

i

. One way we might judge the adequacy of the variability explained by the first principal

component would be to take the ratio of the sum of the lengths of the f

i

’s squared to the sum

of the lengths of the d

i

’s squared. If we do this, we have

∑

n

i=1 f

2
i

∑

n

i=1 d

2
i

=

∑

n

i=1(Yi1 − Y 1)
2

∑

n

i=1

∑2
j=1(Xij

− X

j

)

2
=

V1

V

(7)

That is, we have the proportion of the variability explained. If we multiplied the equation

throughout by 100, we would have the percent of the variability explained by the first principal

component. This gives us an alternative way of characterizing the first principal component.

The direction of the first principal component is the line for which the following holds: When

the data are projected onto this line, the sum of the squares of the projections is as large as

possible; equivalently, the sum of squares is as close as possible to the sum of squares of the

lengths of the lines to the original data points from the origin (which is also the mean). From

this we see that the percent of variability explained by the first principal component will be 100

if and only if the lengths d

i

and f

i

are all the same; that is, the first principal component will

explain all the variability if and only if all of the data points lie on a single line. The closer all

the data points come to lie on a single line, the larger the percent of variability explained by

the first principal component.

We now proceed to examine the geometric interpretation in three dimensions. In this case

we consider a data point plotted not in terms of the original axes X1, X2, and X3 but rather, in

terms of the coordinate system given by the principal components Y1, Y2, and Y3. Figure 14.6

presents such a plot for a particular data point. The figure is a two-dimensional representation

of a three-dimensional situation; two of the axes are vertical and horizontal on the paper. The

third axis recedes into the plane formed by the page in this book. Consider the ith data point,

Figure 14.6 Geometric interpretation of principal components for three variables.




