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Preface
This is the second edition of this text on survival analysis,
originally published in 1996. As in the first edition, each chap-
ter contains a presentation of its topic in “lecture-book” for-
mat together with objectives, an outline, key formulae, prac-
tice exercises, and a test. The “lecture-book” format has a
sequence of illustrations and formulae in the left column of
each page and a script in the right column. This format allows
you to read the script in conjunction with the illustrations and
formulae that high-light the main points, formulae, or exam-
ples being presented.

This second edition has expanded the first edition by adding
three new chapters and a revised computer appendix. The
three new chapters are:

Chapter 7. Parametric Survival Models
Chapter 8. Recurrent Event Survival Analysis
Chapter 9. Competing Risks Survival Analysis

Chapter 7 extends survival analysis methods to a class of sur-
vival models, called parametric models, in which the distri-
bution of the outcome (i.e., the time to event) is specified in
terms of unknown parameters. Many such parametric models
are acceleration failure time models, which provide an alter-
native measure to the hazard ratio called the “acceleration
factor”. The general form of the likelihood for a parametric
model that allows for left, right, or interval censored data is
also described. The chapter concludes with an introduction
to frailty models.

Chapter 8 considers survival events that may occur more than
once over the follow-up time for a given subject. Such events
are called “recurrent events”. Analysis of such data can be
carried out using a Cox PH model with the data layout aug-
mented so that each subject has a line of data for each re-
current event. A variation of this approach uses a stratified
Cox PH model, which stratifies on the order in which recur-
rent events occur. The use of “robust variance estimates” are
recommended to adjust the variances of estimated model co-
efficients for correlation among recurrent events on the same
subject.
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Chapter 9 considers survival data in which each subject can
experience only one of several different types of events (“com-
peting risks”) over follow-up. Modeling such data can be car-
ried out using a Cox model, a parametric survival model or a
model which uses cumulative incidence (rather than survival).

The Computer Appendix in the first edition of this text has
now been revised and extended to provide step-by-step in-
structions for using the computer packages STATA (version
7.0), SAS (version 8.2), and SPSS (version 11.5) to carry out
the survival analyses presented in the main text. These com-
puter packages are described in separate self-contained sec-
tions of the Computer Appendix, with the analysis of the same
datasets illustrated in each section. The SPIDA package used
in the first edition is no longer active and has therefore been
omitted from the appendix and computer output in the main
text.

In addition to the above new material, the original six chap-
ters have been modified slightly to correct for errata in the first
edition, to clarify certain issues, and to add theoretical back-
ground, particularly regarding the formulation of the (partial)
likelihood functions for the Cox PH (Chapter 3) and extended
Cox (Chapter 6) models.

The authors’ website for this textbook has the following web-
link: http://www.sph.emory.edu/∼dkleinb/surv2.htm

This website includes information on how to order this
second edition from the publisher and a freely downloadable
zip-file containing data-files for examples used in the text-
book.

Suggestions
for Use

This text was originally intended for self-study, but in the nine
years since the first edition was published, it has also been ef-
fectively used as a text in a standard lecture-type classroom
format. The text may also be use to supplement material cov-
ered in a course or to review previously learned material in
a self-instructional course or self-planned learning activity.
A more individualized learning program may be particularly
suitable to a working professional who does not have the time
to participate in a regularly scheduled course.



Preface ix

In working with any chapter, the learner is encouraged first to
read the abbreviated outline and the objectives and then work
through the presentation. The reader is then encouraged to
read the detailed outline for a summary of the presentation,
work through the practice exercises, and, finally, complete the
test to check what has been learned.

Recommended
Preparation

The ideal preparation for this text on survival analysis is a
course on quantitative methods in epidemiology and a course
in applied multiple regression. Also, knowledge of logistic re-
gression, modeling strategies, and maximum likelihood tech-
niques is crucial for the material on the Cox and parametric
models described in chapters 3–9.

Recommended references on these subjects, with suggested
chapter readings are:

Kleinbaum D, Kupper L, Muller K, and Nizam A, Applied
Regression Analysis and Other Multivariable Methods,
Third Edition, Duxbury Press, Pacific Grove, 1998, Chapters
1–16, 22–23

Kleinbaum D, Kupper L and Morgenstern H, Epidemiologic
Research: Principles and Quantitative Methods, John
Wiley and Sons, Publishers, New York, 1982, Chapters 20–
24.

Kleinbaum D and Klein M, Logistic Regression: A Self-
Learning Text, Second Edition, Springer-Verlag Publishers,
New York, Chapters 4–7, 11.

Kleinbaum D, ActivEpi-A CD Rom Electronic Textbook on
Fundamentals of Epidemiology, Springer-Verlag Publish-
ers, New York, 2002, Chapters 13–15.

A first course on the principles of epidemiologic research
would be helpful, since all chapters in this text are written
from the perspective of epidemiologic research. In particular,
the reader should be familiar with the basic characteristics of
epidemiologic study designs, and should have some idea of
the frequently encountered problem of controlling for con-
founding and assessing interaction/effect modification. The
above reference, ActivEpi, provides a convenient and hope-
fully enjoyable way to review epidemiology.
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2 1. Introduction to Survival Analysis

Introduction This introduction to survival analysis gives a descriptive
overview of the data analytic approach called survival analy-
sis. This approach includes the type of problem addressed by
survival analysis, the outcome variable considered, the need
to take into account “censored data,” what a survival func-
tion and a hazard function represent, basic data layouts for
a survival analysis, the goals of survival analysis, and some
examples of survival analysis.

Because this chapter is primarily descriptive in content, no
prerequisite mathematical, statistical, or epidemiologic con-
cepts are absolutely necessary. A first course on the principles
of epidemiologic research would be helpful. It would also be
helpful if the reader has had some experience reading math-
ematical notation and formulae.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. What is survival analysis? (pages 4–5)
II. Censored data (pages 5–8)

III. Terminology and notation (pages 8–14)
IV. Goals of survival analysis (page 15)
V. Basic data layout for computer (pages 15–19)

VI. Basic data layout for understanding analysis
(pages 19–24)

VII. Descriptive measures of survival experience
(pages 24–26)

VIII. Example: Extended remission data (pages 26–29)
IX. Multivariable example (pages 29–31)
X. Math models in survival analysis (pages 31–33)
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Objectives Upon completing the chapter, the learner should be able to:

1. Recognize or describe the type of problem addressed by
a survival analysis.

2. Define what is meant by censored data.
3. Define or recognize right-censored data.
4. Give three reasons why data may be censored.
5. Define, recognize, or interpret a survivor function.
6. Define, recognize, or interpret a hazard function.
7. Describe the relationship between a survivor function

and a hazard function.
8. State three goals of a survival analysis.
9. Identify or recognize the basic data layout for the com-

puter; in particular, put a given set of survival data into
this layout.

10. Identify or recognize the basic data layout, or compo-
nents thereof, for understanding modeling theory; in par-
ticular, put a given set of survival data into this layout.

11. Interpret or compare examples of survivor curves or haz-
ard functions.

12. Given a problem situation, state the goal of a survival
analysis in terms of describing how explanatory vari-
ables relate to survival time.

13. Compute or interpret average survival and/or average
hazard measures from a set of survival data.

14. Define or interpret the hazard ratio defined from com-
paring two groups of survival data.
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Presentation

FOCUS

• the problem
• goals
• terminology and
   notation
• data layout
• examples

This presentation gives a general introduction
to survival analysis, a popular data analysis ap-
proach for certain kinds of epidemiologic and
other data. Here we focus on the problem ad-
dressed by survival analysis, the goals of a survival
analysis, key notation and terminology, the basic
data layout, and some examples.

I. What Is Survival Analysis?

Outcome variable: Time until an
event occurs

We begin by describing the type of analytic prob-
lem addressed by survival analysis. Generally, sur-
vival analysis is a collection of statistical proce-
dures for data analysis for which the outcome vari-
able of interest is time until an event occurs.

TIMEStart follow-up Event
By time, we mean years, months, weeks, or days
from the beginning of follow-up of an individual
until an event occurs; alternatively, time can refer
to the age of an individual when an event occurs.

Event: death
disease
relapse
recovery

By event, we mean death, disease incidence, re-
lapse from remission, recovery (e.g., return to
work) or any designated experience of interest that
may happen to an individual.

Assume 1 event

> 1 event
Recurrent event

or
Competing risk

Although more than one event may be considered
in the same analysis, we will assume that only
one event is of designated interest. When more
than one event is considered (e.g., death from any
of several causes), the statistical problem can be
characterized as either a recurrent events or a
competing risk problem, which are discussed in
Chapters 8 and 9, respectively.

Time ≡ survival time

Event ≡ failure

In a survival analysis, we usually refer to the time
variable as survival time, because it gives the time
that an individual has “survived” over some follow-
up period. We also typically refer to the event as
a failure, because the event of interest usually is
death, disease incidence, or some other negative
individual experience. However, survival time may
be “time to return to work after an elective surgi-
cal procedure,” in which case failure is a positive
event.
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Leukemia patients/time in remis-
sion (weeks)

Disease-free cohort/time until heart
disease (years)

Elderly (60+) population/time until
death (years)
Parolees (recidivism study)/time
until rearrest (weeks)

Heart transplants/time until death
(months)

EXAMPLE

1.

2.

3.

4.

5.

Five examples of survival analysis problems are
briefly mentioned here. The first is a study that fol-
lows leukemia patients in remission over several
weeks to see how long they stay in remission. The
second example follows a disease-free cohort of
individuals over several years to see who develops
heart disease. A third example considers a 13-year
follow-up of an elderly population (60+ years) to
see how long subjects remain alive. A fourth ex-
ample follows newly released parolees for several
weeks to see whether they get rearrested. This type
of problem is called a recidivism study. The fifth
example traces how long patients survive after re-
ceiving a heart transplant.

All of the above examples are survival analysis
problems because the outcome variable is time
until an event occurs. In the first example, involv-
ing leukemia patients, the event of interest (i.e.,
failure) is “going out of remission,” and the out-
come is “time in weeks until a person goes out
of remission.” In the second example, the event
is “developing heart disease,” and the outcome is
“time in years until a person develops heart dis-
ease.” In the third example, the event is “death”
and the outcome is “time in years until death.”
Example four, a sociological rather than a medi-
cal study, considers the event of recidivism (i.e.,
getting rearrested), and the outcome is “time in
weeks until rearrest.” Finally, the fifth example
considers the event “death,” with the outcome be-
ing “time until death (in months from receiving a
transplant).”

We will return to some of these examples later in
this presentation and in later presentations.

II. Censored Data Most survival analyses must consider a key
analytical problem called censoring. In essence,
censoring occurs when we have some information
about individual survival time, but we don’t know
the survival time exactly.

Censoring: don’t know survival
time exactly
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Leukemia patients in remission:

X

Study
end

Study
start

EXAMPLE As a simple example of censoring, consider
leukemia patients followed until they go out of re-
mission, shown here as X. If for a given patient,
the study ends while the patient is still in remission
(i.e., doesn’t get the event), then that patient’s sur-
vival time is considered censored. We know that,
for this person, the survival time is at least as long
as the period that the person has been followed,
but if the person goes out of remission after the
study ends, we do not know the complete survival
time.

Why censor?

1. study ends—no event
2. lost to follow-up
3. withdraws

There are generally three reasons why censoring
may occur:

(1) a person does not experience the event before
the study ends;

(2) a person is lost to follow-up during the study
period;

(3) a person withdraws from the study because
of death (if death is not the event of interest) or
some other reason (e.g., adverse drug reaction
or other competing risk)

EXAMPLE

A

B

C

D

E

F

T = 5

T = 12

T = 3.5

T = 8

T = 6

2 4 6 8 10 12
Weeks

T = 3.5
X

X

Study end

Withdrawn

Study end

Lost

These situations are graphically illustrated here.
The graph describes the experience of several per-
sons followed over time. An X denotes a person
who got the event.

Person A, for example, is followed from the start
of the study until getting the event at week 5; his
survival time is 5 weeks and is not censored.

Person B also is observed from the start of the
study but is followed to the end of the 12-week
study period without getting the event; the survival
time here is censored because we can say only that
it is at least 12 weeks.

X Event occurs Person C enters the study between the second and
third week and is followed until he withdraws
from the study at 6 weeks; this person’s survival
time is censored after 3.5 weeks.

Person D enters at week 4 and is followed for the
remainder of the study without getting the event;
this person’s censored time is 8 weeks.
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Person E enters the study at week 3 and is fol-
lowed until week 9, when he is lost to follow-up;
his censored time is 6 weeks.

Person F enters at week 8 and is followed until
getting the event at week 11.5. As with person A,
there is no censoring here; the survival time is
3.5 weeks.

SUMMARY
Event: A, F
Censored: B, C, D, E

In summary, of the six persons observed, two get
the event (persons A and F) and four are censored
(B, C, D, and E).

Person
Survival

time
Failed (1);

censored (0)

A

B

C

D

E

F

5

12

3.5

8

6

3.5

1

0

0

0

0

1

A table of the survival time data for the six persons
in the graph is now presented. For each person,
we have given the corresponding survival time up
to the event’s occurrence or up to censorship. We
have indicated in the last column whether this
time was censored or not (with 1 denoting failed
and 0 denoting censored). For example, the data
for person C is a survival time of 3.5 and a cen-
sorship indicator of 0, whereas for person F the
survival time is 3.5 and the censorship indicator is
1. This table is a simplified illustration of the type
of data to be analyzed in a survival analysis.

RIGHT
CENSORED

A

B

C

D

E

F

2 4 6 8 10 12
Weeks

X

X

Study end

Withdrawn

Study end

Lost

Notice in our example that for each of the four
persons censored, we know that the person’s exact
survival time becomes incomplete at the right side
of the follow-up period, occurring when the study
ends or when the person is lost to follow-up or is
withdrawn. We generally refer to this kind of data
as right-censored. For these data, the complete
survival time interval, which we don’t really know,
has been cut off (i.e., censored) at the right side of
the observed survival time interval. Although data
can also be left-censored, most survival data is
right-censored.
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True survival time

Observed survival time

Study start HIV + testHIV exposure

X

Left-censored data can occur when a person’s true
survival time is less than or equal to that person’s
observed survival time. For example, if we are fol-
lowing persons until they become HIV positive,
we may record a failure when a subject firsts tests
positive for the virus. However, we may not know
exactly the time of first exposure to the virus, and
therefore do not know exactly when the failure oc-
curred. Thus, the survival time is censored on the
left side since the true survival time, which ends
at exposure, is shorter than the follow-up time,
which ends when the subject tests positive.

III. Terminology and Notation We are now ready to introduce basic mathemati-
cal terminology and notation for survival analysis.
First, we denote by a capital T the random vari-
able for a person’s survival time. Since T denotes
time, its possible values include all nonnegative
numbers; that is, T can be any number equal to or
greater than zero.

T = survival time (T ≥ 0)

random variable

Survives > 5 years?

T > t = 5

EXAMPLE

t = specific value for T Next, we denote by a small letter t any specific
value of interest for the random variable capital
T. For example, if we are interested in evaluating
whether a person survives for more than 5 years
after undergoing cancer therapy, small t equals 5;
we then ask whether capital T exceeds 5.

δ = (0, 1) random variable

=
{

1 if failure
0 if censored

� study ends� lost to follow-up� withdraws

Finally, we let the Greek letter delta (δ) denote a
(0,1) random variable indicating either failure or
censorship. That is, δ = 1 for failure if the event
occurs during the study period, or δ = 0 if the sur-
vival time is censored by the end of the study pe-
riod. Note that if a person does not fail, that is,
does not get the event during the study period, cen-
sorship is the only remaining possibility for that
person’s survival time. That is, δ = 0 if and only
if one of the following happens: a person survives
until the study ends, a person is lost to follow-up,
or a person withdraws during the study period.

S(t) = survivor function
h(t) = hazard function

We next introduce and describe two quantitative
terms considered in any survival analysis. These
are the survivor function, denoted by S(t), and
the hazard function, denoted by h(t).
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S(t) = P (T > t)
t S(t)

1 S(1) = P (T > 1)
2 S(2) = P (T > 2)
3 S(3) = P (T > 3)
· ·
· ·
· ·

The survivor function S(t) gives the probability
that a person survives longer than some specified
time t: that is, S(t) gives the probability that the
random variable T exceeds the specified time t.

The survivor function is fundamental to a survival
analysis, because obtaining survival probabilities
for different values of t provides crucial summary
information from survival data.

Theoretical S(t):

0 t

S(0) = 1

S(t)

∞

S(∞) = 0

1

Theoretically, as t ranges from 0 up to infinity,
the survivor function can be graphed as a smooth
curve. As illustrated by the graph, where t iden-
tifies the X -axis, all survivor functions have the
following characteristics:

� they are nonincreasing; that is, they head
downward as t increases;� at time t = 0, S(t) = S(0) = 1; that is, at the
start of the study, since no one has gotten the
event yet, the probability of surviving past time
0 is one;� at time t = ∞, S(t) = S(∞) = 0; that is, theo-
retically, if the study period increased without
limit, eventually nobody would survive, so the
survivor curve must eventually fall to zero.

Note that these are theoretical properties of sur-
vivor curves.

Ŝ(t) in practice:

1

0 Study endt

Ŝ(t)

In practice, when using actual data, we usually
obtain graphs that are step functions, as illus-
trated here, rather than smooth curves. Moreover,
because the study period is never infinite in length
and there may be competing risks for failure, it is
possible that not everyone studied gets the event.
The estimated survivor function, denoted by a
caret over the S in the graph, thus may not go all
the way down to zero at the end of the study.

h(t) = lim
�t→0

P (t ≤ T < t + �t|T ≥ t)
�t

The hazard function, denoted by h(t), is given
by the formula: h(t) equals the limit, as �t ap-
proaches zero, of a probability statement about
survival, divided by �t, where �t denotes a small
interval of time. This mathematical formula is dif-
ficult to explain in practical terms.
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h(t) = instantaneous potential

FOCUS S(t) : not failing
h(t) : failing

Before getting into the specifics of the formula,
we give a conceptual interpretation. The hazard
function h(t) gives the instantaneous potential
per unit time for the event to occur, given that
the individual has survived up to time t. Note
that, in contrast to the survivor function, which
focuses on not failing, the hazard function focuses
on failing, that is, on the event occurring. Thus, in
some sense, the hazard function can be considered
as giving the opposite side of the information given
by the survivor function.

60 To get an idea of what we mean by instantaneous
potential, consider the concept of velocity. If, for
example, you are driving in your car and you see
that your speedometer is registering 60 mph, what
does this reading mean? It means that if in the
next hour, you continue to drive this way, with
the speedometer exactly on 60, you would cover
60 miles. This reading gives the potential, at the
moment you have looked at your speedometer,
for how many miles you will travel in the next
hour. However, because you may slow down or
speed up or even stop during the next hour, the
60-mph speedometer reading does not tell you
the number of miles you really will cover in the
next hour. The speedometer tells you only how
fast you are going at a given moment; that is, the
instrument gives your instantaneous potential or
velocity.

Instantaneous potential

Velocity at time t

h(t)

Similar to the idea of velocity, a hazard function
h(t) gives the instantaneous potential at time t
for getting an event, like death or some disease
of interest, given survival up to time t. The given
part, that is, surviving up to time t, is analo-
gous to recognizing in the velocity example that
the speedometer reading at a point in time in-
herently assumes that you have already traveled
some distance (i.e., survived) up to the time of the
reading.
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h(t) = lim
P(t ≤ T< t + ∆ t | T ≥ t)

∆ t∆t→0

Given

Conditional probabilities: P (A|B)

P (t ≤ T < t + �t | T ≥ t)
= P(individual fails in the interval

[t, t + �t] | survival up to time t)

In mathematical terms, the given part of the for-
mula for the hazard function is found in the proba-
bility statement—the numerator to the right of the
limit sign. This statement is a conditional prob-
ability because it is of the form, “P of A, given
B,” where the P denotes probability and where
the long vertical line separating A from B denotes
“given.” In the hazard formula, the conditional
probability gives the probability that a person’s
survival time, T, will lie in the time interval be-
tween t and t + �t, given that the survival time
is greater than or equal to t. Because of the given
sign here, the hazard function is sometimes called
a conditional failure rate.

Hazard function ≡ conditional
failure rate

lim
P(t ≤ T < t + ∆ t | T ≥ t)

∆ t∆ t→0

Probability per unit time

Rate: 0 to ∞

We now explain why the hazard is a rate rather
than a probability. Note that in the hazard func-
tion formula, the expression to the right of the
limit sign gives the ratio of two quantities. The
numerator is the conditional probability we just
discussed. The denominator is �t, which denotes
a small time interval. By this division, we obtain a
probability per unit time, which is no longer a
probability but a rate. In particular, the scale
for this ratio is not 0 to 1, as for a probability,
but rather ranges between 0 and infinity, and de-
pends on whether time is measured in days, weeks,
months, or years, etc.

P = P (t ≤ T < t + � t|T ≥ t)

P �t P/�t = rate

1
3

1
2

day
1/3
1/2

= 0.67/day

1
3

1
14

week
1/3
1/14

= 4.67/week

For example, if the probability, denoted here by
P , is 1/3, and the time interval is one-half a day,
then the probability divided by the time interval
is 1/3 divided by 1/2, which equals 0.67 per day.
As another example, suppose, for the same prob-
ability of 1/3, that the time interval is considered
in weeks, so that 1/2 day equals 1/14 of a week.
Then the probability divided by the time interval
becomes 1/3 over 1/14, which equals 14/3, or 4.67
per week. The point is simply that the expression P
divided by �t at the right of the limit sign does not
give a probability. The value obtained will give
a different number depending on the units of
time used, and may even give a number larger
than one.
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h(t) =    lim P (t ≤ T< t + ∆t | T ≥ t)
∆t∆t→0

Gives
instantaneous
potential

When we take the limit of the right-side expres-
sion as the time interval approaches zero, we are
essentially getting an expression for the instanta-
neous probability of failing at time t per unit time.
Another way of saying this is that the conditional
failure rate or hazard function h(t) gives the in-
stantaneous potential for failing at time t per unit
time, given survival up to time t.

0 t

h(t)

Hazard functions

� h(t) ≥ 0� h(t) has no upper bound

As with a survivor function, the hazard function
h(t) can be graphed as t ranges over various values.
The graph at the left illustrates three different haz-
ards. In contrast to a survivor function, the graph
of h(t) does not have to start at 1 and go down to
zero, but rather can start anywhere and go up and
down in any direction over time. In particular, for
a specified value of t, the hazard function h(t) has
the following characteristics:

� it is always nonnegative, that is, equal to or
greater than zero;� it has no upper bound.

These two features follow from the ratio expres-
sion in the formula for h(t), because both the prob-
ability in the numerator and the �t in the denom-
inator are nonnegative, and since �t can range
between 0 and ∞.

Constant hazard
(exponential model)

h(t) for healthy
persons

EXAMPLE

t

λ

1

Now we show some graphs of different types of
hazard functions. The first graph given shows a
constant hazard for a study of healthy persons.
In this graph, no matter what value of t is spec-
ified, h(t) equals the same value—in this exam-
ple, λ. Note that for a person who continues to be
healthy throughout the study period, his/her in-
stantaneous potential for becoming ill at any time
during the period remains constant throughout
the follow-up period. When the hazard function
is constant, we say that the survival model is ex-
ponential. This term follows from the relation-
ship between the survivor function and the hazard
function. We will return to this relationship later.
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t

h(t) for leukemia
patients

↑ Weibull

t

h(t) for persons
recovering from
surgery

↓ Weibull

t

h(t) for TB
patients

↑ ↓ lognormal

EXAMPLE (continued)

2

3

4

The second graph shows a hazard function that
is increasing over time. An example of this kind
of graph is called an increasing Weibull model.
Such a graph might be expected for leukemia
patients not responding to treatment, where the
event of interest is death. As survival time in-
creases for such a patient, and as the prognosis
accordingly worsens, the patient’s potential for dy-
ing of the disease also increases.

In the third graph, the hazard function is decreas-
ing over time. An example of this kind of graph is
called a decreasing Weibull. Such a graph might
be expected when the event is death in persons
who are recovering from surgery, because the po-
tential for dying after surgery usually decreases as
the time after surgery increases.

The fourth graph given shows a hazard function
that is first increasing and then decreasing. An
example of this type of graph is the lognormal
survival model. We can expect such a graph for
tuberculosis patients, since their potential for dy-
ing increases early in the disease and decreases
later.

S(t): directly describes survival
h(t): • a measure of instantaneous

potential
• identify specific model

form
• math model for survival

analysis

Of the two functions we have considered, S(t) and
h(t), the survivor function is more naturally ap-
pealing for analysis of survival data, simply be-
cause S(t) directly describes the survival experi-
ence of a study cohort.

However, the hazard function is also of interest for
the following reasons:

� it is a measure of instantaneous potential
whereas a survival curve is a cumulative mea-
sure over time;� it may be used to identify a specific model
form, such as an exponential, a Weibull, or a
lognormal curve that fits one’s data;� it is the vehicle by which mathematical mod-
eling of survival data is carried out; that is, the
survival model is usually written in terms of
the hazard function.
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Relationship of S(t) and h(t):
If you know one, you can determine
the other.

h(t) = λ if and only if S(t) = e−λt

EXAMPLE

Regardless of which function S(t) or h(t) one
prefers, there is a clearly defined relationship
between the two. In fact, if one knows the form
of S(t), one can derive the corresponding h(t), and
vice versa. For example, if the hazard function is
constant—i.e., h(t) = λ, for some specific value
λ—then it can be shown that the corresponding
survival function is given by the following for-
mula: S(t) equals e to the power minus λ times t.

General formulae:

S(t) = exp
[
−

∫ t

0
h(u)du

]

h(t) = −
[

d S(t)/dt
S(t)

]

More generally, the relationship between S(t) and
h(t) can be expressed equivalently in either of two
calculus formulae shown here.

The first of these formulae describes how the sur-
vivor function S(t) can be written in terms of an in-
tegral involving the hazard function. The formula
says that S(t) equals the exponential of the nega-
tive integral of the hazard function between inte-
gration limits of 0 and t.

The second formula describes how the haz-
ard function h(t) can be written in terms of a
derivative involving the survivor function. This
formula says that h(t) equals minus the derivative
of S(t) with respect to t divided by S(t).

h(t)S(t)
In any actual data analysis a computer program
can make the numerical transformation from S(t)
to h(t), or vice versa, without the user ever having
to use either formula. The point here is simply that
if you know either S(t) or h(t), you can get the
other directly.

SUMMARY

T = survival time random
variable

t = specific value of T
δ = (0, 1) variable for failure/

censorship
S(t) = survivor function
h(t) = hazard function

At this point, we have completed our discussion
of key terminology and notation. The key no-
tation is T for the survival time variable, t
for a specified value of T, and δ for the di-
chotomous variable indicating event occur-
rence or censorship. The key terms are the
survivor function S(t) and the hazard func-
tion h(t), which are in essence opposed con-
cepts, in that the survivor function focuses on
surviving whereas the hazard function focuses
on failing, given survival up to a certain time
point.
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IV. Goals of Survival Analysis We now state the basic goals of survival analysis.

Goal 1: To estimate and interpret survivor and/or
hazard functions from survival data.

Goal 2: To compare survivor and/or hazard func-
tions.

Goal 3: To assess the relationship of explanatory
variables to survival time.

S(t) S(t)

t t

Regarding the first goal, consider, for example, the
two survivor functions pictured at the left, which
give very different interpretations. The function
farther on the left shows a quick drop in survival
probabilities early in follow-up but a leveling off
thereafter. The function on the right, in contrast,
shows a very slow decrease in survival probabili-
ties early in follow-up but a sharp decrease later
on.

S(t)

Placebo

Treatment

t6

We compare survivor functions for a treatment
group and a placebo group by graphing these func-
tions on the same axis. Note that up to 6 weeks,
the survivor function for the treatment group lies
above that for the placebo group, but thereafter
the two functions are at about the same level.
This dual graph indicates that up to 6 weeks the
treatment is more effective for survival than the
placebo but has about the same effect thereafter.

Goal 3: Use math modeling, e.g., Cox
proportional hazards

Goal 3 usually requires using some form of math-
ematical modeling, for example, the Cox propor-
tional hazards approach, which will be the subject
of subsequent modules.

V. Basic Data Layout
for Computer

We previously considered some examples of sur-
vival analysis problems and a simple data set in-
volving six persons. We now consider the general
data layout for a survival analysis. We will provide
two types of data layouts, one giving the form ap-
propriate for computer use, and the other giving
the form that helps us understand how a survival
analysis works.

Two types of data layouts:

� for computer use� for understanding



16 1. Introduction to Survival Analysis

For computer:

Indiv. #

1
2
•

•

•

5
•

•

•

8
•

•

•

n

t

t1
t2

t5 = 3 got event

t8 = 3 censored

X1

X12

X22

X11

X21

Xn1 Xn2 Xnp

X2 Xp
•  •  •

•  •  •

X1p
•  •  •

X2p
•  •  •

•

•

•

•

•

•

•

•

•

δ

δ1

δ2

δntn

We start by providing, in the table shown here, the
basic data layout for the computer. Assume that we
have a data set consisting of n persons. The first
column of the table identifies each person from 1,
starting at the top, to n, at the bottom.

The remaining columns after the first one provide
survival time and other information for each per-
son. The second column gives the survival time
information, which is denoted t1 for individual 1,
t2 for individual 2, and so on, up to tn for individual
n. Each of these t ’s gives the observed survival time
regardless of whether the person got the event or
is censored. For example, if person 5 got the event
at 3 weeks of follow-up, then t5 = 3; on the other
hand, if person 8 was censored at 3 weeks, without
getting the event, then t8 = 3 also.

To distinguish persons who get the event from
those who are censored, we turn to the third col-
umn, which gives the information for status (i.e.
δ) the dichotomous variable that indicates censor-
ship status.

Indiv. #

1
2
•

•

•

5
•

•

•

8
•

•

•

n

t

   t1
t2

t5 = 3 δ5 = 1

t8 = 3 δ8 = 0

X1

X12

X22

X11

X21

Xn1 Xn2 Xnp

X2 Xp
•  •  •

•  •  •

X1p
•  •  •

X2p
•  •  •

•

•

•

•

•

•

•

•

•

δ

δ1

δ2

δntn

Xi = Age, E, or Age × Race

Failure
status

Explanatory
variables

n

1
∑ δj= # failures

Thus, δ1 is 1 if person 1 gets the event or is 0 if
person 1 is censored; δ2 is 1 or 0 similarly, and so
on, up through δn. In the example just considered,
person 5, who failed at 3 weeks, has a δ of 1; that
is, δ5 equals 1. In contrast, person 8, who was cen-
sored at 3 weeks, has a δ of 0; that is, δ8 equals 0.

Note that if all of the δ j in this column are added
up, their sum will be the total number of failures in
the data set. This total will be some number equal
to or less than n, because not every one may fail.

The remainder of the information in the table
gives values for explanatory variables of interest.
An explanatory variable, Xi , is any variable like
age or exposure status, E, or a product term like
age × race that the investigator wishes to consider
to predict survival time. These variables are listed
at the top of the table as X1, X2, and so on, up to
X p. Below each variable are the values observed
for that variable on each person in the data set.



Presentation: V. Basic Data Layout for Computer 17

Columns
R

ow
s

#

1
2
•

•

•

j
•

•

•

n

t X1

X12

X22

Xj2

X11

X21

Xj1

Xn1 Xn2 Xnp

X2 Xp
•  •  •

•  •  •

X1p
•  •  •

X2p

Xjp

•  •  •

•  •  •

•

•

•

•

•

•

δ

δ1

δ2

δj

δntn

t1

t2

tj

For example, in the column corresponding to X1
are the values observed on this variable for all n
persons. These values are denoted as X11, X21, and
so on, up to Xn1; the first subscript indicates the
person number, and the second subscript, a one
in each case here, indicates the variable number.
Similarly, the column corresponding to variable
X2 gives the values observed on X2 for all n per-
sons. This notation continues for the other X vari-
ables up through X p.

We have thus described the basic data layout by
columns. Alternatively, we can look at the table
line by line, that is, by rows. For each line or row,
we have the information obtained on a given indi-
vidual. Thus, for individual j , the observed infor-
mation is given by the values t j , δ j , X j 1, X j 2, etc.,
up to X j p. This is how the information is read into
the computer, that is, line by line, until all persons
are included for analysis.

EXAMPLE

The data: Remission times (in weeks)
for two groups of leukemia patients

Group 1
(Treatment) n = 21

6, 6, 6, 7, 10,

13, 16, 22, 23,

6+, 9+, 10+, 11+,

17+, 19+, 20+,

25+, 32+, 32+,

34+, 35+

+ denotes
censored

1, 1, 2, 2, 3,

4, 4, 5, 5,

8, 8, 8, 8,

11, 11, 12, 12,

15, 17, 22, 23

Group 2
(Placebo) n = 21

In remission
at study end

Lost to
follow-up

Withdraws

As an example of this data layout, consider the fol-
lowing set of data for two groups of leukemia pa-
tients: one group of 21 persons has received a cer-
tain treatment; the other group of 21 persons has
received a placebo. The data come from Freireich
et al., Blood, 1963.

As presented here, the data are not yet in tabu-
lar form for the computer, as we will see shortly.
The values given for each group consist of time in
weeks a patient is in remission, up to the point of
the patient’s either going out of remission or being
censored. Here, going out of remission is a failure.
A person is censored if he or she remains in remis-
sion until the end of the study, is lost to follow-up,
or withdraws before the end of the study. The cen-
sored data here are denoted by a plus sign next to
the survival time.
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EXAMPLE (continued) 

Group 1
(Treatment) n = 21

Group 1

Group 2

GROUP
1

# failed

9

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6

6

6

7

10

13

16

22

23

6

9

10

11

17

19

20

25

32

32

34

35

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Indiv.
#

t
(weeks)

δ
(failed or
censored)

X
(Group)

12

0

21

21

# censored Total

Group 2
(Placebo) n = 21

6, 6, 6, 7, 10,

13, 16, 22, 23,

6+, 9+, 10+, 11+,

17+, 19+, 20+,

25+, 32+, 32+,

34+, 35+

1, 1, 2, 2, 3,

4, 4, 5, 5,

8, 8, 8, 8,

11, 11, 12, 12,

15, 17, 22, 23

Here are the data again:

Notice that the first three persons in group 1 went
out of remission at 6 weeks; the next six per-
sons also went out of remission, but at failure
times ranging from 7 to 23. All of the remain-
ing persons in group 1 with pluses next to their
survival times are censored. For example, on line
three the first person who has a plus sign next to a
6 is censored at six weeks. The remaining persons
in group one are also censored, but at times rang-
ing from 9 to 35 weeks.

Thus, of the 21 persons in group 1, nine failed dur-
ing the study period, whereas the last 12 were cen-
sored. Notice also that none of the data in group
2 is censored; that is, all 21 persons in this group
went out of remission during the study period.

We now put this data in tabular form for the com-
puter, as shown at the left. The list starts with the
21 persons in group 1 (listed 1–21) and follows
(on the next page) with the 21 persons in group
2 (listed 22–42). Our n for the composite group
is 42.

The second column of the table gives the survival
times in weeks for all 42 persons. The third col-
umn indicates failure or censorship for each per-
son. Finally, the fourth column lists the values of
the only explanatory variable we have considered
so far, namely, group status, with 1 denoting treat-
ment and 0 denoting placebo.

If we pick out any individual and read across the
table, we obtain the line of data for that person that
gets entered in the computer. For example, person
#3 has a survival time of 6 weeks, and since δ = 1,
this person failed, that is, went out of remission.
The X value is 1 because person #3 is in group
1. As a second example, person #14, who has an
observed survival time of 17 weeks, was censored
at this time because δ = 0. The X value is again 1
because person #14 is also in group 1.
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EXAMPLE (continued) 

GROUP
2

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

1

2

2

3

4

4

5

5

8

8

8

8

11

11

12

12

15

17

22

23

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Indiv.
#

t
(weeks)

δ
(failed or
censored)

X
(Group)

As one more example, this time from group 2, per-
son #32 survived 8 weeks and then failed, because
δ = 1; the X value is 0 because person #32 is in
group 2.

VI. Basic Data Layout for
Understanding Analysis

We are now ready to look at another data layout,
which is shown at the left. This layout helps pro-
vide some understanding of how a survival analy-
sis actually works and, in particular, how survivor
curves are derived.

The first column in this table gives ordered fail-
ure times. These are denoted by t ’s with subscripts
within parentheses, starting with t(0), then t(1) and
so on, up to t(k). Note that the parentheses sur-
rounding the subscripts distinguish ordered fail-
ure times from the survival times previously given
in the computer layout.

For analysis:

t(0) = 0

t(1)

t(2)

t(k)

m0 = 0 q0

Ordered
failure
times
(t( j))

# of
failures

(mj)

# censored in
[t( j), t( j+1))

Risk
set

R(t( j))

R(t(0))

R(t(1))

R(t(2))

R(t(k))

•

•

•

m1

m2

mk

•

•

•

q1

q2

qk

•

•

•

•

•

•

(qj)

{t1, t2, . . . , tn}

Unordered

k = # of distinct times at whick subjects
failed (k ≤ n)

Censored t’s

Failed t’s
ordered (t( j))

To get ordered failure times from survival times,
we must first remove from the list of unordered
survival times all those times that are censored; we
are thus working only with those times at which
people failed. We then order the remaining fail-
ure times from smallest to largest, and count ties
only once. The value k gives the number of distinct
times at which subjects failed.
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EXAMPLE 
Remission Data: Group 1
(n = 21, 9 failures, k = 7)

t(j)

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

Totals

(n = 21, 21 failures, k = 12)
Remission Data: Group 2

9 12

mj

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

qj R(t( j))

t(j)

t(0) = 0

t(1) = 1

t(2) = 2

t(3) = 3

t(4) = 4

t(5) = 5

t(6) = 8

t(7) = 11

t(8) = 12

t(9) = 15

t(10) = 17

t(11) = 22

t(12) = 23

Totals 21 0

mj

0

2

2

1

2

2

4

2

2

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

21 persons survive ≥ 0 wks

21 persons survive ≥ 1 wk

19 persons survive ≥ 2 wks

17 persons survive ≥ 3 wks

16 persons survive ≥ 4 wks

14 persons survive ≥ 5 wks

12 persons survive ≥ 8 wks

8 persons survive ≥ 11 wks

6 persons survive ≥ 12 wks

4 persons survive ≥ 15 wks

3 persons survive ≥ 17 wks

2 persons survive ≥ 22 wks

1 person survive ≥ 23 wks

qj R(t( j))

ties

For example, using the remission data for group
1, we find that nine of the 21 persons failed, in-
cluding three persons at 6 weeks and one person
each at 7, 10, 13, 16, 22, and 23 weeks. These
nine failures have k = 7 distinct survival times,
because three persons had survival time 6 and we
only count one of these 6’s as distinct. The first
ordered failure time for this group, denoted as
t(1), is 6; the second ordered failure time t(2), is 7,
and so on up to the seventh ordered failure time
of 23.

Turning to group 2, we find that although all
21 persons in this group failed, there are several
ties. For example, two persons had a survival time
of 1 week; two more had a survival time of 2 weeks;
and so on. In all, we find that there were k = 12 dis-
tinct survival times out of the 21 failures. These
times are listed in the first column for group 2.

Note that for both groups we inserted a row of
data giving information at time 0. We will explain
this insertion when we get to the third column in
the table.

The second column in the data layout gives fre-
quency counts, denoted by mj , of those persons
who failed at each distinct failure time. When
there are no ties at a certain failure time, then
mj = 1. Notice that in group 1, there were three
ties at 6 weeks but no ties thereafter. In group 2,
there were ties at 1, 2, 4, 5, 8, 11, and 12 weeks. In
any case, the sum of all the mj ’s in this column
gives the total number of failures in the group
tabulated. This sum is 9 for group 1 and 21 for
group 2.
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EXAMPLE (continued)

Remission Data: Group 1

qj = censored in [t( j), t( j + 1))

t(j)

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

Totals

#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6

6

6

7

10

13

16

22

23

6

9

10

11

17

19

20

25

32

32

34

35

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

t(weeks) X(group)δ

Remission Data: Group 1

9 12

mj

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

qj R(t( j))

ties

The third column gives frequency counts, denoted
by q j , of those persons censored in the time in-
terval starting with failure time t( j ) up to the next
failure time denoted t( j+1). Technically, because of
the way we have defined this interval in the table,
we include those persons censored at the begin-
ning of the interval.

For example, the remission data, for group 1 in-
cludes 5 nonzero q j ’s: q1 = 1, q2 = 1, q3 = 2 j q5 =
3, q7 = 5. Adding these values gives us the to-
tal number of censored observations for group 1,
which is 12. Moreover, if we add the total number
of q ’s (12) to the total number of m’s (9), we get the
total number of subjects in group 1, which is 21.

We now focus on group 1 to look a little closer
at the q ’s. At the left, we list the unordered group
1 information followed (on the next page) by the
ordered failure time information. We will go back
and forth between these two tables (and pages) as
we discuss the q ’s. Notice that in the table here,
one person, listed as #10, was censored at week 6.
Consequently, in the table at the top of the next
page, we have q1 = 1, which is listed on the sec-
ond line corresponding to the ordered failure time
t(1), which equals 6.

The next q is a little trickier, it is derived from the
person who was listed as #11 in the table here and
was censored at week 9. Correspondingly, in the
table at the top of the next page, we have q2 = 1
because this one person was censored within the
time interval that starts at the second ordered fail-
ure time, 7 weeks, and ends just before the third or-
dered failure time, 10 weeks. We have not counted
here person #12, who was censored at week 10,
because this person’s censored time is exactly at
the end of the interval. We count this person in
the following interval.
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EXAMPLE (continued)
Group 1 using ordered failure times

t(j)

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

Totals 9 12

mj

3

1

1

1

1

1

1

1

1

2

0

3

0

5

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

qj R(t( j))

t(0) = 0 0 0 21 persons survive ≥ 0 wks

We now consider, from the table of unordered
failure times, person #12 who was censored at
10 weeks, and person #13, who was censored at
11 weeks. Turning to the table of ordered failure
times, we see that these two times are within the
third ordered time interval, which starts and in-
cludes the 10-week point and ends just before the
13th week. As for the remaining q ’s, we will let you
figure them out for practice.

One last point about the q information. We in-
serted a row at the top of the data for each group
corresponding to time 0. This insertion allows for
the possibility that persons may be censored after
the start of the study but before the first failure. In
other words, it is possible that q0 may be nonzero.
For the two groups in this example, however, no
one was censored before the first failure time.

EXAMPLE 

Risk Set: R(t( j)) is the set of individuals for whom

Remission Data: Group 1

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

t(j) mj qj R(t( j))

Totals 9 12

T ≥ t(j).

The last column in the table gives the “risk set.”
The risk set is not a numerical value or count but
rather a collection of individuals. By definition,
the risk set R(t( j )) is the collection of individuals
who have survived at least to time t( j ); that is, each
person in R(t( j )) has a survival time that is t( j ) or
longer, regardless of whether the person has failed
or is censored.

For example, we see that at the start of the study
everyone in group 1 survived at least 0 weeks, so
the risk set at time 0 consists of the entire group of
21 persons. The risk set at 6 weeks for group 1 also
consists of all 21 persons, because all 21 persons
survived at least as long as 6 weeks. These 21 per-
sons include the 3 persons who failed at 6 weeks,
because they survived and were still at risk just up
to this point.
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EXAMPLE (continued)

t(0) = 0

t(1) = 6

t(2) =  7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

t(j) mj qj R(t( j))

Totals 9 12

t(0) = 0

t(1) = 6

t(2) =  7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

  7 persons survive ≥ 22 wks

  6 persons survive ≥ 23 wks

Totals 9 12

Now let’s look at the risk set at 7 weeks. This set
consists of seventeen persons in group 1 that sur-
vived at least 7 weeks. We omit everyone in the
X-ed area. Of the original 21 persons, we there-
fore have excluded the three persons who failed
at 6 weeks and the one person who was censored
at 6 weeks. These four persons did not survive at
least 7 weeks. Although the censored person may
have survived longer than 7 weeks, we must ex-
clude him or her from the risk set at 7 weeks be-
cause we have information on this person only up
to 6 weeks.

To derive the other risk sets, we must exclude
all persons who either failed or were censored
before the start of the time interval being con-
sidered. For example, to obtain the risk set at
13 weeks for group 1, we must exclude the five
persons who failed before, but not including,
13 weeks and the four persons who were censored
before, but not including, 13 weeks. Subtracting
these nine persons from 21, leaves twelve persons
in group 1 still at risk for getting the event at
13 weeks. Thus, the risk set consists of these twelve
persons.

How we work with censored data:
Use all informaton up to time of cen-
sorship; don’t throw away informa-
tion.

The importance of the table of ordered failure
times is that we can work with censored obser-
vations in analyzing survival data. Even though
censored observations are incomplete, in that we
don’t know a person’s survival time exactly, we can
still make use of the information we have on a
censored person up to the time we lose track of
him or her. Rather than simply throw away the
information on a censored person, we use all the
information we have on such a person up until
time of censorship. (Nevertheless, most survival
analysis techniques require a key assumption that
censoring is non-informative—censored subjects
are not at increased risk for failure. See Chapter 9
on competing risks for further details.)
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EXAMPLE 

t(j)

6

7

10

13

16

22

23

mj

3

1

1

1

1

1

1

1

1

2

0

3

0

5

21 persons

17 persons

15 persons

12 persons

11 persons

  7 persons

  6 persons

qj R(t( j))

For example, for the three persons in group 1 who
were censored between the 16th and 20th weeks,
there are at least 16 weeks of survival information
on each that we don’t want to lose. These three per-
sons are contained in all risk sets up to the 16th
week; that is, they are each at risk for getting the
event up to 16 weeks. Any survival probabilities de-
termined before, and including, 16 weeks should
make use of data on these three persons as well
as data on other persons at risk during the first
16 weeks.

Having introduced the basic terminology and data
layouts to this point, we now consider some
data analysis issues and some additional appli-
cations.

VII. Descriptive Measures of
Survival Experience

EXAMPLE 

Remission times (in weeks) for two
groups of leukemia patients

Group 1
(Treatment) n = 21

6, 6, 6, 7, 10,

13, 16, 22, 23,

6+, 9+, 10+, 11+,

17+, 19+, 20+,

25+, 32+, 32+,

34+, 35+

1, 1, 2, 2, 3,

4, 4, 5, 5,

8, 8, 8, 8,

11, 11, 12, 12,

15, 17, 22, 23

Group 2
(Placebo) n = 21

T1 (ignoring + ’s) = 17.1 T2 = 8.6

h1 = 9
359

= .025 h2 = 21
182

= .115

# failures
Average hazard rate (h) =

n

i=1
ti∑

We first return to the remission data, again shown
in untabulated form. Inspecting the survival times
given for each group, we can see that most of the
treatment group’s times are longer than most of
the placebo group’s times. If we ignore the plus
signs denoting censorship and simply average all
21 survival times for each group we get an aver-
age, denoted by T “bar,” of 17.1 weeks survival for
the treatment group and 8.6 weeks for the placebo
group. Because several of the treatment group’s
times are censored, this means that group 1’s ture
average is even larger than what we have calcu-
lated. Thus, it appears from the data (without our
doing any mathematical analysis) that, regarding
survival, the treatment is more effective than the
placebo.

As an alternative to the simple averages that we
have computed for each group, another descrip-
tive measure of each group is the average hazard
rate, denoted as h “bar.” This rate is defined by di-
viding the total number of failures by the sum of
the observed survival times. For group 1, h “bar”
is 9/359, which equals .025. For group 2, h “bar”
is 21/182, which equals .115.
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h

s As previously described, the hazard rate indicates
failure potential rather than survival probability.
Thus, the higher the average hazard rate, the lower
is the group’s probability of surviving.

In our example, the average hazard for the treat-
ment group is smaller than the average hazard for
the placebo group.

Placebo hazard > treatment hazard:
suggests that treatment is more
effective than placebo

Thus, using average hazard rates, we again see that
the treatment group appears to be doing better
overall than the placebo group; that is, the treat-
ment group is less prone to fail than the placebo
group.

Descriptive measures (T and h) give
overall comparison; they do not
give comparison over time.

The descriptive measures we have used so far—the
ordinary average and the hazard rate average—
provide overall comparisons of the treatment
group with the placebo group. These measures
don’t compare the two groups at different points in
time of follow-up. Such a comparison is provided
by a graph of survivor curves.

Median = 8 Median = 23

0

.5

1

10 20
t weeks

Group 2 
placebo

Group 1 
treatment

S(t)

EXAMPLE Here we present the estimated survivor curves
for the treatment and placebo groups. The method
used to get these curves is called the Kaplan–
Meier method, which is described in Chapter 2.
When estimated, these curves are actually step
functions that allow us to compare the treat-
ment and placebo groups over time. The graph
shows that the survivor function for the treat-
ment group consistently lies above that for the
placebo group; this difference indicates that the
treatment appears effective at all points of follow-
up. Notice, however, that the two functions are
somewhat closer together in the first few weeks of
follow-up, but thereafter are quite spread apart.
This widening gap suggests that the treatment is
more effective later during follow-up than it is
early on.
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0.5

0

1

Median X

Y

Median (treatment) = 23 weeks
Median (placebo) = 8 weeks

Also notice from the graph that one can obtain
estimates of the median survival time, the time at
which the survival probability is .5 for each group.
Graphically, the median is obtained by proceeding
horizontally from the 0.5 point on the Y -axis un-
til the survivor curve is reached, as marked by an
arrow, and then proceeding vertically downward
until the X -axis is crossed at the median survival
time.

For the treatment group, the median is 23 weeks;
for the placebo group, the median is 8 weeks. Com-
parison of the two medians reinforces our previ-
ous observation that the treatment is more effec-
tive overall than the placebo.

VIII. Example: Extended
Remission Data

Group 1

6             2.31

6             4.06

6             3.28

7             4.43

10             2.96

13             2.88

16             3.60

22             2.32

23             2.57

6+            3.20

9+           2.80

10+           2.70

11+           2.60

17+           2.16

19+           2.05

20+           2.01

25+           1.78

32+           2.20

32+           2.53

34+           1.47

35+           1.45

1             2.80

1             5.00

2             4.91

2             4.48

3             4.01

4             4.36

4             2.42

5             3.49

5             3.97

8             3.52

8             3.05

8             2.32

8             3.26

11             3.49

11             2.12

12             1.50

12             3.06

15             2.30

17             2.95

22             2.73

23             1.97

log WBCt (weeks)

Group 2

log WBCt (weeks)

Before proceeding to another data set, we con-
sider the remission example data (Freireich et al.,
Blood, 1963) in an extended form. The table at the
left gives the remission survival times for the two
groups with additional information about white
blood cell count for each person studied. In par-
ticular, each person’s log white blood cell count
is given next to that person’s survival time. The
epidemiologic reason for adding log WBC to the
data set is that this variable is usually considered
an important predictor of survival in leukemia pa-
tients; the higher the WBC, the worse the prog-
nosis. Thus, any comparison of the effects of two
treatment groups needs to consider the possible
confounding effect of such a variable.
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Treatment group: log WBC = 1.8
Placebo group: log WBC = 4.1
Indicates confounding of treatment
effect by log WBC

PlaceboTreatment

Frequency
distribution

log WBC

EXAMPLE: CONFOUNDING

Need to adjust for imbalance in the
distribution of log WBC

Although a full exposition of the nature of con-
founding is not intended here, we provide a sim-
ple scenario to give you the basic idea. Suppose
all of the subjects in the treatment group had very
low log WBC, with an average, for example, of 1.8,
whereas all of the subjects in the placebo group
had very high log WBC, with an average of 4.1.
We would have to conclude that the results we’ve
seen so far that compare treatment with placebo
groups may be misleading.

The additional information on log WBC would
suggest that the treatment group is surviving
longer simply because of their low WBC and not
because of the efficacy of the treatment itself. In
this case, we would say that the treatment effect
is confounded by the effect of log WBC.

More typically, the distribution of log WBC may be
quite different in the treatment group than in the
control group. We have illustrated one extreme in
the graph at the left. Even though such an extreme
is not likely, and is not true for the data given here,
the point is that some attempt needs to be made to
adjust for whatever imbalance there is in the dis-
tribution of log WBC. However, if high log WBC
count was a consequence of the treatment, then
white blood cell count should not be controlled
for in the analysis.

Treatment by log WBC interaction

High log WBC Low log WBC

Placebo Placebo

S(t) S(t)

Treatment

Treatment

t t

EXAMPLE: INTERACTION Another issue to consider regarding the effect of
log WBC is interaction. What we mean by inter-
action is that the effect of the treatment may be
different, depending on the level of log WBC. For
example, suppose that for persons with high log
WBC, survival probabilities for the treatment are
consistently higher over time than for the placebo.
This circumstance is illustrated by the first graph
at the left. In contrast, the second graph, which
considers only persons with low log WBC, shows
no difference in treatment and placebo effect over
time. In such a situation, we would say that there
is strong treatment by log WBC interaction, and
we would have to qualify the effect of the treat-
ment as depending on the level of log WBC.
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Need to consider:

� interaction;� confounding.

The example of interaction we just gave is but one
way interaction can occur; on the other hand, in-
teraction may not occur at all. As with confound-
ing, it is beyond our scope to provide a thorough
discussion of interaction. In any case, the assess-
ment of interaction is something to consider in
one’s analysis in addition to confounding that in-
volves explanatory variables.

The problem:
Compare two groups after adjusting
for confounding and interaction.

Thus, with our extended data example, the basic
problem can be described as follows: to compare
the survival experience of the two groups after ad-
justing for the possible confounding and/or inter-
action effects of log WBC.

EXAMPLE

Group
1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

6
6
6
7

10
13
16
22
23
6
9

10
11
17
19
20
25
32
32
34
35

1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2.31
4.06
3.28
4.43
2.96
2.88
3.60
2.32
2.57
3.20
2.80
2.70
2.60
2.16
2.05
2.01
1.78
2.20
2.53
1.47
1.45

Individual
#

t
(weeks) δ

X2
(log WBC)

X1
(Group)

Group
2

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1
1
2
2
3
4
4
5
5
8
8
8
8

11
11
12
12
15
17
22
23

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2.80
5.00
4.91
4.48
4.01
4.36
2.42
3.49
3.97
3.52
3.05
2.32
3.26
3.49
2.12
1.50
3.06
2.30
2.95
2.73
1.97

The problem statement tells us that we are now
considering two explanatory variables in our ex-
tended example, whereas we previously consid-
ered a single variable, group status. The data lay-
out for the computer needs to reflect the addition
of the second variable, log WBC. The extended ta-
ble in computer layout form is given at the left.
Notice that we have labeled the two explanatory
variables X1 (for group status) and X2 (for log
WBC). The variable X1 is our primary study or ex-
posure variable of interest here, and the variable
X2 is an extraneous variable that we are interested
in accounting for because of either confounding or
interaction.



Presentation: IX. Multivariable Example 29

Analysis alternatives:

� stratify on log WBC;� use math modeling, e.g.,
proportional hazards model.

As implied by our extended example, which con-
siders the possible confounding or interaction ef-
fect of log WBC, we need to consider methods for
adjusting for log WBC and/or assessing its effect in
addition to assessing the effect of treatment group.
The two most popular alternatives for analysis are
the following:

� to stratify on log WBC and compare survival
curves for different strata; or� to use mathematical modeling procedures
such as the proportional hazards or other sur-
vival models; such methods will be described
in subsequent chapters.

IX. Multivariable Example We now consider one other example. Our purpose
here is to describe a more general type of mul-
tivariable survival analysis problem. The reader
may see the analogy of this example to multiple
regression or even logistic regression data prob-
lems.

� Describes general multivariable
survival problem.� Gives analogy to regression
problems.

EXAMPLE

13-year follow-up of fixed cohort from
Evans County, Georgia

n = 170 white males (60+)

T = years until death
Event = death

Explanatory variables:

Exposure:
Social Network Index (SNI)

Absence
of social
network

Excellent
social

network

0 1 2 3 4 5

• exposure variable
• confounders
• interaction variables

We consider a data set developed from a 13-year
follow up study of a fixed cohort of persons in
Evans County Georgia, during the period 1967–
1980 (Schoenbach et al., Amer. J. Epid., 1986).
From this data set, we focus or a portion contain-
ing n = 170 white males who are age 60 or older
at the start of follow-up in 1967.

For this data set, the outcome variable is T , time
in years until death from start of follow-up, so
the event of interest is death. Several explanatory
variables are measured, one of which is considered
the primary exposure variable; the other variables
are considered as potential confounders and/or in-
teraction variables.

The primary exposure variable is a measure called
Social Network Index (SNI). This is an ordinal
variable derived from questionnaire measurement
and is designed to assess the extent to which a
study subject has social contacts of various types.
With the questionnaire, a scale is used with values
ranging from 0 (absence of any social network) to
5 (excellent social network).
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EXAMPLE (continued)

The problem:

Goals:
• Measure of effect (adjusted)

• Decide on variables to be adjusted;
      determine method of adjustment

• Survivor curves for different SNI
categories (adjusted)

To describe the relationship between
SNI and time to death, after
controlling for AGE, SBP, CHR,
QUET, and SOCL.

SNI
AGE
SBP
CHR
QUET
SOCL

Explanatory variables:

Exposure variable

Potential confounders/
interaction variables

Note : QUET = weight

(height)2
× 100

Study goal: to determine whether SNI is
protective against death,
i.e., SNI ⇒ S(t)→ →

The study’s goal is to determine whether one’s
social network, as measured by SNI, is protec-
tive against death. If this study hypothesis is cor-
rect, then the higher the social network score, the
longer will be one’s survival time.

In evaluating this problem, several explanatory
variables, in addition to SNI, are measured at the
start of follow-up. These include AGE, systolic
blood pressure (SBP), an indicator of the presence
or absence of some chronic disease (CHR), body
size as measured by Quetelet’s index (QUET =
weight over height squared times 100), and social
class (SOCL).

These five additional variables are of interest be-
cause they are thought to have their own special
or collective influence on how long a person will
survive. Consequently, these variables are viewed
as potential confounders and/or interaction vari-
ables in evaluating the effect of social network on
time to death.

We can now clearly state the problem being ad-
dressed by this study: To describe the relationship
between SNI and time to death, controlling for
AGE, SBP, CHR, QUET, and SOCL.

Our goals in using survival analysis to solve this
problem are as follows:

� to obtain some measure of effect that will de-
scribe the relationship between SNI and time
until death, after adjusting for the other vari-
ables we have identified;� to develop survival curves that describe the
probability of survival over time for different
categories of social networks; in particular, we
wish to compare the survival of persons with
excellent networks to the survival of persons
with poor networks. Such survival curves need
to be adjusted for the effects of other variables.� to achieve these goals, two intermediary goals
are to decide which of the additional variables
being considered need to be adjusted and to
determine an appropriate method of adjust-
ment.
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The computer data layout for this problem is given
below. The first column lists the 170 individuals
in the data set. The second column lists the sur-
vival times, and the third column lists failure or
censored status. The remainder of the columns
list the 6 explanatory variables of interest, start-
ing with the exposure variable SNI and continu-
ing with the variables to be accounted for in the
analysis.

Computer layout: 13-year follow-up study (1967–1980) of a fixed cohort of n = 170
white males (60+) from Evans County, Georgia

# t δ SNI AGE SBP CHR QUET SOCL

1 t1 δ1 SNI1 AGE1 SBP1 CHR1 QUET1 SOCL1
2 t2 δ2 SNI2 AGE2 SBP2 CHR2 QUET2 SOCL2
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

170 t170 δ170 SNI170 AGE170 SBP170 CHR170 QUET170 SOCL170

X. Math Models in Survival
Analysis

It is beyond the scope of this presentation to pro-
vide specific details of the survival analysis of
these data. Nevertheless, the problem addressed
by these data is closely analogous to the typical
multivariable problem addressed by linear and lo-
gistic regression modeling. Regardless of which
modeling approach is chosen, the typical problem
concerns describing the relationship between an
exposure variable (e.g., E) and an outcome vari-
able (e.g., D) after controlling for the possible con-
founding and interaction effects of additional vari-
ables (e.g., C1, C2, and so on up to Cp). In our
survival analysis example, E is the social network
variable SNI, D is the survival time variable, and
there are p = 5 C variables, namely, AGE, SBP,
CHR, QUET, and SOCL.

General framework

E D

Controlling for C1, C2, . . . Cp.

SNI study:

Controlling for AGE, SBP, CHR,
QUET, and SOCL

E = SNI D  = survival time
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Model Outcome

Time to event 
(with censoring)

Continuous (SBP)

Dichotomous
(CHD yes/no)

Survival analysis

Linear regression 

Logistic regression{

fo
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ow
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Nevertheless, an important distinction among
modeling methods is the type of outcome vari-
able being used. In survival analysis, the outcome
variable is “time to an event,” and there may be
censored data. In linear regression modeling, the
outcome variable is generally a continuous vari-
able, like blood pressure. In logistic modeling, the
outcome variable is a dichotomous variable, like
CHD status, yes or no. And with linear or logistic
modeling, we usually do not have information on
follow-up time available.

As with linear and logistic modeling, one statisti-
cal goal of a survival analysis is to obtain some
measure of effect that describes the exposure–
outcome relationship adjusted for relevant extra-
neous variables.

Measure of effect:
Linear regression:

regression coefficient β
Logistic regression:

odds ratio eβ

In linear regression modeling, the measure of ef-
fect is usually some regression coefficient β.

In logistic modeling, the measure of effect is an
odds ratio expressed in terms of an exponential of
one or more regression coefficients in the model,
for example, e to the β.

Survival analysis:
hazard ratio eβ

In survival analysis, the measure of effect typically
obtained is called a hazard ratio; as with the logis-
tic model, this hazard ratio is expressed in terms
of an exponential of one or more regression coef-
ficients in the model.

EXAMPLE
SNI study: hazard ratio (HR) describes
relationship between SNI and T, after
controlling for covariates.

Thus, from the example of survival analysis mod-
eling of the social network data, one may obtain
a hazard ratio that describes the relationship be-
tween SNI and survival time (T ), after controlling
for the appropriate covariates.
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Interpretation of HR (like OR):

HR = 1 ⇒ no relationship

HR = 10 ⇒ exposed hazard
10 times unexposed

HR = 1/10 ⇒ exposed hazard
1/10 times unexposed

The hazard ratio, although a different measure
from an odds ratio, nevertheless has a similar in-
terpretation of the strength of the effect. A haz-
ard ratio of 1, like an odds ratio of 1, means that
there is no effect; that is, 1 is the null value for
the exposure–outcome relationship. A hazard ra-
tio of 10, on the other hand, is interpreted like an
odds ratio of 10; that is, the exposed group has ten
times the hazard of the unexposed group. Simi-
larly, a hazard ratio of 1/10 implies that the ex-
posed group has one-tenth the hazard of the un-
exposed group.

Chapters This presentation is now complete. We suggest
that you review the material covered here by read-
ing the detailed outline that follows. Then do the
practice exercises and test.

✓ 1.
�

�

�

�Introduction
2. Kaplan–Meier Survival Curves

and the Log–Rank Test
In Chapter 2 we describe how to estimate and
graph survival curves using the Kaplan–Meier
(KM) method. We also describe how to test
whether two or more survival curves are estimat-
ing a common curve. The most popular such test
is called the log–rank test.



34 1. Introduction to Survival Analysis

Detailed
Outline

I. What is survival analysis? (pages 4–5)
A. Type of problem addressed: outcome variable is

time until an event occurs.
B. Assume one event of interest; more than one type

of event implies a competing risk problem.
C. Terminology: time = survival time; event = failure.
D. Examples of survival analysis:

i. leukemia patients/time in remission
ii. disease-free cohort/time until heart disease

iii. elderly population/time until death
iv. parolees/time until rearrest (recidivism)
v. heart transplants/time until death

II. Censored data (pages 5–8)
A. Definition: don’t know exact survival time.
B. Reasons: study ends without subject getting event;

lost to follow-up; withdraws.
C. Examples of survival data for different persons;

summary table.
III. Terminology and notation (pages 8–14)

A. Notation: T = survival time random variable:
t = specific value for T
δ = (0–1) variable for failure/censorship

status
B. Terminology: S(t) = survivor function

h(t) = hazard function
C. Properties of survivor function:� theoretically, graph is smooth curve, decreasing

from S(t) = 1 at time t = 0 to S(t) = 0 at t = ∞;� in practice, graph is step function that may not
go all the way to zero at end of study if not
everyone studied gets the event.

D. Hazard function formula:

h(t) = lim
�t→0

P (t ≤ T < t + �t|T ≥ t)
�t

E. Hazard function properties:� h(t) gives instantaneous potential for event to
occur given survival up to time t;� instantaneous potential idea is illustrated by
velocity;� hazard function also called “conditional failure
rate”;� h(t) ≥ 0; has no upper bound; not a probability;
depends on time units.
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F. Examples of hazard curves:
i. exponential

ii. increasing Weibull
iii. decreasing Weibull
iv. log normal

G. Uses of hazard function:� gives insight about conditional failure rates;� identifies specific model form;� math model for survival analysis is usually
written in terms of hazard function.

H. Relationship of S(t) to h(t): if you know one, you
can determine the other.� example: h(t) = λ if and only if S(t) = e−λt

� general formulae:

S(t) = exp
[
−

∫ t

0
h(u)du

]
h(t) = −

[
d S(t)/dt

S(t)

]
IV. Goals of survival analysis (page 15)

A. Estimate and interpret survivor and/or hazard
functions.

B. Compare survivor and/or hazard functions.
C. Assess the relationship of explanatory variables

to survival time.
V. Basic data layout for computer (15–19)

A. General layout:

# t δ X1 X2 · · · X p

1 t1 δ1 X11 X12 · · · X1p
2 t2 δ2 X21 X22 · · · X2p
· · · ·
· · · ·
· · · ·
j t j δ j X j 1 X j 2 · · · X j p
· · · ·
· · · ·
· · · ·
n tn δn Xn1 Xn2 · · · Xnp

B. Example: Remission time data
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VI. Basic data layout for understanding analysis
(pages 19–24)
A. General layout:

Ordered
failure # of # censored Risk
times failures in [t( j ), t( j+1)) set
(t( j )) (mj ) (q j ) R(t( j ))

t(0) = 0 m0 = 0 q0 R(t(0))
t(1) m1 q1 R(t(1))
t(2) m2 q2 R(t(2))
· · · ·
· · · ·
· · · ·
t(k) mk qk R(t(k))

Note: k = # of distinct times at which subjects
failed; n = # of subjects (k ≤ n); R(t( j )), the risk
set, is the set of individuals whose survival times
are at least t( j ) or larger.

B. Example: Remission time data
Group 1 (n = 21, 9 failures, k = 7);
Group 2 (n = 21, 21 failures, k = 12)

C. How to work with censored data:
Use all information up to the time of censorship;
don’t throw away information.

VII. Descriptive measures of survival experience
(pages 24–26)
A. Average survival time (ignoring censorship

status):

T =

n∑
j=1

t j

n

T underestimates the true average
survival time, because censored
times are included in the formula.

B. Average hazard rate:

h = # failures
n∑

j=1
t j

C. Descriptive measures T and h give overall
comparison; estimated survivor curves give
comparison over time.
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D. Estimated survivor curves are step function
graphs.

E. Median survival time: graphically, proceed
horizontally from 0.5 on the Y -axis until
reaching graph, then vertically downward until
reaching the X -axis.

VIII. Example: Extended remission data (pages 26–29)
A. Extended data adds log WBC to previous

remission data.
B. Need to consider confounding and interaction.
C. Extended data problem: compare survival

experience of two groups, after adjusting for
confounding and interaction effects of log WBC.

D. Analysis alternatives:
i. stratify on log WBC and compare survival

curves for different strata;
ii. use math modeling, e.g., proportional

hazards model.
IX. Multivariable example (pages 29–31)

A. The problem: to describe the relationship
between social network index (SNI) and time
until death, controlling for AGE, systolic blood
pressure (SBP), presence or absence of chronic
disease (CHR), Quetelet’s index (QUET—a
measure of body size), and social class (SOCL).

B. Goals:� to obtain an adjusted measure of effect;� to obtain adjusted survivor curves for different
SNI categories;� to decide on variables to be adjusted.

C. The data: 13-year follow-up study (1967–1980) of
a fixed cohort of n = 170 white males (60+) from
Evans County, Georgia.

# t δ SNI AGE SBP CHR QUET SOCL

1 t1 δ1 SNI1 AGE1 SBP1 CHR1 QUET1 SOCL1
2 t2 δ2 SNI2 AGE2 SBP2 CHR2 QUET2 SOCL2
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

170 t170 δ170 SNI170 AGE170 SBP170 CHR170 QUET170 SOCL170
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X. Math models in survival analysis (pages 31–33)
A. Survival analysis problem is analogous to typical

multivariable problem addressed by linear
and/or logistic regression modeling: describe
relationship of exposure to outcome, after
accounting for possible confounding and
interaction.

B. Outcome variable (time to event) for survival
analysis is different from linear (continuous) or
logistic (dichotomous) modeling.

C. Measure of effect typically used in survival
analysis: hazard ratio (HR).

D. Interpretation of HR: like OR. SNI study: HR
describes relationship between SNI and T , after
controlling for covariates.

Practice
Exercises

True or False (Circle T or F):

T F 1. In a survival analysis, the outcome variable is di-
chotomous.

T F 2. In a survival analysis, the event is usually de-
scribed by a (0,1) variable.

T F 3. If the study ends before an individual has gotten
the event, then his or her survival time is censored.

T F 4. If, for a given individual, the event occurs before
the person is lost to follow-up or withdraws from
the study, then this person’s survival time is cen-
sored.

T F 5. S(t) = P (T > t) is called the hazard function.
T F 6. The hazard function is a probability.
T F 7. Theoretically, the graph of a survivor function is

a smooth curve that decreases from S(t) = 1 at
t = 0 to S(t) = 0 at t = ∞.

T F 8. The survivor function at time t gives the instanta-
neous potential per unit time for a failure to occur,
given survival up to time t.

T F 9. The formula for a hazard function involves a con-
ditional probability as one of its components.

T F 10. The hazard function theoretically has no upper
bound.

T F 11. Mathematical models for survival analysis are fre-
quently written in terms of a hazard function.

T F 12. One goal of a survival analysis is to compare sur-
vivor and/or hazard functions.
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T F 13. Ordered failure times are censored data.
T F 14. Censored data are used in the analysis of survival

data up to the time interval of censorship.
T F 15. A typical goal of a survival analysis involving sev-

eral explanatory variables is to obtain an adjusted
measure of effect.

16. Given the following survival time data (in weeks) for
n = 15 subjects,

1, 1, 1+, 1+, 1+, 2, 2, 2, 2+, 2+, 3, 3, 3+, 4+, 5+
where + denotes censored data, complete the following
table:

t( j ) mj q j R(t( j ))

0 0 0 15 persons survive ≥ 0 weeks
1
2
3

Also, compute the average survival time (T ) and the aver-
age hazard rate (h) using the raw data (ignoring + signs
for T ).

17. Suppose that the estimated survivor curve for the above
table is given by the following graph:

1

1

20 3

S(t)

t

What is the median survival time for this cohort?

Questions 18–20 consider the comparison of the
following two survivor curves:

1

t*

Group B

Group A

S(t)

18. Which group has a better survival prognosis before time
t∗?
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19. Which group has a better survival prognosis after
time t∗?

20. Which group has a longer median survival time?

Test True or False (Circle T or F):

T F 1. Survival analysis is a collection of statistical pro-
cedures for data analysis for which the outcome
variable is time until an event occurs.

T F 2. In survival analysis, the term “event” is synony-
mous with “failure.”

T F 3. If a given individual is lost to follow-up or with-
draws from the study before the end of the study
without the event occurring, then the survival
time for this individual is said to be “censored.”

T F 4. In practice, the survivor function is usually
graphed as a smooth curve.

T F 5. The survivor function ranges between 0 and ∞.
T F 6. The concept of instantaneous potential is illus-

trated by velocity.
T F 7. A hazard rate of one per day is equivalent to seven

per week.
T F 8. If you know the form of a hazard function, then

you can determine the corresponding survivor
curve, and vice versa.

T F 9. One use of a hazard function is to gain insight
about conditional failure rates.

T F 10. If the survival curve for group 1 lies completely
above the survival curve for group 2, then the me-
dian survival time for group 2 is longer than that
for group 1.

T F 11. The risk set at six weeks is the set of individu-
als whose survival times are less than or equal to
six weeks.

T F 12. If the risk set at six weeks consists of 22 persons,
and four persons fail and three persons are cen-
sored by the 7th week, then the risk set at seven
weeks consists of 18 persons.

T F 13. The measure of effect used in survival analysis is
an odds ratio.

T F 14. If a hazard ratio comparing group 1 relative to
group 2 equals 10, then the potential for failure is
ten times higher in group 1 than in group 2.
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T F 15. The outcome variable used in a survival analy-
sis is different from that used in linear or logistic
modeling.

16. State two properties of a hazard function.
17. State three reasons why hazard functions are used.
18. State three goals of a survival analysis.
19. The following data are a sample from the 1967–1980

Evans County study. Survival times (in years) are given
for two study groups, each with 25 participants. Group 1
has no history of chronic disease (CHR = 0), and group
2 has a positive history of chronic disease (CHR = 1):

Group 1 (CHR = 0): 12.3+, 5.4, 8.2, 12.2+, 11.7, 10.0,
5.7, 9.8, 2.6, 11.0, 9.2, 12.1+, 6.6,
2.2, 1.8, 10.2, 10.7, 11.1, 5.3, 3.5,
9.2, 2.5, 8.7, 3.8, 3.0

Group 2 (CHR = 1): 5.8, 2.9, 8.4, 8.3, 9.1, 4.2, 4.1, 1.8,
3.1, 11.4, 2.4, 1.4, 5.9, 1.6, 2.8,
4.9, 3.5, 6.5, 9.9, 3.6, 5.2, 8.8, 7.8,
4.7, 3.9

For group 1, complete the following table involving
ordered failure times:

t( j ) mj q j R(t( j ))

Group 1: 0.0 0 0 25 persons survived ≥ 0 years
1.8 1 0 25 persons survived ≥ 1.8 years
2.2
2.5
2.6
3.0
3.5
3.8
5.3
5.4
5.7
6.6
8.2
8.7
9.2
9.8

10.0
10.2
10.7
11.0
11.1
11.7
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20. For the data of Problem 19, the average survival time
(T ) and the average hazard rate (h) for each group are
given as follows:

T h

Group 1: 7.5 .1165
Group 2: 5.3 .1894

a. Based on the above information, which group has a
better survival prognosis? Explain briefly.

b. How would a comparison of survivor curves provide
additional information to what is provided in the
above table?

Answers to
Practice
Exercises

1. F: the outcome is continuous; time until an event occurs.

2. T

3. T

4. F: the person fails, i.e., is not censored.

5. F: S(t) is the survivor function.

6. F: the hazard is a rate, not a probability.

7. T

8. F: the hazard function gives instantaneous potential.

9. T

10. T

11. T

12. T

13. F: ordered failure times are data for persons who are
failures.

14. T

15. T
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16. t( j ) mj q j R(t( j ))

0 0 0 15 persons survive ≥ 0 weeks
1 2 3 15 persons survive ≥ 1 weeks
2 3 2 10 persons survive ≥ 2 weeks
3 2 3 5 persons survive ≥ 3 weeks

T = 33
15

= 2.2; h = 7
33

= 0.2121

17. Median = 3 weeks

18. Group A

19. Group B

20. Group A
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Introduction We begin with a brief review of the purposes of survival analy-
sis, basic notation and terminology, and the basic data layout
for the computer.

We then describe how to estimate and graph survival curves
using the Kaplan–Meier (KM) method. The estimated sur-
vival probabilities are computed using a product limit
formula.

Next, we describe how to compare two or more survival
curves using the log–rank test of the null hypothesis of a
common survival curve. For two groups, the log–rank statis-
tic is based on the summed observed minus expected score for
a given group and its variance estimate. For several groups,
a computer should always be used because the log–rank for-
mula is more complicated mathematically. The test statistic
is approximately chi-square in large samples with G − 1 de-
grees of freedom, where G denotes the number of groups be-
ing compared.

Several alternatives to the log–rank test will be briefly de-
scribed. These tests are variations of the log rank test that
weigh each observation differently. They are also large sam-
ple chi-square tests with G − 1 degrees of freedom.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Review (pages 48–50)
II. An example of Kaplan–Meier curves (pages 51–55)

III. General features of KM curves (pages 56–57)
IV. The log–rank test for two groups (pages 57–61)
V. The log–rank test for several groups (pages 61–63)

VI. Alternatives to the log–rank test (pages 63–68)
VII. Summary (page 68)
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Objectives Upon completing the chapter, the learner should be able to:

1. Compute Kaplan–Meier (KM) probabilities of survival,
given survival time and failure status information on a
sample of subjects.

2. Interpret a graph of KM curves that compare two or more
groups.

3. Draw conclusions as to whether or not two or more sur-
vival curves are the same based on computer results that
provide a log–rank test and/or an alternative test.

4. Decide whether the log–rank test or one of the alternatives
to this test is more appropriate for a given set of survival
data.



48 2. Kaplan–Meier Survival Curves and the Log–Rank Test

Presentation

FOCUS

•  plot and interpret
    KM survival curves

•  test equivalence of
    KM curves using
    log–rank test

•  Peto test

This presentation describes how to plot and inter-
pret survival data using Kaplan–Meier (KM) sur-
vival curves and how to test whether or not two
or more KM curves are equivalent using the log–
rank test. We also describe alternative tests to the
log–rank test.

I. Review We begin by reviewing the basics of survival anal-
ysis. Generally, survival analysis is a collection of
statistical procedures for the analysis of data in
which the outcome variable of interest is time
until an event occurs. By event, we mean death,
disease incidence, relapse from remission, or any
designated experience of interest that may happen
to an individual.

TIMEStart Event

Event: death
disease
relapse

Time = survival time

Event = failure

When doing a survival analysis, we usually refer
to the time variable as survival time. We also typ-
ically refer to the event as a failure.

Censoring: Don’t know survival
time exactly

Most survival analyses consider a key data analyt-
ical problem called censoring. In essence, censor-
ing occurs when we have some information about
individual survival time, but we don’t know the
survival time exactly.

True survival time

Observed survival time

Right-censored

Most survival time data is right-censored, because
the true survival time interval, which we don’t re-
ally know, has been cut off (i.e., censored) at the
right side of the observed time interval, giving us
an observed survival time that is shorter than the
true survival time. We want to use the observed
survival time to draw implications about the true
survival time.

NOTATION

T = survival time

random variable
t = specific value for T

As notation, we denote by a capital T the random
variable for a person’s survival time. Next, we de-
note by a small letter t any specific value of inter-
est for the variable T.
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δ = (0, 1) random variable

=
{

1 if failure
0 if censored

We let the Greek letter delta (δ) denote a (0,1) ran-
dom variable indicating either censorship or fail-
ure. A person who does not fail, that is, does not
get the event during the study period, must have
been censored either before or at the end of the
study.

S(t) = survivor function
= Pr (T > t)

The survivor function, denoted by S(t), gives the
probability that the random variable T exceeds the
specified time t.

0 t

S(0)

S(t)

∞

S(∞)

1
Theoretical S(t)

Theoretically, as t ranges from 0 up to infinity,
the survivor function is graphed as a decreasing
smooth curve, which begins at S(t) = 1 at t = 0
and heads downward toward zero as t increases
toward infinity.

Ŝ(t) in practice

1

0 Study endt

Ŝ(t)

In practice, using data, we usually obtain esti-
mated survivor curves that are step functions, as
illustrated here, rather than smooth curves.

h(t) = hazard functon
= instantaneous potential

given survival up to time t

The hazard function, denoted by h(t), gives the in-
stantaneous potential per unit time for the event
to occur given that the individual has survived up
to time t.

S(t)

h(t)

Failing

Not failing

h(t) is a rate : 0 to ∞

In contrast to the survivor function, which focuses
on not failing, the hazard function focuses on fail-
ing; in other words, the higher the average hazard,
the worse the impact on survival. The hazard is a
rate, rather than a probability. Thus, the values
of the hazard function range between zero and
infinity.

h(t)S(t)
Regardless of which function S(t) or h(t) one
prefers, there is a clearly defined relationship
between the two. In fact, if one knows the form
of S(t), one can derive the corresponding h(t), and
vice versa.
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General Data Layout:

Indiv. # t δ X1 X2 · · · X p

1 t1 δ1 X11 X12 · · · X1p
2 t2 δ2 X21 X22 · · · X2p
· · · · ·
· · · · ·
· · · · ·
n tn δn Xn1 Xn2 · · · Xnp

The general data layout for a survival analysis is
given by the table shown here. The first column of
the table identifies the study subjects. The second
column gives the observed survival time informa-
tion. The third column gives the information for
δ, the dichotomous variable that indicates censor-
ship status. The remainder of the information in
the table gives values for explanatory variables of
interest.

Alternative (ordered) data
layout:

Ordered # of # censored in Risk
failure times, failures [t( j ), t( j+1)), set,

t( j ) mj q j R(t( j ))

t(0) = 0 m0 = 0 q0 R(t0))
t(1) m1 q1 R(t(1))
t(2) m2 q2 R(t(2))
· · · ·
· · · ·
· · · ·

t(k) mk qk R(t(k))

An alternative data layout is shown here. This lay-
out is the basis upon which Kaplan–Meier sur-
vival curves are derived. The first column in the
table gives ordered survival times from smallest to
largest. The second column gives frequency counts
of failures at each distinct failure time. The third
column gives frequency counts, denoted by q j , of
those persons censored in the time interval start-
ing with failure time t( j ) up to but not including
the next failure time, denoted by t( j+1). The last
column gives the risk set, which denotes the col-
lection of individuals who have survived at least
to time t( j ).

Table of ordered failures:

� Uses all information up to time
of censorship;� S(t) is derived from R(t).

To estimate the survival probability at a given time,
we make use of the risk set at that time to include
the information we have on a censored person up
to the time of censorship, rather than simply throw
away all the information on a censored person.

Survival probability:
Use Kaplan–Meier (KM)
method.

The actual computation of such a survival proba-
bility can be carried out using the Kaplan–Meier
(KM) method. We introduce the KM method in the
next section by way of an example.
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II. An Example of
Kaplan–Meier Curves

The data for this example derive from a study of
the remission times in weeks for two groups of
leukemia patients, with 21 patients in each group.
Group 1 is the treatment group and group 2 is
the placebo group. The basic question of interest
concerns comparing the survival experience of the
two groups.

EXAMPLE 

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n = 21)
treatment

Group 2 (n = 21)
placebo

6, 6, 6, 7, 10,

13, 16, 22, 23,

6+, 9+, 10+, 11+,

17+, 19+, 20+,

25+, 32+, 32+,

34+, 35+,

1, 1, 2, 2, 3,

4, 4, 5, 5,

8, 8, 8, 8,

11, 11, 12, 12,

15, 17, 22, 23

Note: + denotes censored

Group 1
Group 2

9
21

12
0

21
21

# failed # censored Total

Descriptive statistics:

T1 (ignoring + ’s ) = 17.1, T2 = 8.6

h1 = .025, h2 = .115, h2 = 4.6
h1

Of the 21 persons in group 1, 9 failed during the
study period and 12 were censored. In contrast,
none of the data in group 2 are censored; that is,
all 21 persons in the placebo group went out of
remission during the study period.

In Chapter 1, we observed for this data set that
group 1 appears to have better survival prognosis
than group 2, suggesting that the treatment is ef-
fective. This conclusion was supported by descrip-
tive statistics for the average survival time and
average hazard rate shown. Note, however, that
descriptive statistics provide overall comparisons
but do not compare the two groups at different
times of follow-up.
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EXAMPLE (continued) 

Ordered failure times:

Group 1 (treatment)

0
6
7

10
13
16
22
23

>23

21
21
17
15
12
11

7
6

—

0
3
1
1
1
1
1
1
—

0
1
1
2
0
3
0
5
—

t(j) nj mj qj

t(j) nj mj qj

Group 2 (placebo)

0
1
2
3
4
5
8

11
12
15
17
22
23

21
21
19
17
16
14
12

8
6
4
3
2
1

0
2
2
1
2
2
4
2
2
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0

Group 2: no censored subjects

Group 2 (placebo)
t( j)

0
1
2
3
4
5
8

11
12
15
17
22
23

nj

21
21
19
17
16
14
12
8
6
4
3
2
1

mj

0
2
2
1
2
2
4
2
2
1
1
1
1

qj

0
0
0
0
0
0
0
0
0
0
0
0
0

Ŝ(t( j))

1
19/21 = .90
17/21 = .81
16/21 = .76
14/21 = .67
12/21 = .57
8/21 = .38
6/21 = .29
4/21 = .19
3/21 = .14
2/21 = .10
1/21 = .05
0/21 = .00

A table of ordered failure times is shown here for
each group. These tables provide the basic infor-
mation for the computation of KM curves.

Each table begins with a survival time of zero, even
though no subject actually failed at the start of
follow-up. The reason for the zero is to allow for
the possibility that some subjects might have been
censored before the earliest failure time.

Also, each table contains a column denoted as n j
that gives the number of subjects in the risk set at
the start of the interval. Given that the risk set is
defined as the collection of individuals who have
survived at least to time t( j ), it is assumed that n j
includes those persons failing at time t( j ). In other
words, n j counts those subjects at risk for failing
instantaneously prior to time t( j ).

We now describe how to compute the KM curve
for the table for group 2. The computations for
group 2 are quite straightforward because there
are no censored subjects for this group.

The table of ordered failure times for group 2
is presented here again with the addition of an-
other column that contains survival probability
estimates. These estimates are the KM survival
probabilities for this group. We will discuss the
computations of these probabilities shortly.
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KM Curve for Group 2 (Placebo)

S(t) = Pr (T > t)

0

.5

1

5 10 15 20

Ŝ(t)

Weeks

EXAMPLE (continued)

t(j) nj mj qj

Group 2 (placebo)

0
1
2
3
4
5
8

11
12
15
17
22
23

21
21
19
17
16
14
12
8
6
4
3
2
1

0
2
2
1
2
2
4
2
2
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0

1
19/21 = .90
17/21 = .81
16/21 = .76
14/21 = .67
12/21 = .57
  8/21 = .38
  6/21 = .29
  4/21 = .19
  3/21 = .14
  2/21 = .10
  1/21 = .05
  0/21 = .00

Ŝ(t( j))

Ŝ(t( j))
# surviving past t( j)

21
=

No censorship in group 2

Alternative formula: KM approach

A plot of the KM survival probabilities correspond-
ing to each ordered failure time is shown here for
group 2. Empirical plots such as this one are typ-
ically plotted as a step function that starts with a
horizontal line at a survival probability of 1 and
then steps down to the other survival probabili-
ties as we move from one ordered failure time to
another.

We now describe how the survival probabilities for
the group 2 data are computed. Recall that a sur-
vival probability gives the probability that a study
subject survives past a specified time.

Thus, considering the group 2 data, the probabil-
ity of surviving past zero is unity, as it will always
be for any data set.

Next, the probability of surviving past the first or-
dered failure time of one week is given by 19/21 or
(.90) because 2 people failed at one week, so that
19 people from the original 21 remain as survivors
past one week.

Similarly, the next probability concerns subjects
surviving past two weeks, which is 17/21 (or .81)
because 2 subjects failed at one week and 2 sub-
jects failed at two weeks leaving 17 out of the orig-
inal 21 subjects surviving past two weeks.

The remaining survival probabilities in the table
are computed in the same manner, that is, we
count the number of subjects surviving past the
specified time being considered and divide this
number by 21, the number of subjects at the start
of follow-up.

Recall that no subject in group 2 was censored, so
the q column for group 2 consists entirely of ze-
ros. If some of the q’s had been nonzero, an alter-
native formula for computing survival probabili-
ties would be needed. This alternative formula is
called the Kaplan–Meier (KM) approach and can
be illustrated using the group 2 data even though
all values of q are zero.
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1
19 17
21 19

16
17

14
16

14
21

×× × × ==

=

=

=

19
21

16
17

17 = # in risk set at week 3

.67

Pr(T >1|T ≥ 1)

Pr(T >3|T ≥ 3)

Ŝ(4)

1
19 17
21 19

16
17

14 12 8
16 14 12

×× × × × ×=

1
19 17
21 19

16
17

14
16

×× × ×=Ŝ(4)

Ŝ(8)

EXAMPLE 

Ŝ(4) = = = .671 19
21 19 17 16 21

17 16 14 14× × × ×

Pr(T > t( j) | T ≥ t( j))

KM formula = product limit
formula

Group 1 (treatment)

t(j) nj mj qj Ŝ(t(j))

0 21 0 0 ©1
6 21 3 1 1 × 18

21·
·
·

For example, an alternative way to calculate the
survival probability of exceeding four weeks for
the group 2 data can be written using the KM for-
mula shown here. This formula involves the prod-
uct of conditional probability terms. That is, each
term in the product is the probability of exceed-
ing a specific ordered failure time t( j ) given that a
subject survives up to that failure time.

Thus, in the KM formula for survival past four
weeks, the term 19/21 gives the probability of sur-
viving past the first ordered failure time, one week,
given survival up to the first week. Note that all 21
persons in group 2 survived up to one week, but
that 2 failed at one week, leaving 19 persons sur-
viving past one week.

Similarly, the term 16/17 gives the probability of
surviving past the third ordered failure time at
week 3, given survival up to week 3. There were
17 persons who survived up to week 3 and one of
these then failed, leaving 16 survivors past week 3.
Note that the 17 persons in the denominator rep-
resents the number in the risk set at week 3.

Notice that the product terms in the KM formula
for surviving past four weeks stop at the fourth
week with the component 14/16. Similarly, the KM
formula for surviving past eight weeks stops at the
eighth week.

More generally, any KM formula for a survival
probability is limited to product terms up to the
survival week being specified. That is why the KM
formula is often referred to as a “product-limit”
formula.

Next, we consider the KM formula for the data
from group 1, where there are several censored
observations.

The estimated survival probabilities obtained us-
ing the KM formula are shown here for group 1.

The first survival estimate on the list is Ŝ(0) = 1, as
it will always be, because this gives the probability
of surviving past time zero.
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Fraction at t( j): Pr(T > t( j) | T ≥ t( j))

Not available at t( j): failed prior to t( j)
or
censored prior to t( j)

group 1 only

EXAMPLE (continued)

KM Plots for Remission Data

0

0.2

0

0.4

0.6

0.8

1

8 16 24 32

Group 2 (placebo)

Group 1 (treatment)

Group 1 (treatment)

0

6

7

10

13

16

22

23

21

21

17

15

12

11

7

6

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

1

1
18

16
21

17

15
14

12
11

11
10

7
6

6
5

.8571 ×

×

.8067

.8067 ×

.7529 ×

.7529

.6902 ×

.6902

.6275 ×

.6275

.5378 ×

.5378

.4482

.8571

t(j) nj mj qj Ŝ(t( j))

=

=

=

=

=

=

=

Obtain KM plots from
computer package, e.g., SAS,

Stata,
SPSS

The other survival estimates are calculated by mul-
tiplying the estimate for the immediately preced-
ing failure time by a fraction. For example, the
fraction is 18/21 for surviving past week 6, because
21 subjects remain up to week 6 and 3 of these
subjects fail to survive past week 6. The fraction is
16/17 for surviving past week 7, because 17 peo-
ple remain up to week 7 and one of these fails to
survive past week 7. The other fractions are calcu-
lated similarly.

For a specified failure time t( j ), the fraction may be
generally expressed as the conditional probability
of surviving past time t( j ), given availability (i.e.,
in the risk set) at time t( j ). This is exactly the same
formula that we previously used to calculate each
product term in the product limit formula used for
the group 2 data.

Note that a subject might not be available at time
t( j ) for one of two reasons: (1) either the subject
has failed prior to t( j ), or (2) the subject has been
censored prior to t( j ). Group 1 has censored ob-
servations, whereas group 2 does not. Thus, for
group 1, censored observations have to be taken
into account when determining the number avail-
able at t( j ).

Plots of the KM curves for groups 1 and 2 are
shown here on the same graph. Notice that the
KM curve for group 1 is consistently higher than
the KM curve for group 2. These figures indi-
cate that group 1, which is the treatment group,
has better survival prognosis than group 2, the
placebo group. Moreover, as the number of weeks
increases, the two curves appear to get farther
apart, suggesting that the beneficial effects of the
treatment over the placebo are greater the longer
one stays in remission.

The KM plots shown above can be easily obtained
from most computer packages that perform sur-
vival analysis, including SAS, Stata, and SPSS. All
the user needs to do is provide a KM computer
program with the basic data layout and then pro-
vide appropriate commands to obtain plots.
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III. General Features of KM
Curves

The general formula for a KM survival probabil-
ity at failure time t( j ) is shown here. This formula
gives the probability of surviving past the previous
failure time t( j−1), multiplied by the conditional
probability of surviving past time t( j ), given sur-
vival to at least time t( j ).

General KM formula:

Ŝ(t( j ))

= Ŝ(t( j−1)) × P̂r (T > t( j )|T ≥ t( j ))

KM formula = product limit
formula

Ŝ(t( j−1)) =
j−1∏
i=1

P̂r(T > t(i)|T ≥ t(i))

The above KM formula can also be expressed as a
product limit if we substitute for the survival prob-
ability Ŝ(t( j−1)), the product of all fractions that
estimate the conditional probabilities for failure
times t( j−1) and earlier.

EXAMPLE 
14
15

.8067 ×

18
21 17 15

16 14× ×

Ŝ(10) =

=

18
21 17 15 12 11

16 14 11 10× × × ×

10
11

.6902 ×Ŝ(16) =

=

= .7529

For example, the probability of surviving past ten
weeks is given in the table for group 1 (page 55)
by .8067 times 14/15, which equals .7529. But the
.8067 can be alternatively written as the product
of the fractions 18/21 and 16/17. Thus, the product
limit formula for surviving past 10 weeks is given
by the triple product shown here.

Similarly, the probability of surviving past sixteen
weeks can be written either as .6902 × 10/11, or
equivalently as the five-way product of fractions
shown here.

Ŝ(t( j )) =
j∏

i=1

P̂r[T > t(i)|T ≥ t(i)]

= Ŝ(t( j−1))

× P̂r(T > t(i)|T ≥ t(i))

The general expression for the product limit for-
mula for the KM survival estimate is shown here
together with the general KM formula given ear-
lier. Both expressions are equivalent.

Math proof:

Pr(A and B) = Pr(A)×Pr(B | A)
always

A simple mathematical proof of the KM formula
can be described in probability terms. One of the
basic rules of probability is that the probability of
a joint event, say A and B, is equal to the prob-
ability of one event, say A, times the conditional
probability of the other event, B, given A.
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A = “T ≥ t( j )” → A and B = B
B = “T > t( j )”

Pr(A and B) = Pr(B) = ..............................................................................................
...........
.........
........
...........

.......................
...............................................S(t( j ))

If we let A be the event that a subject survives to
at least time t( j ) and we let B be the event that a
subject survives past time t( j ), then the joint event
A and B simplifies to the event B, which is inclusive
of A. It follows that the probability of A and B
equals the probability of surviving past time t( j ).

No failures during t( j−1) < T < t( j )

Pr(A) = Pr(T > t( j−1)) = ...............................................................................................................
.............
.........
........
...........

...................
.........................................................................S(t( j−1))

Also, because t( j ) is the next failure time after t( j−1),
there can be no failures after time t( j−1) and be-
fore time t( j ). Therefore, the probability of A is
equivalent to the probability of surviving past the
( j − 1)th ordered failure time.

Pr(B|A) =
....................................................................................................................................................................................................................................................................................

.........................
................

..........
........
...........

..................
...............................

......................................................................................................................

Pr(T > t( j )|T ≥ t( j ))
Furthermore, the conditional probability of B
given A is equivalent to the conditional probability
in the KM formula.

Thus, from Pr(A and B) formula,

Pr(A and B) = Pr(A) × Pr(B | A)
S(t( j )) = S(t( j−1))

× Pr(T > t( j )|T ≥ t( j ))

Thus, using the basic rules of probability, the KM
formula can be derived.

IV. The Log–Rank Test for
Two Groups

We now describe how to evaluate whether or not
KM curves for two or more groups are statistically
equivalent. In this section we consider two groups
only. The most popular testing method is called
the log–rank test.

When we state that two KM curves are “statisti-
cally equivalent,” we mean that, based on a testing
procedure that compares the two curves in some
“overall sense,” we do not have evidence to indi-
cate that the true (population) survival curves are
different.

Are KM curves statistically
equivalent?

1.0

.8

.6

.4

.2

.0
8 16 24
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� Chi-square test� Overall comparison of KM
curves� Observed versus expected
counts� Categories defined by ordered
failure times

The log–rank test is a large-sample chi-square test
that uses as its test criterion a statistic that pro-
vides an overall comparison of the KM curves be-
ing compared. This (log–rank) statistic, like many
other statistics used in other kinds of chi-square
tests, makes use of observed versus expected cell
counts over categories of outcomes. The cate-
gories for the log–rank statistic are defined by each
of the ordered failure times for the entire set of
data being analyzed.

EXAMPLE 

1

2

3

4

5

6

7

8

10

11

12

13

15

16

17

22

23

0

0

0

0

0

3

1

0

1

0

0

1

0

1

0

1

1

2

2

1

2

2

0

0

4

0

2

2

0

1

0

1

1

1

21

21

21

21

21

21

17

16

15

13

12

12

11

11

10

7

6

21

19

17

16

14

12

12

12

8

8

6

4

4

3

3

2

1

Remission data: n = 42

# failures # in risk set
t(j) m1j m2j n1j n2j

As an example of the information required for the
log–rank test, we again consider the comparison
of the treatment (group 1) and placebo (group 2)
subjects in the remission data on 42 leukemia pa-
tients.

Here, for each ordered failure time, t( j ), in the en-
tire set of data, we show the numbers of subjects
(mi j ) failing at that time, separately by group (i),
followed by the numbers of subjects (ni j ) in the
risk set at that time, also separately by group.

Thus, for example, at week 4, no subjects failed in
group 1, whereas two subjects failed in group 2.
Also, at week 4, the risk set for group 1 contains
21 persons, whereas the risk set for group 2 con-
tains 16 persons.

Similarly, at week 10, one subject failed in group 1,
and no subjects failed at group 2; the risk sets for
each group contain 15 and 8 subjects, respectively.

Expected cell counts:

e1 j =
(

n1 j

n1 j + n2 j

)
× (m1 j + m2 j )

↑ ↑
Proportion # of failures over

in risk set both groups

e2 j =
(

n2 j

n1 j + n2 j

)
× (m1 j + m2 j )

We now expand the previous table to include ex-
pected cell counts and observed minus expected
values for each group at each ordered failure
time. The formula for the expected cell counts
is shown here for each group. For group 1, this
formula computes the expected number at time j
(i.e., e1 j ) as the proportion of the total subjects
in both groups who are at risk at time j, that
is, n1 j /(n1 j + n2 j ), multiplied by the total num-
ber of failures at that time for both groups (i.e.,
m1 j + m2 j ). For group 2, e2 j is computed simi-
larly.



Presentation: IV. The Log–Rank Test for Two Groups 59

EXAMPLE 

Expanded Table (Remission Data)

# failures # in risk set # expected Observed–expected

j t( j) m1j m2j n1j n2j e1j e2j m1j – e1j m2j – e2j

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

10

11

12

13

15

16

17

22

23

0

0

0

0

0

3

1

0

1

0

0

1

0

1

0

1

1

2

2

1

2

2

0

0

4

0

2

2

0

1

0

1

1

1

21

21

21

21

21

21

17

16

15

13

12

12

11

11

10

7

6

21

19

17

16

14

12

12

12

8

8

6

4

4

3

3

2

1

(21/42) × 2

(21/40) × 2

(21/38) × 1

(21/37) × 2

(21/35) × 2

(21/33) × 3

(17/29) × 1

(16/28) × 4

(15/23) × 1

(13/21) × 2

(12/18) × 2

(12/16) × 1

(11/15) × 1

(11/14) × 1

(10/13) × 1

(7/9) × 2

(6/7) × 2

(21/42) × 2

(19/40) × 2

(17/38) × 1

(16/37) × 2

(14/35) × 2

(12/33) × 3

(12/29) × 1

(12/28) × 4

(8/23) × 1

(8/21) × 2

(6/18) × 2

(4/16) × 1

(4/15) × 1

(3/14) × 1

(3/13) × 1

(2/9) × 2

(1/7) × 2

−1.00

−1.05

−0.55

−1.14

−1.20

1.09

0.41

−2.29

0.35

−1.24

−1.33

0.25

−0.73

0.21

−0.77

−0.56

−0.71

1.00

1.05

0.55

1.14

1.20

−1.09

−0.41

2.29

−0.35

1.24

1.33

−0.25

0.73

−0.21

0.77

0.56

0.71

Totals 9 21 19.26 10.74 −10.26 −10.26

# of failure times
↓

Oi − E j =
17∑
j=1

(mi j − ei j ),

i = 1, 2

O1 − E1 = −10.26

O2 − E2 =  10.26

EXAMPLE 

When two groups are being compared, the log–
rank test statistic is formed using the sum of the
observed minus expected counts over all failure
times for one of the two groups. In this exam-
ple, this sum is −10.26 for group 1 and 10.26 for
group 2. We will use the group 2 value to carry out
the test, but as we can see, except for the minus
sign, the difference is the same for the two groups.

Two groups:
O2 − E2 = summed observed
minus expected score for group 2

Log–rank statistic = (O2 − E2)2

Var(O2 − E2)

For the two-group case, the log–rank statistic,
shown here at the left, is computed by dividing the
square of the summed observed minus expected
score for one of the groups—say, group 2—by the
variance of the summed observed minus expected
score.
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Var(Oi − Ei )

=
∑

j

n1 j n2 j (m1 j + m2 j )(n1 j + n2 j − m1 j − m2 j )
(n1 j + n2 j )2(n1 j + n2 j − 1)

i = 1, 2

The expression for the estimated variance is
shown here. For two groups, the variance formula
is the same for each group. This variance formula
involves the number in the risk set in each group
(ni j ) and the number of failures in each group
(mi j ) at time j. The summation is over all distinct
failure times.

H0: no difference between survival
curves

Log–rank statistic ∼χ2 with 1 df
under H0

The null hypothesis being tested is that there is no
overall difference between the two survival curves.
Under this null hypothesis, the log–rank statistic
is approximately chi-square with one degree of
freedom. Thus, a P-value for the log–rank test is
determined from tables of the chi-square distri-
bution.

Computer programs:
Stata’s “sts test”:

� descriptive statistics for KM
curves� log–rank statistic� Alternative statistics to log–rank
statistic

Several computer programs are available for
calculating the log–rank statistic. For example
the Stata package has a command called “sts
test” that computes descriptive information about
Kaplan–Meier curves, the log–rank statistic, and
alternative statistics to the log–rank statistic, to
be described later. Other packages, like SAS and
SPSS, have procedures that provide results sim-
ilar to those of Stata. A comparison of Stata,
SAS, and SPSS procedures and output is pro-
vided in the Computer Appendix at the back of this
text.

EXAMPLE 
Using Stata: Remission Data

Group
Events

observed
Events

expected

9
21

1
2

30 30.00

19.25
10.75

Total

Log-rank = chi2(2) = 16.79
P-value = Pr > chi2 = 0.000

For the remission data, the edited printout from
using the Stata “sts test” procedure is shown here.
The log–rank statistic is 16.79 and the correspond-
ing P-value is zero to three decimal places. This
P-value indicates that the null hypothesis should
be rejected. We can therefore conclude that the
treatment and placebo groups have significantly
different KM survival curves.
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EXAMPLE 

O2 − E2 = 10.26

Var(O2 − E2) = 6.2685

Log–rank statistic =
(O2 − E2)

Var(O2 − E2)

2

2(10.26)
6.2685

=  = 16.793

ˆ

Although the use of a computer is the easiest way
to calculate the log–rank statistic, we provide here
some of the details of the calculation. We have al-
ready seen from earlier computations that the
value of O2 − E2 is 10.26. The estimated variance
of O2 − E2 is computed from the variance formula
above to be 6.2685. The log–rank statistic then is
obtained by squaring 10.26 and dividing by 6.285,
which yields 16.793, as shown on the computer
printout.

Approximate formula:

X 2 ≈
# of groups∑

i

(Oi − Ei )2

Ei

An approximation to the log–rank statistic, shown
here, can be calculated using observed and ex-
pected values for each group without having to
compute the variance formula. The approximate
formula is of the classic chi-square form that sums
over each group being compared the square of the
observed minus expected value divided by the ex-
pected value.

EXAMPLE 

Log−rank statistic =16.793

=15.276

=X2

19.26
(−10.26)2

10.74
(10.26)2

+

The calculation of the approximate formula is
shown here for the remission data. The expected
values are 19.26 and 10.74 for groups 1 and
2, respectively. The chi-square value obtained is
15.276, which is slightly smaller than the log–rank
statistic of 16.793.

V. The Log–Rank Test for
Several Groups

The log–rank test can also be used to compare
three or more survival curves. The null hypothesis
for this more general situation is that all survival
curves are the same.H0: All survival curves are the

same.

Log–rank statistics for > 2 groups
involves variances and covariances
of Oi − Ei .

Matrix formula: See Appendix at
end of this chapter.

Although the same tabular layout can be used to
carry out the calculations when there are more
than two groups, the test statistic is more com-
plicated mathematically, involving both variances
and covariances of summed observed minus ex-
pected scores for each group. A convenient math-
ematical formula can be given in matrix terms.
We present the matrix formula for the inter-
ested reader in an Appendix at the end of this
chapter.
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Use computer program for
calculations.

We will not describe further details about the cal-
culation of the log–rank statistic, because a com-
puter program can easily carry out the computa-
tions from the basic data file. Instead, we illustrate
the use of this test with data involving more than
two groups.

G (≥ 2) groups:
log–rank statistic ∼χ2 with
G − 1 df

If the number of groups being compared is
G(≥ 2), then the log–rank statistic has approxi-
mately a large sample chi-square distribution with
G − 1 degrees of freedom. Therefore, the decision
about significance is made using chi-square tables
with the appropriate degrees of freedom.

Approximation formula:

X 2 =
# of groups∑

i

(Oi − Ei )2

Ei

Not required because computer
program calculates the exact
log–rank statistic

The approximate formula previously described in-
volving only observed and expected values with-
out variance or covariance calculations can also
be used when there are more than two groups be-
ing compared. However, practically speaking, the
use of this approximate formula is not required as
long as a computer program is available to calcu-
late the exact log–rank statistic.

We now provide an example to illustrate the use of
the log–rank statistic to compare more than two
groups.

EXAMPLE 
vets.dat: survival time in days,

Column   1: Treatment (standard = 1, test = 2)
Column   2: Cell type 1 (large = 1, other = 0)
Column   3: Cell type 2 (adeno = 1, other = 0)
Column   4: Cell type 3 (small = 1, other = 0)
Column   5: Cell type 4 (squamous = 1, other = 0)
Column   6: Survival time (days)

Column   8: Disease duration (months)
Column   9: Age
Column 10: Prior therapy (none = 0, some = 1)
Column 11: Status (0 = censored, 1 = died)

Column   7:   Performance Status
(0 = worst . . . 100 = best)

n = 137

Veteran’s Administration Lung Cancer Trial

The data set “vets.dat” considers survival times in
days for 137 patients from the Veteran’s Admin-
istration Lung Cancer Trial cited by Kalbfleisch
and Prentice in their text (The Statistical Analysis
of Survival Time Data, John Wiley, pp. 223–224,
1980). A complete list of the variables is shown
here. Failure status is defined by the status vari-
able (column 11).

Among the variables listed, we now focus on the
performance status variable (column 7). This vari-
able is an continuous variable, so before we can
obtain KM curves and the log–rank test, we need
to categorize this variable.
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Performance Status Categories

Group #

1
2
3

Categories Size

52
50
35

KM curves for performance status groups

Events
observed

Events
expectedGroup

1
2
3

50
47
31

26.30
55.17
46.53

Total
Log–rank = chi2(2) = 29.18
P-value = Pr > chi2 = 0.0000
G = 3 groups; df = G – 1 = 2

128 128.00

Log–rank test is highly significant.

Conclude significant difference among
three survival curves.

EXAMPLE (continued)
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75–100

0–59

If, for the performance status variable, we choose
the categories 0–59, 60–74, and 75–100, we obtain
three groups of sizes 52, 50, and 35, respectively.

The KM curves for each of three groups are shown
here. Notice that these curves appear to be quite
different. A test of significance of this difference is
provided by the log–rank statistic.

An edited printout of descriptive information
about the three KM curves together with the log–
rank test results are shown here. These results
were obtained using the Stata package.

Because three groups are being compared here,
G = 3 and the degrees of freedom for the log–
rank test is thus G − 1, or 2. The log–rank statistic
is computed to be 29.181, which has a P-value of
zero to three decimal places. Thus, the conclusion
from the log–rank test is that there is a highly sig-
nificant difference among the three survival curves
for the performance status groups.

VI. Alternatives to the Log
Rank Test

There are several alternatives to the log rank test
offered by Stata, SAS, and SPSS designed to test
the hypothesis that two or more survival curves
are equivalent. In this section we describe the
Wilcoxon, the Tarone–Ware, the Peto, and the
Flemington–Harrington test. All of these tests
are variations of the log rank test and are easily
implemented in Stata.

Alternative tests supported by Stata

Wilcoxen
Tarone–Ware
Peto
Flemington–Harrington
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Log rank uses

Oi − Ei = ∑
j

(mi j − ei j )

i = group #
j = jth failure time

In describing the differences among these tests,
recall that the log rank test uses the summed ob-
served minus expected score O − E in each group
to form the test statistic. This simple sum gives
the same weight—namely, unity—to each failure
time when combining observed minus expected
failures in each group.

Weighting the test statistic for two
groups

Test statistic:(∑
j

w(t j )(mi j − ei j )

)2

var

(∑
j

w(t j )(mi j − ei j )

)
i = 1, 2
j = jth failure time
w(t j ) = weight at jth failure time

The Wilcoxon, Tarone–Ware, Peto, and
Flemington–Harrington test statistics are
variations of the log rank test statistic and are
derived by applying different weights at the jth
failure time (as shown on the left for two groups).

Wilcoxon Test

� w(t j ) = n j (number at risk)� Earlier failures receive more
weight� Appropriate if treatment effect
is strongest in earliest phases
of administration

The Wilcoxon test (called the Breslow test in
SPSS) weights the observed minus expected score
at time tj by the number at risk n j , over all groups
at time tj. Thus, the Wilcoxon test places more em-
phasis on the information at the beginning of the
survival curve where the number at risk is large al-
lowing early failures to receive more weight than
later failures. This type of weighting may be used
to assess whether the effect of a treatment on sur-
vival is strongest in the earlier phases of adminis-
tration and tends to be less effective over time.

Weights Used for Various Test
Statistics

Test Statistic w(t j )

Log rank 1
Wilcoxon n j

Tarone–Ware
√

n j .

Peto s̃(t j )
Flemington– ŝ(t j−1)p[1 − ŝ(t j−1)]q

Harrington

The Tarone–Ware test statistic also applies more
weight to the early failure times by weighting
the observed minus expected score at time tj by
the square root of the number at risk

√
n j . The

Peto test weights the jth failure time by the sur-
vival estimate s̃(t j ) calculated over all groups com-
bined. This survival estimate s̃(t j ) is similar but
not exactly equal to the Kaplan–Meier survival
estimate. The Flemington–Harrington test uses
the Kaplan–Meier survival estimate ŝ(t) over all
groups to calculate its weights for the jth failure
time, ŝ(t j−1)p[1 − ŝ(t j−1)]q . The weights for each
of these test statistics are summarized on the left.
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Flemington–Harrington Test

w(t) = ŝ(t j−1)p[1 − ŝ(t j−1)]q

if p = 1 and q = 0, w(t) = ŝ(t j−1)
if p = 0 and q = 1,

w(t) = 1 − ŝ(t j−1)
if p = 0 and q = 0,

w(t) = 1 (log rank test)

The Flemington–Harrington test allows the most
flexibility in terms of the choice of weights because
the user provides the values of p and q. For exam-
ple, if p = 1 and q = 0 then w(t) = ŝ(t j−1) which
gives more weight for the earlier survival times
when ŝ(t j−1) is close to one. However, if p = 0 and
q = 1 then w(t) = 1 − ŝ(t j−1) in which case the
later survival times receive more weight. If p = 0
and q = 0 then w(t) = 1, and the Flemington–
Harrington test reduces to the log rank test.

Comparisons of Test Results:
Remission Data, Testing
Treatment (RX)

Chi-square
Test (1 df) P-value

Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002
Tarone– 15.12 0.0001

Ware
Peto 14.08 0.0002
FH (p = 3, 8.99 0.0027

q = 1)
FH (p = 1, 12.26 0.0005

q = 3)

On the left is a comparison of test results for the
effect of treatment (vs. placebo) using the remis-
sion data. The log rank chi-square statistic (also
displayed previously in this chapter) is the high-
est among these tests at 16.79. The Flemington–
Harrington (FH) test with p = 3 and q = 1 yielded
the lowest chi-square value at 8.99, although with
this weighting it is not immediately obvious which
part of the survival curve is getting the most
weight. However, all the test results are highly sig-
nificant yielding a similar conclusion to reject the
null hypothesis.

Vets Data, 3-Level Performance
Status

Chi-square
Test (2 df) P-value

Log rank 29.18 0.0000
Wilcoxon 46.10 0.0000

Remission Data, 2-Level Treatment

Chi-square
Test (1 df) P-value

Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002

On the left are comparisons of the log rank and
Wilcoxon tests for the 3-level performance status
variable from the vets dataset discussed in the pre-
vious section. The Wilcoxon test yields a higher
chi-square value (46.10) than the log rank test
(29.18). In contrast, the log rank test for the ef-
fect of treatment (RX) from the remissions data
yields a higher chi-square value (16.79) than the
Wilcoxon test (13.46). However, both the Wilcoxon
and log rank tests are highly significant for both
performance status and for treatment.
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KM curves for performance status groups
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A comparison of survival curves gives insight into
why the Wilcoxon test yields a higher chi-square
value than the log rank test for the 3-level perfor-
mance status variable. The 3 curves being com-
pared are farthest apart in the early part of follow-
up before becoming closer later. By contrast, a
comparison of the 2 curves for treatment shows
the curves diverging over time.

Choosing a Test

� Results of different weightings
usually lead to similar
conclusions� The best choice is test with
most power� Power depends on how the
null is violated

In general, the various weightings should provide
similar results and will usually lead to the same
decision as to whether the null hypothesis is re-
jected. The choice of which weighting of the test
statistic to use (e.g., log rank or Wilcoxon) depends
on which test is believed to provide the greatest
statistical power, which in turn depends on how it
is believed the null hypothesis is violated.

� There may be a clinical reason
to choose a particular weighting� Choice of weighting should be
a priori

If there is a clinical reason to believe the effect of
an exposure is more pronounced toward the be-
ginning (or end) of the survival function, then it
makes sense to use a weighted test statistic. How-
ever, one should make an a priori decision on
which statistical test to use rather than fish for
a desired p-value. Fishing for a desired result may
lead to bias.
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Stratified log rank test

� O − E scores calculated within
strata� O − E scores then summed
across strata� Allows control of stratified
variable

The stratified log rank test is another variation
of the log rank test. With this test the summed
observed minus expected scores O − E are cal-
culated within strata of each group and then
summed across strata. The stratified log rank
test provides a method of testing the equiv-
alence of survival curves controlling for the
stratified variable. An example of the stratified
log rank test is presented next using the remission
data.

Stratified log--rank test
->lwbc3 = 1

| Events Events
rx | observed expected
-------+---------------------
0 | 0 2.91
1 | 4 1.09
-------+---------------------
Total | 4 4.00

->lwbc3 = 2
| Events Events

rx | observed expected
-------+---------------------
0 | 5 7.36
1 | 5 2.64
-------+---------------------
Total | 10 10.00

->lwbc3 = 3
| Events Events

rx | observed expected
-------+---------------------
0 | 4 6.11
1 | 12 9.89
-------+---------------------
Total | 16 16.00

-> Total
| Events
| Events expected

rx | observed (*)
-------+---------------------
0 | 9 16.38
1 | 21 13.62
-------+---------------------
Total | 30 30.00

(*) sum over calculations
within lwbc3 chi2 (1) =
10.14, Pr > chi2 = 0.0014

On the left is Stata output from performing a strat-
ified log rank test for the effect of treatment (RX)
stratified by a 3-level variable (LWBC3) indicating
low, medium, or high log white blood cell count
(coded 1, 2, and 3, respectively).

Within each stratum of LWBC3, the expected num-
ber of events is calculated for the treated group
(RX = 0) and for the placebo group (RX = 1). The
total expected number of events for the treated
group is found by summing the expected num-
ber of events over the three strata: 2.91 + 7.36 +
6.11 = 16.38. Similarly the total expected num-
ber of events for the placebo group is calculated:
1.09 + 2.64 + 9.89 = 13.62. This compares to 9
observed cases from the treated group and 21 ob-
served cases from the placebo group yielding a chi-
square value of 10.14 with 1 degree of freedom (for
2 levels of treatment) and a corresponding p-value
of 0.0014.

Recall that when we did not control for log white
blood cell count, the log rank test for the effect of
treatment yielded a chi-square value of 16.79 and
a corresponding p-value rounded to 0.0000.
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Log rank unstratified

Oi − Ei =
∑

j

(mi j − ei j )

i = group #, j = jth failure time

Log rank stratified

Oi − Ei =
∑

s

∑
j

(mi j s − ei j s)

i = group #, j = jth failure time,
s = stratum #

Stratified or unstratified (G groups)
Under H0:

log rank statistic ∼χ2 with
G − 1 df

The only difference between the unstratified and
stratified approaches is that for the unstratified
approach, the observed minus expected number
of events for each failure time is summed over all
failure times for each group (i). With the stratified
approach, the observed minus expected number
of events is summed over all failure times for each
group within each stratum and then summed over
all strata. Either way, the null distribution is chi-
square with G − 1 degrees of freedom, where G
represents the number of groups being compared
(not the number of strata).

Can stratify with other tests
Wilcoxon, Tarone–Ware,
Peto, Flemington–Harrington

Limitation
Sample-size may be small within
strata

The stratified approach can also be applied to any
of the weighted variations of the log rank test (e.g.,
Wilcoxon). A limitation of the stratified approach
is the reduced sample size within each stratum.
This is particularly problematic with the remis-
sion dataset, which has a small sample size to be-
gin with.

Alternatively
Test associations using modeling

� Can simultaneously control
covariates� Shown in next chapter

We have shown how the stratified log rank test
can be used to test the effect of treatment while
controlling for log white blood cell count. In the
next chapter we show how modeling can be used
to test an association of a predictor variable while
simultaneously controlling for other covariates.

VII. Summary We now briefly summarize this presentation. First,
we described how to estimate and graph survival
curves using the Kaplan–Meier (KM) method.KM curves:
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t( j ) : j th ordered failure time

Ŝ(t( j )) =
j∏

i=1

P̂r[T > t(i)|T ≥ t(i)]

= Ŝ(t( j−1))

×P̂r(T > t(i)|T ≥ t(i))

To compute KM curves, we must form a data lay-
out that orders the failure times from smallest to
largest. For each ordered failure time, the esti-
mated survival probability is computed using the
product limit formula shown here. Alternatively,
this estimate can be computed as the product of
the survival estimate for the previous failure time
multiplied by the conditional probability of sur-
viving past the current failure time.

Log–rank test:
H0: common survival curve for
all groups

Log–rank statistic = (O2 − E2)2

Var(O2 − E2)

log–rank statistic ∼χ2 with G − 1
d f under H0

G = # of groups

When survival curves are being compared, the log–
rank test gives a statistical test of the null hypoth-
esis of a common survival curve. For two groups,
the log–rank statistic is based on the summed ob-
served minus expected scores for a given group
and its variance estimate. For several groups, a
computer should always be used since the log–
rank formula is more complicated mathemati-
cally. The test statistic is approximately chi-square
in large samples with G − 1 degrees of freedom,
where G denotes the number of groups being com-
pared.

Chapters This presentation is now complete. You can review
this presentation using the detailed outline that
follows and then try the practice exercises and test.

1. Introduction
✓ 2. Kaplan–Meier Survival Curves

and the Log–Rank Test

�
�

�
�

Next:

3. The Cox Proportional Hazards
Model and Its Characteristics

Chapter 3 introduces the Cox proportional haz-
ards (PH) model, which is the most popular math-
ematical modeling approach for estimating sur-
vival curves when considering several explanatory
variables simultaneously.
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Detailed
Outline

I. Review (pages 48–50)
A. The outcome variable is (survival) time until an

event (failure) occurs.
B. Key problem: censored data, i.e., don’t know

survival time exactly.
C. Notation: T = survival time random variable

t = specific value of T
δ = (0, 1) variable for failure/

censorship status
S(t) = survivor function
h(t) = hazard function

D. Properties of survivor function:
i. theoretically, graph is smooth curve, decreasing

from S(t) = 1 at time t = 0 to S(t) = 0 at
t = ∞;

ii. in practice, graph is step function.
E. Properties of h(t):

i. instantaneous potential for failing given
survival up to time;

ii. h(t) is a rate; ranges from 0 to ∞.
F. Relationship of S(t) to h(t): if you know one you

can determine the other.
G. Goals of survival analysis: estimation of survivor

and hazard functions; comparisons and
relationships of explanatory variables to survival.

H. Data layouts
i. for the computer;

ii. for understanding the analysis: involves risk
sets.

II. An Example of Kaplan–Meier Curves (pages 51–55)
A. Data are from study of remission times in weeks for

two groups of leukemia patients (21 in each group).
B. Group 1 (treatment group) has several censored

observations, whereas group 2 has no censored
observations.

C. Table of ordered failure times is provided for each
group.

D. For group 2 (all noncensored), survival probabilities
are estimated directly and plotted. Formula used is

Ŝ(t( j )) = # surviving past t( j )

21
.
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E. Alternative approach for group 2 is given by a
product limit formula.

F. For group 1, survival probabilities calculated by
multiplying estimate for immediately preceding
failure time by a conditional probability of
surviving past current failure time, i.e.,

Ŝ( j ) = Ŝ( j−1) P̂r[T > t( j )|T ≥ t( j )].

III. General Features of KM Curves (pages 56–57)
A. Two alternative general formulae:

S( j ) =
j∏

i=1

Pr[T > t(i)|T ≥ t(i)] (product limit
formula)

S( j ) = S( j−1)Pr[T > t( j )|T ≥ t( j )]

B. Second formula derived from probability rule:

Pr(A and B) = Pr(A) × Pr(B|A)

IV. The Log–Rank Test for Two Groups (pages 57–61)
A. Large sample chi-square test; provides overall

comparison of KM curves.
B. Uses observed versus expected counts over

categories of outcomes, where categories are
defined by ordered failure times for entire set of
data.

C. Example provided using remission data involving
two groups:
i. expanded table described to show how

expected and observed minus expected cell
counts are computed.

ii. for ith group at time j, where i = 1 or 2:

observed counts = mi j ,
expected counts = ei j , where
expected counts = (proportion in risk set) ×
(# failures over both groups),

i.e., ei j =
(

ni j

n1 j + n2 j

)
(m1 j + m2 j ).

D. Log–rank statistic for two groups:

(Oi − Ei )2

Var(Oi − Ei )
,

where i = 1, 2,
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Oi − Ei =
∑

j

(mi j − ei j ), and

Var(Oi − Ei )

=
∑

j

n1 j n2 j (m1 j + m2 j )(n1 j + n2 j − m1 j − m2 j )
(n1 j + n2 j )2(n1 j + n2 j − 1)

,

i = 1, 2
E. H0: no difference between survival curves.
F. Log–rank statistic ∼χ2 with 1 df under H0.
G. Approximate formula:

X 2 =
G∑

i=1

(Oi − Ei )2

Ei
, where G = 2 = # of groups

H. Remission data example: Log–rank statistic =
16.793, whereas X 2 = 15.276.

V. The Log–Rank Test for Several Groups
(pages 61–63)
A. Involves variances and covariances; matrix

formula in Appendix.
B. Use computer for calculations.
C. Under H0, log–rank statistic ∼χ2 with G − 1 df,

where G = # of groups.
D. Example provided using vets.dat with interval

variable “performance status”; this variable is
categorized into G = 3 groups, so df for log–rank
test is G − 1 = 2, log–rank statistic is 29.181
(P = 0.0).

VI. Alternatives to the Log–rank Test (pages 63–68)
A. Alternative tests supported by Stata:

Wilcoxen, Tarone-Ware, Peto, and
Flemington-Harrington.

B. Alternative tests differ by applying different
weights at the j-th failure time.

C. The choice of alternative depends on the reason
for the belief that the effect is more pronounced
towards the beginning (or end) of the survival
function.

D. The stratified-log–rank test is a variation of the
log–rank test that controls for one or more
stratified variables.

VII. Summary (page 68)
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Practice
Exercises

1. The following data are a sample from the 1967–1980 Evans
County study. Survival times (in years) are given for two study
groups, each with 25 participants. Group 1 has no history of
chronic disease (CHR = 0), and group 2 has a positive history
of chronic disease (CHR = 1):

Group 1 (CHR = 0) : 12.3+, 5.4, 8.2, 12.2+, 11.7, 10.0, 5.7,

9.8, 2.6, 11.0, 9.2, 12.1+, 6.6, 2.2,

1.8, 10.2, 10.7, 11.1, 5.3, 3.5, 9.2,

2.5, 8.7, 3.8, 3.0

Group 2 (CHR = 1) : 5.8, 2.9, 8.4, 8.3, 9.1, 4.2, 4.1, 1.8, 3.1,

11.4, 2.4, 1.4, 5.9, 1.6, 2.8, 4.9, 3.5,

6.5, 9.9, 3.6, 5.2, 8.8, 7.8, 4.7, 3.9

a. Fill in the missing information in the following table
of ordered failure times for groups 1 and 2:

Group 1 Group 2

t( j ) n j mj q j S(t( j )) t( j ) n j mj q j S(t( j ))

0.0 25 0 0 1.00 0.0 25 0 0 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
2.2 24 1 0 .92 1.6 24 1 0 .92
2.5 23 1 0 .88 1.8 23 1 0 .88
2.6 22 1 0 .84 2.4 22 1 0 .84
3.0 21 1 0 .80 2.8 21 1 0 .80
3.5 20

�� �	 2.9 20 1 0 .76
3.8 19 1 0 .72 3.1 19 1 0 .72
5.3 18 1 0 .68 3.5 18 1 0 .68
5.4 17 1 0 .64 3.6 17 1 0 .64
5.7 16 1 0 .60 3.9




�

�


6.6 15 1 0 .56 4.1
8.2 14 1 0 .52 4.2
8.7 13 1 0 .48 4.7 13 1 0 .48
9.2

�� �	 4.9 12 1 0 .44
9.8 10 1 0 .36 5.2 11 1 0 .40

10.0 9 1 0 .32 5.8 10 1 0 .36
10.2 8 1 0 .28 5.9 9 1 0 .32
10.7 7 1 0 .24 6.5 8 1 0 .28
11.0 6 1 0 .20 7.8 7 1 0 .24
11.1 5 1 0 .16 8.3 6 1 0 .20
11.7 4

�� �	 8.4 5 1 0 .16
8.8 4 1 0 .12
9.1

�
�

�
�9.9

11.4 1 1 0 .00
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b. Based on your results in part a, plot the KM curves
for groups 1 and 2 on the same graph. Comment on
how these curves compare with each other.

c. Fill in the following expanded table of ordered failure
times to allow for the computation of expected and
observed minus expected values at each ordered
failure time. Note that your new table here should
combine both groups of ordered failure times into
one listing and should have the following format:

t( j ) m1 j m2 j n1 j n2 j e1 j e2 j m1 j − e1 j m2 j − e2 j

1.4 0 1 25 25 .500 .500 −.500 .500
1.6 0 1 25 24 .510 .490 −.510 .510
1.8 1 1 25 23 1.042 .958 −.042 .042
2.2 1 0 24 22 .522 .478 .478 −.478
2.4 0 1 23 22 .511 .489 −.511 .511
2.5 1 0 23 21 .523 .477 .477 −.477
2.6 1 0 22 21 .516 .484 .484 −.484
2.8 0 1 21 21 .500 .500 −.500 .500
2.9 0 1 21 20 .512 .488 −.512 .512
3.0 1 0 21 19 .525 .475 .475 −.475�

�

�

�

3.1
3.5
3.6
3.8
3.9 0 1 18 16 .529 .471 −.529 .529
4.1 0 1 18 15 .545 .455 −.545 .545
4.2 0 1 18 14 .563 .437 −.563 .563
4.7 0 1 18 13 .581 .419 −.581 .581
4.9 0 1 18 12 .600 .400 −.600 .600
5.2 0 1 18 11 .621 .379 −.621 .621
5.3 1 0 18 10 .643 .357 .357 −.357
5.4 1 0 17 10 .630 .370 .370 −.370
5.7 1 0 16 10 .615 .385 .385 −.385
5.8 0 1 15 10 .600 .400 −.600 .600
5.9 0 1 15 9 .625 .375 −.625 .625
6.5 0 1 15 8 .652 .348 −.652 .652
6.6 1 0 15 7 .682 .318 .318 −.318
7.8 0 1 14 7 .667 .333 −.667 .667
8.2 1 0 14 6 .700 .300 .300 −.300
8.3 0 1 13 6 .684 .316 −.684 .684
8.4 0 1 13 5 .722 .278 −.722 .722
8.7 1 0 13 4 .765 .235 .335 −.335
8.8 0 1 12 4 .750 .250 −.750 .750

(Continued on next page)
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t( j ) m1 j m2 j n1 j n2 j e1 j e2 j m1 j − e1 j m2 j − e2 j

9.1 0 1 12 3 .800 .200 −.800 .800


�

�



9.2
9.8
9.9

10.0 1 0 9 1 .900 .100 .100 −.100
10.2 1 0 8 1 .888 .112 .112 −.112
10.7 1 0 7 1 .875 .125 .125 −.125
11.0 1 0 6 1 .857 .143 .143 −.143
11.1 1 0 5 1 .833 .167 .167 −.167
11.4 0 1 4 1 .800 .200 −.800 .800
11.7 1 0 4 0 1.000 .000 .000 .000

Totals 22 25 30.79 16.21
�� �	

d. Use the results in part c to compute the log–rank
statistic. Use this statistic to carry out the log–rank
test for these data. What is your null hypothesis and
how is the test statistic distributed under this null
hypothesis? What are your conclusions from the
test?

2. The following data set called “anderson.dat” consists of re-
mission survival times on 42 leukemia patients, half of whom
get a certain new treatment therapy and the other half of
whom get a standard treatment therapy. The exposure vari-
able of interest is treatment status (Rx = 0 if new treatment,
Rx = 1 if standard treatment). Two other variables for con-
trol as potential confounders are log white blood cell count
(i.e., logwbc) and sex. Failure status is defined by the relapse
variable (0 if censored, 1 if failure). The data set is listed as
follows:

Subj Survt Relapse Sex log WBC Rx

1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.20 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0
7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0

(Continued on next page)
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Subj Survt Relapse Sex log WBC Rx

11 16 1 1 3.60 0
12 13 1 0 2.88 0
13 11 0 0 2.60 0
14 10 0 0 2.70 0
15 10 1 0 2.96 0
16 9 0 0 2.80 0
17 7 1 0 4.43 0
18 6 0 0 3.20 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.30 1
26 12 1 0 1.50 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 4.91 1
40 2 1 1 4.48 1
41 1 1 1 2.80 1
42 1 1 1 5.00 1

a. Suppose we wish to describe KM curves for the
variable logwbc. Because logwbc is continuous, we
need to categorize this variable before we compute
KM curves. Suppose we categorize logwbc into
three categories—low, medium, and high—as
follows:

low (0–2.30), n = 11;
medium (2.31–3.00), n = 14;
high (>3.00), n = 17.
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Based on this categorization, compute and graph
KM curves for each of the three categories of logwbc.
(You may use a computer program to assist you or
you can form three tables of ordered failure times
and compute KM probabilities directly.)

b. Compare the three KM plots you obtained in part a.
How are they different?

c. Below is an edited printout of the log–rank test
comparing the three groups.

Events Events
Group observed expected

1 4 13.06
2 10 10.72
3 16 6.21

Total 30 30.00

Log–rank = chi2(2) = 26.39
P-value = Pr > chi2 = 0.0000

What do you conclude about whether or not the
three survival curves are the same?

Test To answer the questions below, you will need to use a com-
puter program (from SAS, Stata, SPSS, or any other package
you are familiar with) that computes and plots KM curves and
computes the log–rank test. Freely downloadable files can be
obtained from weblink http://www.sph.emory.edu/∼dkleinb/
surv2.htm.

1. For the vets.dat data set described in the presentation:
a. Obtain KM plots for the two categories of the

variable cell type 1 (1 = large, 0 = other). Comment
on how the two curves compare with each other.
Carry out the log–rank, and draw conclusions from
the test(s).

b. Obtain KM plots for the four categories of cell
type—large, adeno, small, and squamous. Note that
you will need to recode the data to define a single
variable which numerically distinguishes the four
categories (e.g., 1 = large, 2 = adeno, etc.). As in part
a, compare the four KM curves. Also, carry out the
log–rank for the equality of the four curves and draw
conclusions.
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2. The following questions consider a data set from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin ad-
dicts from entry to departure from one of two methadone
clinics. There are two further covariates, namely, prison
record and methadone dose, believed to affect the sur-
vival times. The data set name is addicts.dat. A listing of
the variables is given below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)
Column 3: Survival status (0 = censored, 1 = departed

from clinic)
Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Methadone dose (mg/day)

a. Compute and plot the KM plots for the two categories
of the “clinic” variable and comment on the extent to
which they differ.

b. A printout of the log–rank and Wilcoxon tests (using
Stata) is provided below. What are your conclusions
from this printout?

Events Events
Group observed expected

1 122 90.91
2 28 59.09

Total 150 150.00

Log–rank = chi2(2) = 27.89
P-value = Pr > chi2 = 0.0000
Wilcoxon = chi2(2) = 11.63
P-value = Pr > chi2 = 0.0007

c. Compute and evaluate KM curves and the log–rank
test for comparing suitably chosen categories of the
variable “Methadone dose.” Explain how you
determined the categories for this variable.
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Answers to
Practice
Exercises

1. a.

Group 1 Group 2

t( j ) n j mj q j S(t( j )) t( j ) n j mj q j S(t( j ))

0.0 25 0 0 1.00 0.0 25 0 0 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
2.2 24 1 0 .92 1.6 24 1 0 .92
2.5 23 1 0 .88 1.8 23 1 0 .88
2.6 22 1 0 .84 2.4 22 1 0 .84
3.0 21 1 0 .80 2.8 21 1 0 .80
3.5 20

�
�

�
	1 0 .76 2.9 20 1 0 .76

3.8 19 1 0 .72 3.1 19 1 0 .72
5.3 18 1 0 .68 3.5 18 1 0 .68
5.4 17 1 0 .64 3.6 17 1 0 .64
5.7 16 1 0 .60 3.9




�

�


16 1 0 .60
15 1 0 .56
14 1 0 .52

6.6 15 1 0 .56 4.1
8.2 14 1 0 .52 4.2
8.7 13 1 0 .48 4.7 13 1 0 .48
9.2

�
�

�
	12 2 0 .40 4.9 12 1 0 .44

9.8 10 1 0 .36 5.2 11 1 0 .40
10.0 9 1 0 .32 5.8 10 1 0 .36
10.2 8 1 0 .28 5.9 9 1 0 .32
10.7 7 1 0 .24 6.5 8 1 0 .28
11.0 6 1 0 .20 7.8 7 1 0 .24
11.1 5 1 0 .16 8.3 6 1 0 .20
11.7 4

�
�

�
	1 3 .12 8.4 5 1 0 .16

8.8 4 1 0 .12
9.1

�
�

�
�

3 1 0 .08
2 1 0 .049.9

11.4 1 1 0 .00

b. KM curves for CHR data:

0.0

0.5

1.0

0 2 4 6 8 10 12 14

2
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

Group 1 appears to have consistently better
survival prognosis than group 2. However, the KM
curves are very close during the first four years, but
are quite separate after four years, although they
appear to come close again around twelve years.
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c. Using the expanded table format, the following
information is obtained:

t( j ) m1 j m2 j n1 j n2 j e1 j e2 j m1 j − e1 j m2 j − e2 j

1.4 0 1 25 25 .500 .500 −.500 .500
1.6 0 1 25 24 .510 .490 −.510 .510
1.8 1 1 25 23 1.042 .958 −.042 .042
2.2 1 0 24 22 .522 .478 .478 −.478
2.4. 0 1 23 22 .511 .489 −.511 .511
2.5. 1 0 23 21 .523 .477 .477 −.477
2.6 1 0 22 21 .516 .484 .484 −.484
2.8 0 1 21 21 .500 .500 −.500 .500
2.9 0 1 21 20 .512 .488 −.512 .512
3.0 1 0 21 19 .525 .475 .475 −.475
3.1

�

�

�

�

0 1 20 19 .513 .487 −.513 .513
1 1 20 18 1.053 .947 −.053 .053
0 1 19 17 .528 .472 −.528 .528
1 0 19 16 .543 .457 .457 −.457

3.5
3.6
3.8
3.9 0 1 18 16 .529 .471 −.529 .529
4.1 0 1 18 15 .545 .455 −.545 .545
4.2 0 1 18 14 .563 .437 −.563 .563
4.7 0 1 18 13 .581 .419 −.581 .581
4.9 0 1 18 12 .600 .400 −.600 .600
5.2 0 1 18 11 .621 .379 −.621 .621
5.3 1 0 18 10 .643 .357 .357 −.357
5.4 1 0 17 10 .630 .370 .370 −.370
5.7 1 0 16 10 .615 .385 .385 −.385
5.8 0 1 15 10 .600 .400 −.600 .600
5.9 0 1 15 9 .625 .375 −.625 .625
6.5 0 1 15 8 .652 .348 −.652 .652
6.6 1 0 15 7 .682 .318 .318 −.318
7.8 0 1 14 7 .667 .333 −.667 .667
8.2 1 0 14 6 .700 .300 .300 −.300
8.3 0 1 13 6 .684 .316 −.684 .684
8.4 0 1 13 5 .722 .278 −.722 .722
8.7 1 0 13 4 .765 .235 .335 −.335
8.8 0 1 12 4 .750 .250 −.750 .750
9.1 0 1 12 3 .800 .200 −.800 .800
9.2




�

�


2 0 12 2 1.714 .286 .286 −.286
1 0 10 2 .833 .167 .167 −.167
0 1 9 2 .818 .182 −.818 .818

9.8
9.9

10.0 1 0 9 1 .900 .100 .100 −.100
10.2 1 0 8 1 .888 .112 .112 −.112
10.7 1 0 7 1 .875 .125 .125 −.125
11.0 1 0 6 1 .857 .143 .143 −.143
11.1 1 0 5 1 .833 .167 .167 −.167
11.4 0 1 4 1 .800 .200 −.800 .800
11.7 1 0 4 0 1.000 .000 .000 .000

Totals 22 25 30.79 16.21
�
�

�
�−8.690 8.690
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d. The log–rank statistic can be computed from the
totals of the expanded table using the formulae:

log–rank statistic = (Oi − Ei )2

V̂ar(Oi − Ei )

Var(Oi − Ei )

=
∑

i

n1 j n2 j (m1 j + m2 j )(n1 j + n2 j − m1 j − m2 j )
(n1 j + n2 j )2(n1 j + n2 j − 1)

The variance turns out to be 9.448, so that the
log–rank statistic is (8.69)2/9.448 = 7.993.

Using Stata, the results for the log–rank test are
given as follows:

Events Events
Group observed expected

1 22 30.79
2 25 16.21

Total 47 47.00

Log–rank = chi2(2) = 7.99
P-value = Pr > chi2 = 0.0047

The log–rank test gives highly significant results.
This indicates that there is a significant difference in
survival between the two groups.

2. a. For the Anderson dataset, the KM plots for the three
categories of log WBC are shown below:

Group 1 (log WBC 0–2.3)

Group 2 (log WBC 2.31–3.0)

Group 3 (log WBC > 3.0)

0
0

0.2

0.4

0.6

0.8

1

8 16 24 32
Weeks

Ŝ(t)

b. The KM curves are quite different with group 1
having consistently better survival prognosis than
group 2, and group 2 having consistently better
survival prognosis than group 3. Note also that the
difference between group 1 and 2 is about the same
over time, whereas group 2 appears to diverge from
group 3 as time increases.
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c. The log–rank statistic (26.391) is highly significant
with P-values equal to zero to three decimal places.
These results indicate that there is some overall
difference between the three curves.

Appendix:
Matrix
Formula
for the
Log-Rank
Statistic for
Several
Groups

For i = 1, 2, . . . , G and j = 1, 2, . . . , k, where G = # of
groups and k = # of distinct failure times,

ni j = # at risk in ith group at jth ordered failure time

mi j = observed # of failures in ith group at jth ordered failure
time

ei j = expected # of failures in ith group at jth ordered failure
time

=
(

ni j

n1 j + n2 j

)
(m1 j + m2 j )

n j =
G∑

i=1

ni j

mj =
G∑

i=1

mi j

Oi − Ei =
k∑

j=1

(mi j − ei j )

Var(Oi − Ei ) =
k∑

j=1

ni j (n j − ni j )mj (n j − mj )

n2
j (n j − 1)

Cov(Oi − Ei , Ol − El ) =
k∑

j=1

−ni j nl j mj (n j − mj )

n2
j (n j − 1)

d = (O1 − E1, O2 − E2, . . . , OG−1 − EG−1)′

V = ((νil ))

where νii = Var (Oi − Ei ) and νil = Cov (Oi − Ei , Ol − El )
for i = 1, 2, . . . , G − 1; l = 1, 2, . . . , G − 1.

Then, the log–rank statistic is given by the matrix product
formula:

Log–rank statistic = d′V−1d

which has approximately a chi-square distribution with
G − 1 degrees of freedom under the null hypothesis that all
G groups have a common survival curve.
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Introduction We begin by discussing some computer results using the Cox
PH model, without actually specifying the model; the purpose
here is to show the similarity between the Cox model and
standard linear regression or logistic regression.

We then introduce the Cox model and describe why it is so
popular. In addition, we describe its basic properties, includ-
ing the meaning of the proportional hazards assumption and
the Cox likelihood.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. A computer example using the Cox PH model
(pages 86–94)

II. The formula for the Cox PH model (pages 94–96)
III. Why the Cox PH model is popular (pages 96–98)
IV. ML estimation of the Cox PH model

(pages 98–100)
V. Computing the hazard ratio (pages 100–103)

VI. Adjusted survival curves using the Cox PH model
(pages 103–107)

VII. The meaning of the PH assumption
(pages 107–111)

VIII. The Cox likelihood (pages 111–115)
IX. Summary (pages 115–116)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize the general form of the Cox PH model.
2. State the specific form of a Cox PH model appropriate for

the analysis, given a survival analysis scenario involving
one or more explanatory variables.

3. State or recognize the form and properties of the baseline
hazard function in the Cox PH model.

4. Give three reasons for the popularity of the Cox PH
model.

5. State the formula for a designated hazard ratio of interest
given a scenario describing a survival analysis using a
Cox PH model, when
a. there are confounders but no interaction terms in the

model;
b. there are both confounders and interaction terms in

the model.
6. State or recognize the meaning of the PH assumption.
7. Determine and explain whether the PH assumption is

satisfied when the graphs of the hazard functions for two
groups cross each other over time.

8. State or recognize what is an adjusted survival curve.
9. Compare and/or interpret two or more adjusted survival

curves.
10. Given a computer printout involving one or more fitted

Cox PH models,
a. compute or identify any hazard ratio(s) of interest;
b. carry out and interpret a designated test of

hypothesis;
c. carry out, identify or interpret a confidence interval

for a designated hazard ratio;
d. evaluate interaction and confounding involving one

or more covariates.
11. Give an example of how the Cox PH likelihood is formed.
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Presentation

FOCUS

• model form
• why popular
• ML estimation
• hazard ratio
• adjusted survival
   curves
• PH assumption

This presentation describes the Cox proportional
hazards (PH) model, a popular mathematical
model used for analyzing survival data. Here, we
focus on the model form, why the model is pop-
ular, maximum likelihood (ML) estimation of the
model parameters, the formula for the hazard ra-
tio, how to obtain adjusted survival curves, and
the meaning of the PH assumption.

I. A Computer Example Using
the Cox PH Model We introduce the Cox PH model using computer

output from the analysis of remission time data
(Freireich et al., Blood, 1963), which we previously
discussed in Chapters 1 and 2. The data set is listed
here at the left.

These data involve two groups of leukemia pa-
tients, with 21 patients in each group. Group 1
is the treatment group, and group 2 is the placebo
group. The data set also contains the variable log
WBC, which is a well-known prognostic indicator
of survival for leukemia patients.

For this example, the basic question of interest
concerns comparing the survival experience of the
two groups adjusting for the possible confounding
and/or interaction effects of log WBC.

Group 1(n = 21) Group 2(n = 21)

6             2.31

6             4.06

6             3.28

7             4.43

10             2.96

13             2.88

16             3.60

22             2.32

23             2.57

6+          3.20

9+           2.80

10+           2.70

11+           2.60

17+           2.16

19+           2.05

20+           2.01

25+           1.78

32+           2.20

32+           2.53

34+           1.47

35+           1.45

1             2.80

1             5.00

2             4.91

2             4.48

3             4.01

4             4.36

4             2.42

5             3.49

5             3.97

8             3.52

8             3.05

8             2.32

8             3.26

11             3.49

11             2.12

12             1.50

12             3.06

15             2.30

17             2.95

22             2.73

23             1.97

Leukemia Remission Data

+ denotes censored observation

EXAMPLE

t(weeks) log WBC t(weeks) log WBC
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EXAMPLE (continued) 

T = weeks until going out of remission
X1 = group status = E
X2 = log WBC (confounding?)

Interaction?
X3 = X1 × X2 = group status × log WBC

Computer results for three Cox PH
models using the Stata package

Other computer packages provide
similar information.

Computer Appendix: uses Stata, SAS,
and SPSS on the same dataset.

We are thus considering a problem involving two
explanatory variables as predictors of survival
time T, where T denotes “weeks until going
out of remission.” We label the explanatory
variables X1 (for group status) and X2 (for log
WBC). The variable X1 is the primary study or
exposure variable of interest. The variable X2 is
an extraneous variable that we are including as a
possible confounder or effect modifier.

Note that if we want to evaluate the possi-
ble interaction effect of log WBC on group status,
we would also need to consider a third variable,
that is, the product of X1 and X2.

For this dataset, the computer results from
fitting three different Cox proportional hazards
models are presented below. The computer
package used is Stata. This is one of several
packages that have procedures for carrying out
a survival analysis using the Cox model. The
information printed out by different packages
will not have exactly the same format, but they
will provide similar information. A comparison
of output using Stata, SAS, and SPSS procedures
on the same dataset is provided in the computer
appendix at the back of this text.Edited output from Stata:

Model 1:
Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 1.509 0.410 3.68 0.000 4.523 2.027 10.094

No. of subjects = 42 Log likelihood = −86.380 Prob > chi2 = 0.0001

Model 2:
Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486

No. of subjects = 42 Log likelihood = −72.280 Prob > chi2 = 0.0000

Model 3:
Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 2.355 1.681 1.40 0.161 10.537 0.391 284.201
log WBC 1.803 0.447 4.04 0.000 6.067 2.528 14.561
Rx x log WBC −0.342 0.520 −0.66 0.510 0.710 0.256 1.967

No. of subjects = 42 Log likelihood = −72.066 Prob > chi2 = 0.0000
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EDITED OUTPUT FROM STATA
Model 1:

  Coef.      Std. Err.   p > |z|     Haz. Ratio

Rx                     1.509        0.410       0.000          4.523

No. of subjects = 42  Log likelihood = −86.380

Hazard ratios

Model 2:

   Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                     1.294         0.422        0.002        3.648

log WBC           1.604         0.329        0.000        4.975

No. of subjects = 42  Log likelihood = −72.280

Model 3:
    Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                       2.355      1.681        0.161       10.537

Rx × log WBC  −0.342        0.520       0.510         0.710

log WBC            1.803        0.447       0.000         6.067

No. of subjects = 42  Log likelihood = −72.066

We now describe how to use the computer
printout to evaluate the possible effect of treat-
ment status on remission time adjusted for the
potential confounding and interaction effects of
the covariate log WBC. For now, we focus only
on five columns of information provided in the
printout, as presented at the left for all three
models.

For each model, the first column identifies
the variables that have been included in the
model. The second column gives estimates of
regression coefficients corresponding to each
variable in the model. The third column gives
standard errors of the estimated regression
coefficients. The fourth column gives p-values for
testing the significance of each coefficient. The
fifth column, labeled as Haz. Ratio, gives hazard
ratios for the effect of each variable adjusted for
the other variables in the model.

Except for the Haz. Ratio column, these
computer results are typical of output found
in standard linear regression printouts. As the
printout suggests, we can analyze the results from
a Cox model in a manner similar to the way we
would analyze a linear regression model.

EXAMPLE (continued) 

Same dataset for each model
n = 42 subjects
T = time (weeks) until out of remission

Model 1: Rx only

Model 2: Rx and log WBC

Model 3: Rx, log WBC, and
Rx × log WBC

We now distinguish among the output for the three
models shown here. All three models are using the
same remission time data on 42 subjects. The out-
come varible for each model is the same—time
in weeks until a subject goes out of remission.
However, the independent variables are different
for each model. Model 1 contains only the treat-
ment status variable, indicating whether a sub-
ject is in the treatment or placebo group. Model 2
contains two variables—treatment status and log
WBC. And model 3 contains an interaction term
defined as the product of treatment status and log
WBC.
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EDITED OUTPUT: ML ESTIMATION
Model 3:

       Coef.     Std. Err.  p > |z| Haz. Ratio

Rx                        2.355      1.681       0.161      10.537

Rx × log WBC −0.342      0.520 0.510         0.710

log WBC              1.803      0.447      0.000        6.067

No. of subjects = 42  Log likelihood = −72.066

We now focus on the output for model 3. The
method of estimation used to obtain the coeffi-
cients for this model, as well as the other two mod-
els, is maximum likelihood (ML) estimation. Note
that a p-value of 0.510 is obtained for the coef-
ficient of the product term for the interaction of
treatment with log WBC. This p-value indicates
that there is no significant interaction effect, so
that we can drop the product term from the model
and consider the other two models instead.

EXAMPLE (continued)

P = 0.510:  = −0.66 = Z−0.342
−0.520

Wald statistic

LR statistic: uses Log likelihood = −72.066

−2 ln L (log likelihood statistic) = −2 × (−72.066)
= 144.132

The p-value of 0.510 that we have just described is
obtained by dividing the coefficient −0.342 of the
product term by its standard error of 0.520, which
gives −0.66, and then assuming that this quantity
is approximately a standard normal or Z variable.
This Z statistic is known as a Wald statistic, which
is one of two test statistics typically used with ML
estimates. The other test statistic, called the like-
lihood ratio, or LR statistic, makes use of the
log likelihood statistic. The log likelihood statistic
is obtained by multiplying the “Log likelihood” in
the Stata output by −2 to get −2 ln L.

EDITED OUTPUT 
Model 2:

   Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                     1.294         0.422       0.002         3.648

log WBC           1.604         0.329       0.000          4.975

No. of subjects = 42  Log likelihood = −72.280

We now look at the printout for model 2, which
contains two variables. The treatment status vari-
able (Rx) represents the exposure variable of pri-
mary interest. The log WBC variable is being con-
sidered as a confounder. Our goal is to describe the
effect of treatment status adjusted for log WBC.

EXAMPLE (continued) 

LR (interaction in model 3)
= –2 ln Lmodel 2 − (−2 ln Lmodel 3)

In general:
LR = –2 ln LR− (−2 ln LF)

To use the likelihood ratio (LR) statistic to test
the significance of the interaction term, we need
to compute the difference between the log like-
lihood statistic of the reduced model which does
not contain the interaction term (model 2) and the
log likelihood statistic of the full model containing
the interaction term (model 3). In general, the LR
statistic can be written in the form −2 ln LR minus
−2 ln LF , where R denotes the reduced model and
F denotes the full model.
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EXAMPLE (continued) 

LR (interaction in model 3)
= –2 ln Lmodel 2 − (−2 ln Lmodel 3)
= (−2 × −72.280) − (−2 × −72.066)
= 144.550 − 144.132 = 0.428

(LR is χ2 with 1 d.f. under H0:
no interaction.)
0.40 < P < 0.50, not significant
Wald test P = 0.510

To obtain the LR statistic in this example, we com-
pute 144.550 minus 144.132 to obtain 0.428. Un-
der the null hypothesis of no interaction effect,
the test statistic has a chi-square distribution with
p degrees of freedom, where p denotes the num-
ber of predictors being assessed. The p-value for
this test is between 0.40 and 0.50, which indicates
no significant interaction. Although the p-values
for the Wald test (0.510) and the LR test are not
exactly the same, both p-values lead to the same
conclusion.

LR �= Wald

When in doubt, use the LR test.

In general, the LR and Wald statistics may not give
exactly the same answer. Statisticians have shown
that of the two test procedures, the LR statistic has
better statistical properties, so when in doubt, you
should use the LR test.

OUTPUT
Model 2:

  Coef.      Std. Err.    p > |z|   Haz. Ratio

Rx                    1.294        0.422        0.002        3.648

log WBC          1.604        0.329        0.000        4.975

No. of subjects = 42  Log likelihood = −72.280

We now focus on how to assess the effect of
treatment status adjusting for log WBC using the
model 2 output, again shown here.

Three statistical objectives.

1. test for significance of effect
2. point estimate of effect
3. confidence interval for effect

EXAMPLE (continued) 

Test for treatment effect: 
Wald statistic: P = 0.002 (highly 

significant)
LR statistic: compare 

−2 log L from model 2 with 
−2 log L from model  without Rx

variable
Printout not provided here

Conclusion: treatment effect is signifi- 
cant, after adjusting for log WBC

There are three statistical objectives typically
considered. One is to test for the significance
of the treatment status variable, adjusted for
log WBC. Another is to obtain a point estimate
of the effect of treatment status, adjusted for
log WBC. And a third is to obtain a confidence
interval for this effect. We can accomplish
these three objectives using the output provided,
without having to explicitly describe the formula
for the Cox model being used.

To test for the significance of the treatment
effect, the p-value provided in the table for the
Wald statistic is 0.002, which is highly significant.
Alternatively, a likelihood ratio (LR) test could
be performed by comparing the log likelihood
statistic (144.559) for model 2 with the log
likelihood statistic for a model which does not
contain the treatment variable. This latter model,
which should contain only the log WBC variable,
is not provided here, so we will not report on it
other than to note that the LR test is also very
significant. Thus, these test results show that
using model 2, the treatment effect is significant,
after adjusting for log WBC.
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EXAMPLE (continued) 

Point estimate:

Coefficient of treatment variable

HR = 3.648
= e1.294

ˆ

A point estimate of the effect of the treatment is
provided in the HR column by the value 3.648.
This value gives the estimated hazard ratio (HR)
for the effect of the treatment; in particular,
we see that the hazard for the placebo group is
3.6 times the hazard for the treatment group.
Note that the value 3.648 is calculated as e to the
coefficient of the treatment variable; that is, e to
the 1.294 equals 3.648.

To describe the confidence interval for the ef-
fect of treatment status, we consider the output
for the extended table for model 2 given earlier.

Model 2:
[95% Conf. Interval]

3.07

log WBC

No. of subjects = 42               Log likelihood = −72.280                             Prob > chi2 = 0.0000

OUTPUT

Coef.

1.595    8.343 1.294Rx

4.87  2.609    9.4861.604

3.648

4.975

z Haz. Ratiop > |z|

0.002

0.000

0.422

0.329

Std. Err.

95% confidence interval for the HR:
(1.595, 8.343)

95% CI for β1: 1.294 ± (1.96) (0.422) 

95% CI for HR = eβ1:

1
(

1.595 3.648 8.343

0 1.96 Z

exp[β̂1 ± 1.96sβ̂1
] = e1.294 ± 1.96(0.422)

EXAMPLE (continued)

0.975

)

From the table, we see that a 95% confidence
interval for the treatment effect is given by the
range of values 1.595–8.343. This is a confidence
interval for the hazard ratio (HR), which sur-
rounds the point estimate of 3.648 previously
described. Notice that this confidence interval is
fairly wide, indicating that the point estimate is
somewhat unreliable. As expected from the low
p-value of 0.002, the confidence interval for HR
does not contain the null value of 1.

The calculation of the confidence interval
for HR is carried out as follows:

1. Compute a 95% confidence interval for the re-
gression coefficient of the Rx variable (β1). The
large sample formula is 1.294 plus or minus
1.96 times the standard error 0.422, where 1.96
is the 97.5 percentile of the standard normal or
Z distribution.

2. Exponentiate the two limits obtained for the
confidence interval for the regression coeffi-
cient of Rx.
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Stata: provides CI directly

Other packages: provide β̂’s and s
β̂

’s

The Stata output provides the required confidence
interval directly, so that the user does not have to
carry out the computations required by the large
sample formula. Other computer packages may
not provide the confidence interval directly, but,
rather, may provide only the estimated regression
coefficients and their standard errors.

EDITED OUTPUT
Model 1:

  Coef.      Std. Err.   p > |z|     Haz. Ratio

Rx                    1.509         0.410       0.000        4.523

No. of subjects = 42  Log likelihood = −86.380

Model 2:

  Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                    1.294         0.422       0.002        3.648

log WBC          1.604         0.329        0.000        4.975

No. of subjects = 42  Log likelihood = −72.280

To this point, we have made use of information
from outputs for models 2 and 3, but have not yet
considered the model 1 output, which is shown
again here. Note that model 1 contains only the
treatment status variable, whereas model 2, shown
below, contains log WBC in addition to treatment
status. Model 1 is sometimes called the “crude”
model because it ignores the effect of potential co-
variates of interest, like log WBC.

EXAMPLE (continued) 

ˆ

HR for model 1 (4.523) is higher than 
HR for model 2 (3.648). 

Confounding: crude versus adjusted
HR’s are meaningfully different. 

Confounding due to log WBC 
⇒ must control for log WBC, i.e., 
prefer model 2 to model 1. 

If no confounding, then consider preci- 
sion: e.g., if 95% CI is narrower for 
model 2 than model 1, we prefer model 2.

Model 1 can be used in comparison with model 2
to evaluate the potential confounding effect of the
variable log WBC. In particular, notice that the
value in the HR column for the treatment status
variable is 4.523 for model 1, but only 3.648 for
model 2. Thus, the crude model yields an esti-
mated hazard ratio that is somewhat higher than
the corresponding estimate obtained when we ad-
just for log WBC. If we decide that the crude and
adjusted estimates are meaningfully different, we
then say that there is confounding due to log WBC.

Once we decide that confounding is present, we
then must control for the confounder—in this
case, log WBC—in order to obtain a valid estimate
of the effect. Thus, we prefer model 2, which
controls for log WBC, to model 1, which does not.

Note that if we had decided that there is no “mean-
ingful” confounding, then we would not need to
control for log WBC to get a valid answer. Nev-
ertheless, we might wish to control for log WBC
anyhow, to obtain a more precise estimate of the
hazard ratio. That is, if the confidence interval for
the HR is narrower when using model 2 than when
using model 1, we would prefer model 2 to model 1
for precision gain.
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EDITED OUTPUT: Confidence Intervals

[95% Conf. Interval] 

Rx model 1  2.027 10.094

Rx model 2  1.595 8.343
log WBC 2.609 9.486

width = 8.067

width = 6.748

The confidence intervals for Rx in each model
are shown here at the left. The interval for Rx in
model 1 has width equal to 10.094 minus 2.027, or
8.067; for model 2, the width is 8.343 minus 1.595,
or 6.748. Therefore, model 2 gives a more precise
estimate of the hazard ratio than does model 1.

EXAMPLE (continued)

Model 2 is best model.

HR = 3.648 statistically significantˆ
95% CI for HR: (1.6, 8.3)

Our analysis of the output for the three models
has led us to conclude that model 2 is the best of
the three models and that, using model 2, we get
a statistically significant hazard ratio of 3.648 for
the effect of the treatment, with a 95% confidence
interval ranging between 1.6 and 8.3.

Cox model formulae not specified

Analysis strategy and methods for
Cox model analogous to those for
logistic and classical linear models.

EXAMPLE (continued)
Survival Curves Adjusted for log WBC
(Model 2)

1.0

.8

.6

.4

.2

.0
8 16 24

Placebo
(Rx = 1)

Treatment (Rx = 0) 

Time

Ŝ(t)

Note that we were able to carry out this analysis
without actually specifying the formulae for the
Cox PH models being fit. Also, the strategy and
methods used with the output provided have been
completely analogous to the strategy and methods
one uses when fitting logistic regression models
(see Kleinbaum and Klein, Logistic Regression,
Chapters 6 and 7, 2002), and very similar to
carrying out a classical linear regression analysis
(see Kleinbaum et al., Applied Regression Analysis,
3rd ed., Chapter 16, 1997).

In addition to the above analysis of this
data, we can also obtain survival curves for each
treatment group, adjusted for the effects of log
WBC and based on the model 2 output. Such
curves, sketched here at the left, give additional
information to that provided by estimates and
tests about the hazard ratio. In particular, these
curves describe how the treatment groups com-
pare over the time period of the study.

For these data, the survival curves show
that the treatment group consistently has higher
survival probabilities than the placebo group after
adjusting for log WBC. Moreover, the difference
between the two groups appears to widen over
time.
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Adjusted survival
curves KM curves
Adjusted for No covariates
covariates
Use fitted Cox No Cox model
model fitted

Note that adjusted survival curves are mathemat-
ically different from Kaplan–Meier (KM) curves.
KM curves do not adjust for covariates and, there-
fore, are not computed using results from a fitted
Cox PH model.

Nevertheless, for these data, the plotted KM curves
(which were described in Chapter 2) are similar in
appearance to the adjusted survival curves.

Remainder:

� Cox model formula� basic characteristics of Cox
model� meaning of PH assumption

In the remainder of this presentation, we describe
the Cox PH formula and its basic characteristics,
including the meaning of the PH assumption and
the Cox likelihood.

II. The Formula for the
Cox PH Model

h(t, X) = h0(t) e

p∑
i=1

βi Xi

X = (X1, X2, . . . , X p)
explanatory/predictor variables

The Cox PH model is usually written in terms
of the hazard model formula shown here at the
left. This model gives an expression for the hazard
at time t for an individual with a given specifica-
tion of a set of explanatory variables denoted by
the bold X. That is, the bold X represents a col-
lection (sometimes called a “vector”) of predictor
variables that is being modeled to predict an indi-
vidual’s hazard.

h0(t) × e

p∑
i=1

βi Xi

Baseline Exponential
hazard
Involves t Involves X ’s but
but not not t (X’s are
X ’s time-independent)

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard
function. The second quantity is the exponential
expression e to the linear sum of βi Xi , where the
sum is over the p explanatory X variables.

An important feature of this formula, which
concerns the proportional hazards (PH) assump-
tion, is that the baseline hazard is a function of
t, but does not involve the X ’s. In contrast, the
exponential expression shown here, involves the
X ’s, but does not involve t. The X ’s here are called
time-independent X ’s.
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X ’s involving t: time-dependent

Requires extended Cox model (no
PH)

It is possible, nevertheless, to consider X ’s which
do involve t. Such X ’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion, and is called the extended Cox model.

Time-dependent variables:
Chapter 6

The use of time-dependent variables is discussed
in Chapter 6. For the remainder of this presenta-
tion, we will consider time-independent X ’s only.

Time-independent variable:
Values for a given individual
do not change over time; e.g.,
SEX and SMK↘

Assumed not to change
once measured

A time-independent variable is defined to be any
variable whose value for a given individual does
not change over time. Examples are SEX and
smoking status (SMK). Note, however, that a per-
son’s smoking status may actually change over
time, but for purposes of the analysis, the SMK
variable is assumed not to change once it is mea-
sured, so that only one value per individual is used.

AGE and WGT values do not change
much, or effect on survival depends
on one measurement.

Also note that although variables like AGE and
weight (WGT) change over time, it may be appro-
priate to treat such variables as time-independent
in the analysis if their values do not change much
over time or if the effect of such variables on sur-
vival risk depends essentially on the value at only
one measurement.

X1 = X2 = · · · = X p = 0

h(t,X) = h0(t) e

p∑
i=1

βi Xi

= h0(t) e0

= h0(t)
Baseline hazard

The Cox model formula has the property that if
all the X ’s are equal to zero, the formula reduces
to the baseline hazard function. That is, the expo-
nential part of the formula becomes e to the zero,
which is 1. This property of the Cox model is the
reason why h0(t) is called the baseline function.

No X ’s in model: h(t,X) = h0(t). Or, from a slightly different perspective, the Cox
model reduces to the baseline hazard when no X ’s
are in the model. Thus, h0(t) may be considered
as a starting or “baseline” version of the hazard
function, prior to considering any of the X ’s.

h0(t) is unspecified.

Cox model: semiparametric

Another important property of the Cox model is
that the baseline hazard, h0(t), is an unspecified
function. It is this property that makes the Cox
model a semiparametric model.
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EXAMPLE: Parametric Model

Weibull:
h(t, X) = λptp–1

and h0(t) = ptp–1

p

where λ = exp[ΣβiXi]
i=1

In contrast, a parametric model is one whose
functional form is completely specified, except for
the values of the unknown parameters. For ex-
ample, the Weibull hazard model is a parametric
model and has the form shown here, where the
unknown parameters are λ, p, and the βi ’s. Note
that for the Weibull model, h0(t) is given by λptp−1

(see Chapter 7).

Semiparametric property
⇓

Popularity of the Cox model

One of the reasons why the Cox model is so popu-
lar is that it is semiparametric. We discuss this and
other reasons in the next section (III) concerning
why the Cox model is so widely used.

III. Why the Cox PH Model
Is Popular

Cox PH model is “robust”: Will
closely approximate correct
parametric model

A key reason for the popularity of the Cox model is
that, even though the baseline hazard is not spec-
ified, reasonably good estimates of regression co-
efficients, hazard ratios of interest, and adjusted
survival curves can be obtained for a wide variety
of data situations. Another way of saying this is
that the Cox PH model is a “robust” model, so that
the results from using the Cox model will closely
approximate the results for the correct parametric
model.

If correct model is:

Cox model will
Weibull ⇒ approximate

Weibull

Cox model will
Exponential ⇒ approximate

exponential

For example, if the correct parametric model is
Weibull, then use of the Cox model typically will
give results comparable to those obtained using a
Weibull model. Or, if the correct model is expo-
nential, then the Cox model results will closely ap-
proximate the results from fitting an exponential
model.

Prefer parametric model if sure of
correct model, e.g., use goodness-
of-fit test (Lee, 1982).

We would prefer to use a parametric model if we
were sure of the correct model. Although there are
various methods for assessing goodness of fit of a
parametric model (for example, see Lee, Statistical
Methods for Survival Data Analysis, 1982), we may
not be completely certain that a given parametric
model is appropriate.
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When in doubt, the Cox model is a
“safe” choice.

Thus, when in doubt, as is typically the case, the
Cox model will give reliable enough results so that
it is a “safe” choice of model, and the user does
not need to worry about whether the wrong para-
metric model is chosen.

In addition to the general “robustness” of the Cox
model, the specific form of the model is attractive
for several reasons.

h(t,X) = h0(t) × e

p∑
i=1

βi Xi

Baseline Exponential
hazard ⇓

0 ≤ h(t,X) < ∞ always

As described previously, the specific form of the
Cox model gives the hazard function as a product
of a baseline hazard involving t and an exponential
expression involving the X ’s without t. The expo-
nential part of this product is appealing because
it ensures that the fitted model will always give
estimated hazards that are non-negative.

h0(t) ×
p∑

i=1

βi Xi︸ ︷︷ ︸
Linear

⇓
Might be < 0

We want such nonnegative estimates because, by
definition, the values of any hazard function must
range between zero and plus infinity, that is, a haz-
ard is always nonnegative. If, instead of an expo-
nential expression, the X part of the model were,
for example, linear in the X ’s, we might obtain neg-
ative hazard estimates, which are not allowed.

Even though h0(t) is unspecified,
we can estimate the β’s.

Measure of effect: hazard ratio (HR)
involves only β’s, without
estimating h0(t).

Another appealing property of the Cox model is
that, even though the baseline hazard part of the
model is unspecified, it is still possible to estimate
the β’s in the exponential part of the model. As
we will show later, all we need are estimates of the
β’s to assess the effect of explanatory variables of
interest. The measure of effect, which is called a
hazard ratio, is calculated without having to esti-
mate the baseline hazard function.

Can estimate h(t,X) and S(t,X)
for Cox model using a minimum
of assumptions.

Note that the hazard function h(t,X) and its corre-
sponding survival curves S(t,X) can be estimated
for the Cox model even though the baseline haz-
ard function is not specified. Thus, with the Cox
model, using a minimum of assumptions, we can
obtain the primary information desired from a
survival analysis, namely, a hazard ratio and a sur-
vival curve.
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Cox model preferred to logistic model.
⇓ ⇓
Uses survival Uses (0,1) outcome;
times and ignores survival times
censoring and censoring

One last point about the popularity of the Cox
model is that it is preferred over the logistic model
when survival time information is available and
there is censoring. That is, the Cox model uses
more information—the survival times—than the
logistic model, which considers a (0,1) outcome
and ignores survival times and censoring.

IV. ML Estimation of the
Cox PH Model

h(t, X) = h0(t) e

p∑
i=1

βi Xi

We now describe how estimates are obtained for
the parameters of the Cox model. The parame-
ters are the β’s in the general Cox model formula
shown here. The corresponding estimates of these
parameters are called maximum likelihood (ML)
estimates and are denoted as βi “hat.”

ML estimates: β̂ i

Coef. Std.Err. p > |z| Haz. Ratio
Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975�
No. of subjects = 42 Log likelihood = −72.280

Estimated model:
ĥ(t,X) = ĥ0(t)e1.294 Rx + 1.604 log WBC

As an example of ML estimates, we consider once
again the computer output for one of the models
(model 2) fitted previously from remission data
on 42 eukemia patients.

The Cox model for this example involves
two parameters, one being the coefficient of
the treatment variable (denoted here as Rx)
and the other being the coefficient of the log
WBC variable. The expression for this model is
shown at the left, which contains the estimated
coefficients 1.294 for Rx and 1.604 for log white
blood cell count.

ML estimates: maximize likelihood
function L

L = joint probability of observed
data = L(β)

As with logistic regression, the ML estimates of
the Cox model parameters are derived by maxi-
mizing a likelihood function, usually denoted as
L. The likelihood function is a mathematical ex-
pression which describes the joint probability of
obtaining the data actually observed on the sub-
jects in the study as a function of the unknown pa-
rameters (the β’s) in the model being considered.
L is sometimes written notationally as L(β) where
β denotes the collection of unknown parameters.

The expression for the likelihood is developed at
the end of the chapter. However, we give a brief
overview below.
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L is a partial likelihood:

� considers probabilities only
for subjects who fail� does not consider probabilities
for subjects who are censored

The formula for the Cox model likelihood func-
tion is actually called a “partial” likelihood func-
tion rather than a (complete) likelihood function.
The term “partial” likelihood is used because the
likelihood formula considers probabilities only for
those subjects who fail, and does not explicitly
consider probabilities for those subjects who are
censored. Thus the likelihood for the Cox model
does not consider probabilities for all subjects,
and so it is called a “partial” likelihood.

Number of failure times↖
L = L1 × L2 × L3 × · · · × Lk =

k∏
j=1

L j

where
L j = portion of L for the jth failure

time given the risk set R(t( j ))

In particular, the partial likelihood can be written
as the product of several likelihoods, one for each
of, say, k failure times. Thus, at the jth failure time,
L j denotes the likelihood of failing at this time,
given survival up to this time. Note that the set of
individuals at risk at the jth failure time is called
the “risk set,” R(t( j )), and this set will change—
actually get smaller in size—as the failure time in-
creases.

Information on censored subjects
used prior to censorship.

Lj uses in R(t( j)

t( j)

) Censored later

Thus, although the partial likelihood focuses on
subjects who fail, survival time information prior
to censorship is used for those subjects who are
censored. That is, a person who is censored after
the jth failure time is part of the risk set used to
compute L j , even though this person is censored
later.

Steps for obtaining ML estimates:

� form L from model� maximize ln L by solving

∂ln L
∂βi

= 0

i = 1, . . . , p(# of parameters)

Once the likelihood function is formed for a given
model, the next step for the computer is to maxi-
mize this function. This is generally done by maxi-
mizing the natural log of L, which is computation-
ally easier.

Solution by iteration:

� guess at solution� modify guess in successive steps� stop when solution is obtained

The maximization process is carried out by tak-
ing partial derivatives of log of L with respect to
each parameter in the model, and then solving a
system of equations as shown here. This solution
is carried out using iteration. That is, the solu-
tion is obtained in a stepwise manner, which starts
with a guessed value for the solution, and then
successively modifies the guessed value until a so-
lution is finally obtained.
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Statistical inferences for hazard
ratios: (See Section I, pages 86–94)

Test hypotheses Confidence intervals

Wald test Large sample 95% CI
LR test

ĤR = eβ̂ for a (0,1) exposure
variable (no interaction)

Once the ML estimates are obtained, we are usu-
ally interested in carrying out statistical inferences
about hazard ratios defined in terms of these esti-
mates. We illustrated previously how to test hy-
potheses and form confidence intervals for the
hazard ratio in Section I above. There, we de-
scribed how to compute a Wald test and a likeli-
hood ratio (LR) test. We also illustrated how to cal-
culate a large sample 95% confidence interval for
a hazard ratio. The estimated hazard ratio (HR)
was computed by exponentiating the coefficient
of a (0,1) exposure variable of interest. Note that
the model contained no interaction terms involv-
ing exposure.

V. Computing the Hazard
Ratio

In general, a hazard ratio (HR) is defined as the
hazard for one individual divided by the hazard for
a different individual. The two individuals being
compared can be distinguished by their values for
the set of predictors, that is, the X ’s.ĤR = ĥ (t,X∗)

ĥ (t,X)

where
X∗ = (X ∗

1, X ∗
2, · · · , X ∗

p)

and
X = (X1, X2, · · · , X p)

denote the set of X ’s for two
individuals

We can write the hazard ratio as the estimate of
h(t,X∗) divided by the estimate of h(t,X), where
X∗ denotes the set of predictors for one individual,
and X denotes the set of predictors for the other
individual.

To interpret ĤR, want ĤR ≥ 1, i.e.,

ĥ (t,X∗) ≥ ĥ (t,X).

Typical coding: X∗: group with
larger h

X : group with
smaller h

Note that, as with an odds ratio, it is easier to in-
terpret an HR that exceeds the null value of 1 than
an HR that is less than 1. Thus, the X ’s are typi-
cally coded so that group with the larger harzard
corresponds to X∗, and the group with the smaller
hazard corresponds to X. As an example, for the
remission data described previously, the placebo
group is coded as X ∗

1 = 1, and the treatment group
is coded as X1 = 0.

EXAMPLE: Remission Data 

X* = (X1
*, X2

*,..., Xp
* ), where X1

* = 1
denotes placebo group.

X = (X1, X2,..., Xp), where X1 = 0
denotes treatment group.
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ĤR = ĥ (t,X∗)

ĥ (t,X)
= ĥ 0(t) e

p∑
i=1

β̂i X ∗
i

ĥ 0(t) e

p∑
i=1

β̂i Xi

We now obtain an expression for the HR formula
in terms of the regression coefficients by substi-
tuting the Cox model formula into the numerator
and denominator of the hazard ratio expression.
This substitution is shown here. Notice that the
only difference in the numerator and denomina-
tor are the X ∗’s versus the X ’s. Notice also that the
baseline hazards will cancel out.

ĤR = ĥ 0(t) e

p∑
i=1

β̂i X ∗
i

ĥ 0(t) e

p∑
i=1

β̂i Xi

= e

p∑
i=1

β̂i (X ∗
i −Xi )

Using algebra involving exponentials, the hazard
ratio formula simplifies to the exponential expres-
sion shown here. Thus, the hazard ratio is com-
puted by exponentiating the sum of each βi “hat”
times the difference between X ∗

i and Xi .

ĤR = exp
[ p∑

i=1
βi (X ∗

i − Xi )
] An alternative way to write this formula, using ex-

ponential notation, is shown here. We will now
illustrate the use of this general formula through
a few examples.

EXAMPLE

X = (X1, X2,..., Xp) = (X1), where X1
denotes (0,1) exposure status (p = 1)

X1
* = 1, X1 = 0

HR = exp[β1(X1
* – X1)]

= exp[β1(1 – 0)] = eβ1

ˆ

Model 1:

  Coef.      Std. Err.   P > |z|     Haz. Ratio

Rx                    1.509         0.410 0.000         4.523

Suppose, for example, there is only one X variable
of interest, X1, which denotes (0,1) exposure
status, so that p = 1. Then, the hazard ratio
comparing exposed to unexposed persons is
obtained by letting X ∗

1 = 1 and X1 = 0 in the
hazard ratio formula. The estimated hazard ratio
then becomes e to the quantity β1 “hat” times 1
minus 0, which simplifies to e to the β1 “hat.”

Recall the remission data printout for model 1,
which contains only the Rx variable, again shown
here. Then the estimated hazard ratio is obtained
by exponentiating the coefficient 1.509, which
gives the value 4.523 shown in the HR column of
the output.

EXAMPLE 2
Model 2:

  Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                    1.294         0.422       0.002         3.648

log WBC          1.604         0.329       0.000         4.975

+

X* = (1, log WBC), X = (0, log WBC)

HR for effect of Rx adjusted for log WBC:

As a second example, consider the output for
model 2, which contains two variables, the Rx vari-
able and log WBC. Then to obtain the hazard ratio
for the effect of the Rx variable adjusted for the log
WBC variable, we let the vectors X∗ and X be de-
fined as X∗ = (1, log WBC) and X = (0, log WBC).
Here we assume that log WBC is the same for X ∗
and X though unspecified.
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EXAMPLE 2 (continued)

HR = exp[β1(X*
1−X1) + β1 (X*

2 − X2)]
^ ^

= exp[1.294(1−0)

= exp[1.294(1) + 1.604(0)]=

+ 1.604 (log WBC− log WBC)]

e1.294

ˆ
The estimated hazard ratio is then obtained by
exponentiating the sum of two quantities, one
involving the coefficient 1.294 of the Rx variable,
and the other involving the coefficient 1.604 of the
log WBC variable. Since the log WBC value is fixed,
however, this portion of the exponential is zero, so
that the resulting estimate is simply e to the 1.294.

General rule: If X1 is a (0,1)
exposure variable, then

ĤR = eβ̂1 (= effect of exposure
adjusted for other X ’s)

provided no other X ’s are product
terms involving exposure.

This second example illustrates the general rule
that the hazard ratio for the effect of a (0,1) ex-
posure variable which adjusts for other variables
is obtained by exponentiating the estimated coef-
ficient of the exposure variable. This rule has the
proviso that the model does not contain any prod-
uct terms involving exposure.

EXAMPLE 3
Model 3:

   Coef.      Std. Err.    p > |z|    Haz. Ratio

Rx                      2.355        1.681        0.161       10.537

log WBC            1.803        0.447        0.000         6.067

Rx × log WBC −0.342        0.520        0.510         0.710

Want HR for effect of Rx adjusted for
log WBC. 

Placebo subject: 
X* = (X1

* = 1, X2
* = log WBC, 

X3
* = 1 ×  log WBC)

Treated subject: 
X = (X1 = 0, X2 = log WBC, 

X3 = 0 ×  log WBC)

HR = exp[ˆ ∑
3

βi(Xi
* − Xi)]

HR = exp[2.355(1 − 0) 
+ 1.803 (log WBC − log WBC) 
+ (−0.342)(1 × log WBC  

0 × log WBC)]

ˆ
i=1

= exp[2.355 − 0.342 log WBC]

−

We now give a third example which illustrates
how to compute a hazard ratio when the model
does contain product terms. We consider the
printout for model 3 of the remission data shown
here.

To obtain the hazard ratio for the effect of Rx
adjusted for log WBC using model 3, we consider
X ∗ and X vectors which have three components,
one for each variable in the model. The X∗ vector,
which denotes a placebo subject, has components
X ∗

1 = 1, X ∗
2 = log WBC and X ∗

3 = 1 times log
WBC. The X vector, which denotes a treated
subject, has components X1 = 0, X2 = log WBC
and X3 = 0 times log WBC. Note again that, as
with the previous example, the value for log WBC
is treated as fixed, though unspecified.

Using the general formula for the hazard ratio,
we must now compute the exponential of the sum
of three quantities, corresponding to the three
variables in the model. Substituting the values
from the printout and the values of the vectors X∗
and X into this formula, we obtain the exponen-
tial expression shown here. Using algebra, this
expression simplifies to the exponential of 2.355
minus 0.342 times log WBC.
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EXAMPLE 3 (continued)

log WBC = 2:

HR = exp[2.355 − 0.342 (2)] 
= e1.671 = 5.32

ˆ
log WBC = 4:

HR = exp[2.355 − 0.342 (4)] 
= e0.987= 2.68

ˆ

In order to get a numerical value for the hazard
ratio, we must specify a value for log WBC. For
instance, if log WBC = 2, the estimated hazard
ratio becomes 5.32, whereas if log WBC = 4, the
estimated hazard ratio becomes 2.68. Thus, we get
different hazard ratio values for different values of
log WBC, which should make sense since log WBC
is an effect modifier in model 3.

General rule for (0,1) exposure
variables when there are product
terms:

ĤR = exp
[
β̂ + ∑

δ̂ j Wj

]
where

β̂ = coefficient of E
δ̂ j = coefficient of E × Wj

(ĤR does not contain coefficients
of non-product terms)

The example we have just described using model
3 illustrates a general rule which states that the
hazard ratio for the effect of a (0,1) exposure vari-
able in a model which contains product terms in-
volving this exposure with other X ’s can be written
as shown here. Note that β “hat” denotes the co-
efficient of the exposure variable and the δ “hats”
are coefficients of product terms in the model of
the form ExWj . Also note that this formula does
not contain coefficients of nonproduct terms other
than those involving E.

EXAMPLE

Model 3:

HR (model 3) = exp[β̂ + δ̂1 log WBC]
= exp[2.355 – 0.342 log WBC]
ˆ

β̂ = coefficient of Rx

δ̂1= coefficient of Rx × log WBC

W1
E

For model 3, β “hat” is the coefficient of the Rx
variable, and there is only one δ “hat” in the
sum, which is the coefficient of the product term
Rx × log WBC. Thus, there is only one W, namely
W1 = log WBC. The hazard ratio formula for the
effect of exposure is then given by exponentiating
β “hat” plus δ1 “hat” times log WBC. Substituting
the estimates from the printout into this formula
yields the expression obtained previously, namely
the exponential of 2.355 minus 0.342 times log
WBC.

VI. Adjusted Survival Curves
Using the Cox PH Model

Two primary quantities:

1. estimated hazard ratios
2. estimated survival curves

The two primary quantities desired from a sur-
vival analysis point of view are estimated hazard
ratios and estimated survival curves. Having just
described how to compute hazard ratios, we now
turn to estimation of survival curves using the Cox
model.
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No model: use KM curves
1.0

0.5

0
10 20
t in weeks

Treatment
group

Placebo
group

S(t)

Recall that if no model is used to fit survival data,
a survival curve can be estimated using a Kaplan–
Meier method. Such KM curves are plotted as step
functions as shown here for the remission data
example.

Cox model: adjusted survival
curves (also step functions).

When a Cox model is used to fit survival data, sur-
vival curves can be obtained that adjust for the
explanatory variables used as predictors. These
are called adjusted survival curves, and, like KM
curves, these are also plotted as step functions.

Cox model hazard function:

h(t,X) = h0(t) e

p∑
i=1

βi Xi

Cox model survival function:

S(t,X) = [
S0(t)

]e

p∑
i=1

βi Xi

The hazard function formula for the Cox PH
model, shown here again, can be converted to a
corresponding survival function formula as shown
below. This survival function formula is the ba-
sis for determining adjusted survival curves. Note
that this formula says that the survival function at
time t for a subject with vector X as predictors is
given by a baseline survival function S0(t) raised
to a power equal to the exponential of the sum of
βi times Xi .

Estimated survival function:

Ŝ(t,X) = [
Ŝ0(t)

]e

p∑
i=1

β̂i Xi

The expression for the estimated survival function
can then be written with the usual “hat” notation
as shown here.

Ŝ0(t) and β̂i are provided by the
computer program. The Xi must
be specified by the investigator.

The estimates of Ŝ0(t) and β̂i are provided by the
computer program that fits the Cox model. The
X ’s, however, must first be specified by the investi-
gator before the computer program can compute
the estimated survival curve.
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EXAMPLE: Model 2 Remission 
Data

ĥ(t,X) = ĥ0(t)e1.294 Rx + 1.604 log WBC

Ŝ(t,X) = [Ŝ0(t)]exp(1.294 Rx + 1.604 log WBC)

Rx = 0, log WBC = 2.93: 

Specify values for X = (Rx, log WBC): 

Rx = 1, log WBC = 2.93:

Adjusted Survival Curves

Rx = 1, log WBC = 2.93: 
Ŝ ˆ 

ˆ ˆ 

(t,X) =  [S0(t)]400.9

Rx  = 0, log WBC = 2.93: 
S(t,X)  =  [S0(t)]109.9

Ŝ(t,X) =  [Ŝ0(t)]exp(1.294 (1) + 1.604 (2.93)) 

=  [Ŝ0(t)]exp(5.99 ) =  [Ŝ0(t)]400.9

Ŝ(t,X) =  [Ŝ0(t)]exp(1.294 (0)  + 1.604 (2.93)) 

=  [Ŝ0(t)]exp(4.70)    =  [Ŝ0(t)]109.9

For example, if we consider model 2 for the
remission data, the fitted model written in terms
of both the hazard function and corresponding
survival function is given here.

We can obtain a specific survival curve by
specifying values for the vector X, whose compo-
nent variables are Rx and log WBC.

For instance, if Rx = 1 and log WBC = 2.93,
the estimated survival curve is obtained by
substituting these values in the formula as shown
here, and carrying out the algebra to obtain the
expression circled. Note that the value 2.93 is the
overall mean log WBC for the entire dataset of 42
subjects.

Also, if Rx = 0 and log WBC = 2.93, the es-
timated survival curve is obtained as shown here.

Each of the circled expressions gives ad-
justed survival curves, where the adjustment is
for the values specified for the X ’s. Note that for
each expression, a survival probability can be
obtained for any value of t.

The two formulae just obtained, again shown
here, allow us to compare survival curves for dif-
ferent treatment groups adjusted for the covariate
log WBC. Both curves describe estimated survival
probabilities over time assuming the same value
of log WBC, in this case, the value 2.93.

Typically, use X = X or Xmedian.

Computer uses X̄ .

Typically, when computing adjusted survival
curves, the value chosen for a covariate being ad-
justed is an average value like an arithmetic mean
or a median. In fact, most computer programs for
the Cox model automatically use the mean value
over all subjects for each covariate being adjusted.

EXAMPLE (continued)

Remission data (n = 42):

log WBC = 2.93

In our example, the mean log WBC for all 42 sub-
jects in the remission data set is 2.93. That is why
we chose this value for log WBC in the formulae
for the adjusted survival curve.
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General formulae for adjusted
survival curves comparing two
groups:

Exposed subjects:

Ŝ(t,X1) = [Ŝ0(t)]
exp[β̂1(1)+∑

i �=1
β̂i X i ]

Unexposed subjects:

Ŝ(t,X0) = [Ŝ0(t)]
exp[β̂1(0)+∑

i �=1
β̂i X i ]

More generally, if we want to compare survival
curves for two levels of an exposure variable, and
we want to adjust for several covariates, we can
write the formula for each curve as shown here.
Note that we are assuming that the exposure vari-
able is variable X1, whose estimated coefficient is
β1 “hat,” and the value of X1 is 1 for exposed and
0 for unexposed subjects.

General formula for adjusted
survival curve for all
covariates in the model:

Ŝ(t, X) = [Ŝ0(t)]exp[
∑

β̂i X i ]

Also, if we want to obtain an adjusted survival
curve which adjusts for all covariates in the model,
the general formula which uses the mean value
for each covariate is given as shown here. This
formula will give a single adjusted survival curve
rather than different curves for each exposure
group.

EXAMPLE (continued)

Single survival curve for Cox model
containing Rx and log WBC:

Rx = 0.50

log WBC = 2.93

Ŝ(t,X) = [Ŝ0(t)]exp(

= [Ŝ0(t)]exp(1.294(0.5) + 1.604(2.93))

= [Ŝ0(t)]exp(5.35) = [Ŝ0(t)]210.6

β1Rx + β2log WBC)

To illustrate this formula, suppose we again con-
sider the remission data, and we wish to obtain a
single survival curve that adjusts for both Rx and
log WBC in the fitted Cox model containing these
two variables. Using the mean value of each co-
variate, we find that the mean value for Rx is 0.5
and the mean value for log WBC is 2.93, as before.

To obtain the single survival curve that adjusts for
Rx and log WBC, we then substitute the mean val-
ues in the formula for the adjusted survival curve
for the model fitted. The formula and the result-
ing expression for the adjusted survival curve are
shown here. (Note that for the remission data,
where it is of interest to compare two exposure
groups, the use of a single survival curve is not
appropriate.)

Compute survival probability by
specifying value for t in
Ŝ(t,X) = [Ŝ0(t)]210.6

Computer uses t’s which are
failure times.

From this expression for the survival curve, a sur-
vival probability can be computed for any value
of t that is specified. When graphing this survival
curve using a computer package, the values of t
that are chosen are the failure times of all persons
in the study who got the event. This process is au-
tomatically carried out by the computer without
having the user specify each failure time.
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(Rx = 1)

[Ŝ0(t)]400.9

Treatment (Rx = 0)

[Ŝ0(t)]109.9

Time

Ŝ(t)

EXAMPLE
Adjusted Survival Curves for Treatment and
Placebo Groups

The graph of adjusted survival curves obtained
from fitting a Cox model is usually plotted as a
step function. For example, we show here the step
functions for the two adjusted survival curves ob-
tained by specifying either 1 or 0 for treatment
status and letting log WBC be the mean value 2.93.

Next section: PH assumption

� explain meaning� when PH not satisfied

We now turn to the concept of the proportional
hazard (PH) assumption. In the next section, we
explain the meaning of this assumption and we
give an example of when this assumption is not
satisfied.

Later presentations:
� how to evaluate PH� analysis when PH not met

In later presentations, we expand on this subject,
describing how to evaluate statistically whether
the assumption is met and how to carry out the
analysis when the assumption is not met.

VII. The Meaning of the
PH Assumption

PH: HR is constant over time, i.e.,
ĥ (t,X∗) = constant × ĥ(t,X)

The PH assumption requires that the HR is con-
stant over time, or equivalently, that the hazard
for one individual is proportional to the hazard
for any other individual, where the proportional-
ity constant is independent of time.

ĤR = ĥ (t,X∗)

ĥ (t,X)

=
ĥ 0(t) exp

[∑
β̂i X ∗

i

]
ĥ 0(t) exp

[∑
β̂i Xi

]
= exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
where X∗ = (X ∗

1, X ∗
2, . . . , X ∗

p) and
X = (X1, X2, . . . , X p)
denote the set of X ’s for two
individuals.

To understand the PH assumption, we need to re-
consider the formula for the HR that compares
two different specifications X∗ and X for the ex-
planatory variables used in the Cox model. We de-
rived this formula previously in Section V, and we
show this derivation again here. Notice that the
baseline hazard function ĥ 0(t) appears in both the
numerator and denominator of the hazard ratio
and cancels out of the formula.
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ĥ (t,X∗)

ĥ (t,X)
= exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
does not involve t.

The final expression for the hazard ratio therefore
involves the estimated coefficients β1 “hat” and
the values of X∗ and X for each variable. However,
because the baseline hazard has canceled out, the
final expression does not involve time t.

Let
Constant↙

θ̂ = exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
then

ĥ (t,X∗)

ĥ (t,X)
= θ̂

Thus, once the model is fitted and the values for
X∗ and X are specified, the value of the exponen-
tial expression for the estimated hazard ratio is a
constant, which does not depend on time. If we
denote this constant by θ “hat,” then we can write
the hazard ratio as shown here. This is a mathe-
matical expression which states the proportional
hazards assumption.

ĥ(t, X*) = θ̂ĥ(t, X)

ĤR (X* versus X)

t

Proportionality constant
(not dependent on time)

Graphically, this expression says that the esti-
mated hazard ratio comparing any two individ-
uals plots as a constant over time.

Another way to write the proportional hazards
assumption mathematically expresses the hazard
function for individual X∗ as θ “hat” times the
hazard function for individual X, as shown here.
This expression says that the hazard function for
one individual is proportional to the hazard func-
tion for another individual, where the proportion-
ality constant is θ “hat,” which does not depend
on time.

ĤR =

ĥ(t, X) = ĥ0(t) e1.294 Rx+1.604 log WBC

ĥ(t, Rx=1, log WBC = 2.93)

ĥ(t, Rx=0, log WBC = 2.93)

ĥ(t, Rx = 1, log WBC = 2.93)

= 3.65ĥ(t, Rx = 0, log WBC = 2.93)

= exp[1.294] = 3.65 Constant

Placebo

3.65 = proportionality constant
Treatment

EXAMPLE: Remission Data To illustrate the proportional hazard assumption,
we again consider the Cox model for the remission
data involving the two variables Rx and log WBC.
For this model, the estimated hazard ratio that
compares placebo (Rx = 1) with treated (Rx = 0)
subjects controlling for log WBC is given by e to
the 1.294, which is 3.65, a constant.

Thus, the hazard for placebo group (Rx = 1) is
3.65 times the hazard for the treatment group
(Rx = 0), and the value, 3.65, is the same re-
gardless of time. In other words, using the above
model, the hazard for the placebo group is propor-
tional to the hazard for the treatment group, and
the proportionality constant is 3.65.
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Is the above Cox PH model appropriate?

Note:

Serious
surgery

⇒ High risk for death early 

Hazards cross

E = 0 (surgery)

E = 0

E = 1

E = 1 (no surgery)

2 days:

5 days:

ĥ(t,X)

t(days)3

ĥ(t = 2, E = 1)

ĥ(t = 2, E = 0)
<1

ĥ(t = 5, E = 1)

ĥ(t = 5, E = 0)
>1

but

EXAMPLE: PH Not Satisfied

Cancer patients
Surgery

Radiation with
no surgery

E = 0 if surgery
1 if no surgery

h(t,X) = h0(t)eβE

To further illustrate the concept of proportional
hazards, we now provide an example of a situation
for which the proportional hazards assumption is
not satisfied.

For our example, we consider a study in which
cancer patients are randomized to either surgery
or radiation therapy without surgery. Thus, we
have a (0,1) exposure variable denoting surgery
status, with 0 if a patient receives surgery and 1
if not. Suppose further that this exposure variable
is the only variable of interest, so that a Cox PH
model for the analysis of this data, as shown here,
will contain only the one variable E, denoting
exposure.

Now the question we consider here is whether the
above Cox model containing the variable E is an
appropriate model to use for this situation. To an-
swer this question we note that when a patient
undergoes serious surgery, as when removing a
cancerous tumor, there is usually a high risk for
complications from surgery or perhaps even death
early in the recovery process, and once the patient
gets past this early critical period, the benefits of
surgery, if any, can then be observed.

Thus, in a study that compares surgery to no
surgery, we might expect to see hazard functions
for each group that appear as shown here. No-
tice that these two functions cross at about three
days, and that prior to three days the hazard
for the surgery group is higher than the hazard
for the no surgery group, whereas after three days,
the hazard for the surgery group is lower than the
hazard for the no surgery group.

Looking at the above graph more closely, we can
see that at 2 days, when t = 2, the hazard ratio of
non-surgery (E = 1) to surgery (E = 0) patients
yields a value less than 1. In contrast, at t = 5 days,
the hazard ratio of nonsurgery to surgery yields a
value greater than 1.
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EXAMPLE: (continued)

ĥ(t, E = 1)

ĥ(t, E = 0)

Given the above description, HR is not
constant over time.

Cox PH model inappropriate because
PH model assumes constant HR:

h(t,X) = h0(t)eβE

ĤR  = = eβ̂

Thus, if the above description of the hazard func-
tions for each group is accurate, the hazard ratios
are not constant over time. That is, the hazard ra-
tio is some number less than 1 before three days
and greater than 1 after three days.

It is therefore inappropriate to use a Cox PH model
for this situation, because the PH model assumes a
constant hazard ratio across time, whereas our sit-
uation yields a hazard ratio that varies with time.

In fact, if we use a Cox PH model, shown here
again, the estimated hazard ratio comparing ex-
posed to unexposed patients at any time is given
by the constant value e to the β “hat,” which does
not vary over time.

General rule:
If the hazards cross, then a Cox
PH model is not appropriate.

This example illustrates the general rule that if the
hazards cross, then the PH assumption cannot be
met, so that a Cox PH model is inappropriate.

Analysis when Cox PH model not
appropriate? See Chapters 5 and 6.

It is natural to ask at this point, if the Cox PH
model is inappropriate, how should we carry out
the analysis? The answer to this question is dis-
cussed in Chapters 5 and 6. However, we will give
a brief reply with regard to the surgery study ex-
ample just described.

EXAMPLE (continued) 
Surgery study analysis options: 
•  stratify by exposure (use KM curves) 
• start analysis at three days; use Cox 
  PH model 
• fit PH model for < 3 days and for > 3
  days; get HR (< 3 days) and HR

(> 3 days) 
• include time-dependent variable

(e.g., E × t); use extended Cox model

ˆ ˆ

Actually, for the surgery study there are several
options available for the analysis. These include:

� analyze by stratifying on the exposure vari-
able; that is, do not fit any model, and, instead
obtain Kaplan–Meier curves for each exposure
group separately;� start the analysis at three days, and use a Cox
PH model on three-day survivors;� fit Cox model for less than three days and a
different Cox model for greater than three days
to get two different hazard ratio estimates, one
for each of these two time periods;� fit a modified Cox model that includes a time-
dependent variable which measures the inter-
action of exposure with time. This model is
called an extended Cox model.
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Different options may lead to
different conclusions.

Further discussion of these options is given in sub-
sequent chapters. We point out here, that differ-
ent options may lead to different conclusions, so
that the investigator may have to weigh the relative
merits of each option in light of the data actually
obtained before deciding on any particular option
as best.

Hazards ⇒ PH not metcross
but

? ⇒ PH met

See Chapter 4: Evaluating PH
Assumption

One final comment before concluding this section:
although we have shown that when the hazards
cross, the PH assumption is not met, we have not
shown how to decide when the PH assumption
is met. This is the subject of Chapter 4 entitled,
“Evaluating the PH Assumption.”

VIII. The Cox Likelihood

Likelihood

� Typically based on outcome
distribution� Outcome distribution not
specified for Cox model� Cox likelihood based on order
of events rather than their
distribution
◦ Called partial likelihood

Typically, the formulation of a likelihood function
is based on the distribution of the outcome. How-
ever, one of the key features of the Cox model is
that there is not an assumed distribution for the
outcome variable (i.e., the time to event). There-
fore, in contrast to a parametric model, a full like-
lihood based on the outcome distribution cannot
be formulated for the Cox PH model. Instead, the
construction of the Cox likelihood is based on
the observed order of events rather than the
joint distribution of events. Thus the Cox likeli-
hood is called a “partial” likelihood.

Illustration

Scenario:

� Gary, Larry, Barry have lottery
tickets� Winning tickets chosen at times
t1, t2, . . .� Each person ultimately chosen� Can be chosen only once

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry

To illustrate the idea underlying the formulation
of the Cox model, consider the following scenario.
Suppose Gary, Larry, and Barry are each given a
lottery ticket. Winning tickets are chosen at times
tj ( j = 1, 2, . . .). Assume each person is ultimately
chosen and once a person is chosen he cannot be
chosen again (i.e., he is out of the risk set). What is
the probability that the order each person is cho-
sen is first Barry, then Gary, and finally Larry?
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Answer:

Probability = 1
3

× 1
2

× 1
1

= 1
6↗ ↑ ↖

Barry Gary Larry

The probability the Barry’s ticket is chosen before
Gary’s and Larry’s is one out of three. Once Barry’s
ticket is chosen it cannot be chosen again. The
probability that Gary’s ticket is then chosen before
Larry’s is one out of two. Once Barry’s and Gary’s
tickets are chosen they cannot be chosen again
which means that Larry’s ticket must be chosen
last. This yields a probability of 1/6 for this given
order of events (see left).

Scenario:

Barry – 4 tickets
Gary – 1 ticket

Larry – 2 tickets

Now consider a modification of the previous sce-
nario. Suppose Barry has 4 tickets, Gary has
1 ticket, and Larry has 2 tickets; now what is the
probability that the order each person is chosen is
first Barry, then Gary, and finally Larry?

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry

Answer:

Probability = 4
7

× 1
3

× 2
2

= 4
21

Barry, Gary, and Larry have 7 tickets in all and
Barry owns 4 of them so Barry’s probability of be-
ing chosen first is 4 out of 7. After Barry is chosen,
Gary has 1 of the 3 remaining tickets and after
Barry and Gary are chosen, Larry owns the re-
maining 2 tickets. This yields a probability of 4/21
for this order (see left).

For this scenario

Subject’s number of tickets
affects probability

For Cox model

Subject’s pattern of covariates
affects likelihood of ordered
events

For this scenario, the probability of a particular
order is affected by the number of tickets held by
each subject. For a Cox model, the likelihood of the
observed order of events is affected by the pattern
of covariates of each subject.
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ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT = Survival time (in years)
STATUS = 1 for event, 0 for
censorship
SMOKE = 1 for a smoker, 0 for a
nonsmoker

To illustrate this connection, consider the dataset
shown on the left. The data indicate that Barry got
the event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years, and Larry
got the event at 8 years. Furthermore, Barry and
Larry were smokers whereas Gary and Harry were
nonsmokers.

Cox PH model

h(t) = h0(t)eβ1SMOKE

ID Hazard

Barry h0(t)eβ1

Gary h0(t)e0

Harry h0(t)e0

Larry h0(t)eβ1

Individual hazards (Cox likelihood)
analogous to number of tickets
(lottery scenario) For example,
smokers analogous to persons with
extra lottery tickets

Consider the Cox proportional hazards model
with one predictor, SMOKE. Under this model the
hazards for Barry, Gary, Harry, and Larry can be
expressed as shown on the left. The individual haz-
ards are determined by whether the subject was a
smoker or nonsmoker.

The individual level hazards play an analogous
role toward the construction of the Cox likeli-
hood as the number of tickets held by each subject
plays for the calculation of the probabilities in the
lottery scenario discussed earlier in this section.
The subjects who smoke are analogous to persons
given extra lottery tickets, thereby affecting the
probability of a particular order of events.

Cox Likelihood

L =
[

h0(t)eβ1

h0(t)eβ1 + h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)eβ1

h0(t)eβ1

]
Likelihood is product of 3 terms
L = L1 × L2 × L3

L1 =
[

h0(t)eβ1

h0(t)eβ1 + h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

L2 =
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

L3 =
[

h0(t)eβ1

h0(t)eβ1

]

On the left is the Cox likelihood for these data.
Notice the likelihood is a product of three terms,
which correspond to the three event times. Barry
got the event first at TIME = 2 years. At that time
all four subjects were at risk for the event. The
first product (L1) has the sum of the four subjects’
hazards in the denominator and Barry’s hazard in
the numerator. Gary got the event next at 3 years
when Gary, Harry, and Larry were still in the
risk set. Consequently, the second product (L2) has
the sum of the three hazards for the subjects still
at risk in the denominator and Gary’s hazard in
the numerator. Harry was censored at 5 years,
which occurred between the second and third
event. Therefore, when Larry got the final event
at 8 years, nobody else was at risk for the event.
As a result, the third product (L3) just has Larry’s
hazard in the denominator and the numerator.
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t1, time = 2, four at risk (L1)
t2, time = 3, three at risk (L2)
t3, time = 8, one at risk (L3)

For each term:

Numerator—single hazard
Denominator—sum of hazards

To summarize, the likelihood in our example con-
sists of a product of three terms (L1, L2, and L3)
corresponding to the ordered failure times (t1, t2,
and t3). The denominator for the term correspond-
ing to time tj ( j = 1, 2, 3) is the sum of the hazards
for those subjects still at risk at time tj, and the
numerator is the hazard for the subject who got
the event at tj.

Baseline hazard, h0(t) cancels

L =
[

eβ1

eβ1 + e0 + e0 + eβ1

]
×

[
e0

e0 + e0 + eβ1

]
×

[
eβ1

eβ1

]
Thus, L does not depend on h0(t)

A key property of the Cox likelihood is that the
baseline hazard cancels out in each term. Thus,
the form of the baseline hazard need not be spec-
ified in a Cox model, as it plays no role in the esti-
mation of the regression parameters. By factoring
h0(t) in the denominator and then canceling it out
of each term, the likelihood for Barry, Gary, and
Larry can be rewritten as shown on the left.

Data A

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

Data B

ID TIME STATUS SMOKE

Barry 1 1 1
Gary 7 1 0
Harry 8 0 0
Larry 63 1 1

Comparing datasets

� TIME variable differs� Order of events the same� Cox PH likelihood the same

As we mentioned earlier, the Cox likelihood is de-
termined by the order of events and censorships
and not by the distribution of the outcome vari-
able. To illustrate this point, compare datasets
A and B on the left, and consider the likelihood
for a Cox PH model with smoking status as the
only predictor. Although the values for the variable
TIME differ in the two datasets, the Cox likelihood
will be the same using either dataset because the
order of the outcome (TIME) remains unchanged.
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General Approach

� K failure times� Likelihood a product of K
terms� Construction of each term
similar to Barry, Gary, and
Larry

L = L1 × L2 × L3 × · · · × Lk

=
k∏

j=1

L j

We have used a small dataset (four observations
with three failure times) for ease of illustration.
However, the approach can be generalized. Con-
sider a dataset with k failure times and let Lj
denote the contribution to the likelihood corre-
sponding to the jth failure time. Then the Cox like-
lihood can be formulated as a product of each of
the k terms as shown on the left. Each of the terms
Lj is constructed in a similar manner as with the
data for Gary, Larry, and Barry.

Obtaining maximum likelihood
estimates

Solve system of equations

∂ ln L
∂βi

= 0, i = 1, 2, 3, . . . , p

p = # of parameters

Once the likelihood is formulated, the question be-
comes: which values of the regression parameters
would maximize L? The process of maximizing the
likelihood is typically carried out by setting the
partial derivative of the natural log of L to zero
and then solving the system of equations (called
the score equations).

IX. Summary

1. Review: S(t), h(t), data layout,
etc.

In this section we briefly summarize the content
covered in this presentation.

2. Computer example of Cox model:� estimate HR� test hypothesis about HR� obtain confidence intervals

3. Cox model formula:

h(t,X) = h0(t)e

p∑
i=1

βi Xi

� We began with a computer example that uses
the Cox PH model. We showed how to use
the output to estimate the HR, and how to
test hypotheses and obtain confidence inter-
vals about the hazard ratio.� We then provided the formula for the hazard
function for the Cox PH model and described
basic features of this model. The most impor-
tant feature is that the model contains two
components, namely, a baseline hazard func-
tion of time and an exponential function in-
volving X ’s but not time.

4. Why popular: Cox PH model is
“robust”

� We discussed reasons why the Cox model is
popular, the primary reason being that the
model is “robust” for many different survival
analysis situations.
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5. ML estimation: maximize a
partial likelihood
L = joint probability of
observed data = L(β)

6. Hazard ratio formula:

ĤR = exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]

7. Adjusted survival curves: 0 or 1
Comparing E groups: ↗

Ŝ(t,X) = [Ŝ0(t)]
exp[β̂1 E+∑

i �=1
β̂i X i ]

Single curve:

Ŝ(t,X) = [Ŝ0(t)]exp[
∑

β̂i X i ]

8. PH assumption:

ĥ (t,X∗)

ĥ (t,X)
= θ̂ (a constant over t)

i.e., ĥ (t, X∗) = θ̂ĥ (t,X)
Hazards cross ⇒ PH not met

9. Cox PH likelihood

� We then discussed ML estimation of the pa-
rameters in the Cox model, and pointed out
that the ML procedure maximizes a “partial”
likelihood that focuses on probabilities at fail-
ure times only.� Next, we gave a general formula for estimat-
ing a hazard ratio that compared two speci-
fications of the X ’s, defined as X∗ and X. We
illustrated the use of this formula when com-
paring two exposure groups adjusted for other
variables.� We then defined an adjusted survival curve
and presented formulas for adjusted curves
comparing two groups adjusted for other vari-
ables in the model and a formula for a single
adjusted curve that adjusts for all X ’s in the
model. Computer packages for these formulae
use the mean value of each X being adjusted
in the computation of the adjusted curve.

� We described the PH assumption as meaning
that the hazard ratio is constant over time, or
equivalently that the hazard for one individual
is proportional to the hazard for any other in-
dividual, where the proportionality constant is
independent of time. We also showed that for
study situations in which the hazards cross,
the PH assumption is not met.

� Finally, we describe how the Cox likelihood is
developed using the ordered failure times from
the data.

Chapters

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

�

�

�

�
4. Evaluating the Proportional

Hazards Assumption
5. The Stratified Cox Procedure
6. Extension of the Cox

Proportional Hazards Model for
Time-Dependent Variables

This presentation is now complete. We recom-
mend that the reader review the detailed outline
that follows and then do the practice exercises and
test.

The next Chapter (4) describes how to evaluate the
PH assumption. Chapters 5 and 6 describe meth-
ods for carrying out the analysis when the PH as-
sumption is not met.
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Detailed
Outline

I. A computer example using the Cox PH model
(pages 86–94)
A. Printout shown for three models involving

leukemia remission data.
B. Three explanatory variables of interest: treatment

status, log WBC, and product term; outcome is
time until subject goes out of remission.

C. Discussion of how to evaluate which model is best.
D. Similarity to classical regression and logistic

regression.
II. The formula for the Cox PH model (pages 94–96)

A. h(t, X) = h0(t) exp
[ p∑

i=1
βi Xi

]
B. h0(t) is called the baseline hazard function.
C. X denotes a collection of p explanatory variables

X1, X2, . . . , X p.
D. The model is semiparametric because h0(t) is

unspecified.
E. Examples of the Cox model using the leukemia

remission data.
F. Survival curves can be derived from the Cox PH

model.
III. Why the Cox PH model is popular (pages 96–98)

A. Can get an estimate of effect (the hazard ratio)
without needing to know h0(t).

B. Can estimate h0(t), h(t,X), and survivor functions,
even though h0(t) is not specified.

C. The e part of the formula is used to ensure that the
fitted hazard is nonnegative.

D. The Cox model is “robust”: it usually fits the data
well no matter which parametric model is
appropriate.

IV. ML estimation of the Cox PH model (pages 98–100)

A. Likelihood function is maximized.
B. L is called a partial likelihood, because it uses

survival time information only on failures, and
does not use censored information explicitly.

C. L makes use of the risk set at each time that a
subject fails.

D. Inferences are made using standard large sample
ML techniques, e.g., Wald or likelihood ratio tests
and large sample confidence intervals based on
asymptotic normality assumptions



118 3. The Cox Proportional Hazards Model and Its Characteristics

V. Computing the hazard ratio (pages 100–103)
A. Formula for hazard ratio comparing two

individuals, X∗ = (X ∗
1, X ∗

2, . . . , X ∗
p) and

X = (X1, X2, . . . , X p):

h(t, X∗)
h(t,X)

= exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
B. Examples are given using a (0,1) exposure variable,

potential confounders, and potential effect
modifiers.

C. Typical coding identifies X∗ as the group with the
larger hazard and X as the group with the smaller
hazard, e.g., X ∗

1 = 1 for unexposed group and
X1 = 0 for exposed group.

VI. Adjusted survival curves using the Cox PH model
(pages 103–107)
A. Survival curve formula can be obtained from

hazard ratio formula:

S(t, X) = [S0(t)]exp[
∑

βi Xi ]

where S0(t) is the baseline survival function that
corresponds to the baseline hazard function h0(t).

B. To graph S(t,X), must specify values for
X = (X1, X2, . . . , X p).

C. To obtain “adjusted” survival curves, usually use
overall mean values for the X ’s being adjusted.

D. Examples of “adjusted” S(t, X) using leukemia
remission data.

VII. The meaning of the PH assumption (pages 107–111)
A. Hazard ratio formula shows that hazard ratio is

independent of time:

h(t, X∗)
h(t, X)

= θ

B. Baseline hazard function not involved in the HR
formula.

C. Hazard ratio for two X’s are proportional:
h(t, X∗) = θ h(t, X)

D. An example when the PH assumption is not
satisfied: hazards cross

VIII. Cox likelihood (pages 111–115)
A. Lottery Example
B. Likelihood based on order of events

IX. Summary (pages 115–116)
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Practice
Exercises

1. In a 10-year follow-up study conducted in Evans County,
Georgia, involving persons 60 years or older, one research
question concerned evaluating the relationship of social sup-
port to mortality status. A Cox proportional hazards model
was fit to describe the relationship of a measure of social
network to time until death. The social network index was
denoted as SNI, and took on integer values between 0 (poor
social network) to 5 (excellent social network). Variables to
be considered for control in the analysis as either potential
confounders or potential effect modifiers were AGE (treated
continuously), RACE (0,1), and SEX (0,1).

a. State an initial PH model that can be used to assess the
relationship of interest, which considers the potential
confounding and interaction effects of the AGE, RACE,
and SEX (assume no higher than two-factor products
involving SNI with AGE, RACE, and SEX).

b. For your model in part 1a, give an expression for the
hazard ratio that compares a person with SNI = 4 to a
person with SNI = 2 and the same values of the
covariates being controlled.

c. Describe how you would test for interaction using your
model in part 1a. In particular, state the null
hypothesis, the general form of your test statistic, with
its distribution and degrees of freedom under the null
hypothesis.

d. Assuming a revised model containing no interaction
terms, give an expression for a 95% interval estimate
for the adjusted hazard ratio comparing a person with
SNI = 4 to a person with SNI = 2 and the same values
of the covariates in your model.

e. For the no-interaction model described in part 1d, give
an expression (i.e., formula) for the estimated survival
curve for a person with SNI = 4, adjusted for AGE,
RACE, and SEX, where the adjustment uses the overall
mean value for each of the three covariates.

f. Using the no-interaction model described in part 1d, if
the estimated survival curves for persons with SNI = 4
and SNI = 2 adjusted for (mean) AGE, RACE, and SEX
are plotted over time, will these two estimated survival
curves cross? Explain briefly.
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2. For this question, we consider the survival data for 137 pa-
tients from the Veteran’s Administration Lung Cancer Trial
cited by Kalbfleisch and Prentice in their book (The Statis-
tical Analysis of Survival Time Data, Wiley, 1980). The vari-
ables in this dataset are listed as follows:

Variable# Variable name Coding

1 Treatment Standard = 1, test = 2
Four 2 Cell type 1 Large = 1, other = 0
indicator 3 Cell type 2 Adeno = 1, other = 0

⎧⎪⎨⎪⎩variables 4 Cell type 3 Small = 1, other = 0
for cell type 5 Cell type 4 Squamous = 1, other = 0

6 Survival time (Days) integer counts
7 Performance 0 = worst, . . . , 100 = best

status
8 Disease (Months) integer counts

duration
9 Age (Years) integer counts

10 Prior therapy None = 0, some = 10
11 Status 0 = censored, 1 = died

For these data, a Cox PH model was fitted yielding the fol-
lowing edited computer results:

Response: survival time

Variable
name Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. interval]

1 Treatment 0.290 0.207 0.162 1.336 0.890 2.006
3 Adeno cell 0.789 0.303 0.009 2.200 1.216 3.982
4 Small cell 0.457 0.266 0.086 1.579 0.937 2.661
5 Squamous cell −0.400 0.283 0.157 0.671 0.385 1.167
7 Perf. status −0.033 0.006 0.000 0.968 0.958 0.978
8 Disease dur. 0.000 0.009 0.992 1.000 0.982 1.018
9 Age −0.009 0.009 0.358 0.991 0.974 1.010

10 Prior therapy 0.007 0.023 0.755 1.007 0.962 1.054

Log likelihood = −475.180

a. State the Cox PH model used to obtain the above
computer results.

b. Using the printout above, what is the hazard ratio that
compares persons with adeno cell type with persons
with large cell type? Explain your answer using the
general hazard ratio formula for the Cox PH model.
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c. Using the printout above, what is the hazard ratio that
compares persons with adeno cell type with persons
with squamous cell type? Explain your answer using
the general hazard ratio formula for the Cox PH
model.

d. Based on the computer results, is there an effect of
treatment on survival time? Explain briefly.

e. Give an expression for the estimated survival curve for
a person who was given the test treatment and who
had a squamous cell type, where the variables to be
adjusted are performance status, disease duration,
age, and prior therapy.

f. Suppose a revised Cox model is used which contains,
in addition to the variables already included, the
product terms: treatment × performance status;
treatment × disease duration; treatment × age; and
treatment × prior therapy. For this revised model, give
an expression for the hazard ratio for the effect of
treatment, adjusted for the other variables in the
model.

3. The data for this question contain survival times of 65
multiple myeloma patients (references: SPIDA manual,
Sydney, Australia, 1991; and Krall et al., “A Step-up
Procedure for Selecting Variables Associated with Survival
Data,” Biometrics, vol. 31, pp. 49–57, 1975). A partial list of
the variables in the dataset is given below:

Variable 1: observation number
Variable 2: survival time (in months) from time of

diagnosis
Variable 3: survival status (0 = alive, 1 = dead)
Variable 4: platelets at diagnosis (0 = abnormal,

1 = normal)
Variable 5: age at diagnosis (years)
Variable 6: sex (1 = male, 2 = female)
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Below, we provide edited computer results for several
different Cox models that were fit to this dataset. A number
of questions will be asked about these results.

Model 1:
Variable Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Platelets 0.470 2.854 .869 1.600 0.006 429.689
Age 0.000 0.037 .998 1.000 0.930 1.075
Sex 0.183 0.725 .801 1.200 0.290 4.969
Platelets × age −0.008 0.041 .850 0.992 0.915 1.075
Platelets × sex −0.503 0.804 .532 0.605 0.125 2.924

Log likelihood = −153.040
Model 2:
Platelets −0.725 0.401 .071 0.484 0.221 1.063
Age −0.005 0.016 .740 0.995 0.965 1.026
Sex −0.221 0.311 .478 0.802 0.436 1.476

Log likelihood = −153.253
Model 3:
Platelets −0.706 0.401 .078 0.493 0.225 1.083
Age −0.003 0.015 .828 0.997 0.967 1.027

Log likelihood = −153.509
Model 4:
Platelets −0.705 0.397 .076 0.494 0.227 1.075
Sex −0.204 0.307 .506 0.815 0.447 1.489

Log likelihood = −153.308
Model 5:
Platelets −0.694 0.397 .080 0.500 0.230 1.088

Log likelihood = −153.533
a. For model 1, give an expression for the hazard ratio

for the effect of the platelet variable adjusted for age
and sex.

b. Using your answer to part 3a, compute the estimated
hazard ratio for a 40-year-old male. Also compute the
estimated hazard ratio for a 50-year-old female.

c. Carry out an appropriate test of hypothesis to evaluate
whether there is any significant interaction in model 1.
What is your conclusion?

d. Considering models 2–5, evaluate whether age and sex
need to be controlled as confounders?

e. Which of the five models do you think is the best
model and why?

f. Based on your answer to part 3e, summarize the
results that describe the effect of the platelet variable
on survival adjusted for age and sex.
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Test 1. Consider a hypothetical two-year study to investigate
the effect of a passive smoking intervention program
on the incidence of upper respiratory infection (URI) in
newborn infants. The study design involves the random
allocation of one of three intervention packages (A, B, C)
to all healthy newborn infants in Orange County, North
Carolina, during 1985. These infants are followed for two
years to determine whether or not URI develops. The
variables of interest for using a survival analysis on these
data are:

T = time (in weeks) until URI is detected or time until
censored

s = censorship status (= 1 if URI is detected, = 0 if
censored)

PS = passive smoking index of family during the week of
birth of the infant

DC = daycare status (= 1 if outside daycare, = 0 if only
daycare is in home)

BF = breastfeeding status (= 1 if infant is breastfed, = 0
if infant is not breastfed)

T1 = first dummy variable for intervention status (= 1 if
A, = 0 if B, = −1 if C)

T2 = second dummy variable for intervention status (= 1
if B, = 0 if A, = −1 if C).

a. State the Cox PH model that would describe the
relationship between intervention package and survival
time, controlling for PS, DC, and BF as confounders
and effect modifiers. In defining your model, use only
two factor product terms involving exposure (i.e.,
intervention) variables multiplied by control variables
in your model.

b. Assuming that the Cox PH model is appropriate, give a
formula for the hazard ratio that compares a person in
intervention group A with a person in intervention
group C, adjusting for PS, DC, and BF, and assuming
interaction effects.

c. Assuming that the PH model in part 1a is appropriate,
describe how you would carry out a chunk test for
interaction; i.e., state the null hypothesis, describe the
test statistic and give the distribution of the test
statistic and its degrees of freedom under the null
hypothesis.
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d. Assuming no interaction effects, how would you test
whether packages A, B, and C are equally effective,
after controlling for PS, DC, and BF in a Cox PH model
without interaction terms (i.e., state the two models
being compared, the null hypothesis, the test statistic,
and the distribution of the test statistic under the null
hypothesis).

e. For the no-interaction model considered in parts 1c
and 1d, give an expression for the estimated survival
curves for the effect of intervention A adjusted for PS,
DC, and BF. Also, give similar (but different)
expressions for the adjusted survival curves for
interventions B and C.

2. The data for this question consists of a sample of 50 per-
sons from the 1967–1980 Evans County Study. There are
two basic independent variables of interest: AGE and
chronic disease status (CHR), where CHR is coded as
0 = none, 1 = chronic disease. A product term of the form
AGE × CHR is also considered. The dependent variable
is time until death, and the event is death. The primary
question of interest concerns whether CHR, considered
as the exposure variable, is related to survival time, con-
trolling for AGE. The edited output of computer results
for this question is given as follows:

Model 1:
Variable Coef. Std. Err. Chi-sq p > |z|
CHR 0.8595 0.3116 7.61 .0058

Log likelihood = −142.87

Model 2:
CHR 0.8051 0.3252 6.13 .0133
AGE 0.0856 0.0193 19.63 .0000

Log likelihood = −132.45

Model 3:
CHR 1.0009 2.2556 0.20 .6572
AGE 0.0874 0.0276 10.01 .0016
CHR × AGE −0.0030 0.0345 0.01 .9301

Log likelihood = −132.35
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a. State the Cox PH model that allows for main effects of
CHR and AGE as well as the interaction effect of CHR
with AGE.

b. Carry out the test for significant interaction; i.e., state
the null hypothesis, the test statistic, and its
distribution under the null hypothesis. What are your
conclusions about interaction?

c. Assuming no interaction, should AGE be controlled?
Explain your answer on the basis of confounding
and/or precision considerations.

d. If, when considering plots of various hazard functions
over time, the hazard function for persons with
CHR = 1 crosses the hazard function for persons with
CHR = 0, what does this indicate about the use of any
of the three models provided in the printout?

e. Using model 2, give an expression for the estimated
survival curve for persons with CHR = 1, adjusted for
AGE. Also, give an expression for the estimated survival
curve for persons with CHR = 0, adjusted for AGE.

f. What is your overall conclusion about the effect of
CHR on survival time based on the computer results
provided from this study?

3. The data for this question contain remission times of
42 multiple leukemia patients in a clinical trial of a new
treatment. The variables in the dataset are given below:

Variable 1: survival time (in weeks)
Variable 2: status (1 = in remission, 0 = relapse)
Variable 3: sex (1 = female, 0 = male)
Variable 4: log WBC
Variable 5: Rx status (1 = placebo, 0 = treatment)
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Below, we provide computer results for several different
Cox models that were fit to this dataset. A number of ques-
tions will be asked about these results starting below.

Model 1:
Variable Coef. Std. Err. p > |z| Haz. Ratio [95% Conf.Interval]

Rx 0.894 1.815 .622 2.446 0.070 85.812
Sex −1.012 0.752 .178 0.363 0.083 1.585
log WBC 1.693 0.441 .000 5.437 2.292 12.897
Rx × Sex 1.952 0.907 .031 7.046 1.191 41.702
Rx × log WBC −0.151 0.531 .776 0.860 0.304 2.433

Log likelihood = −69.515
Model 2:
Rx 0.405 0.561 .470 1.500 0.499 4.507
Sex −1.070 0.725 .140 0.343 0.083 1.422
log WBC 1.610 0.332 .000 5.004 2.610 9.592
Rx × Sex 2.013 0.883 .023 7.483 1.325 42.261

Log likelihood = −69.555
Model 3:
Rx 0.587 0.542 .279 1.798 0.621 5.202
Sex −1.073 0.701 .126 0.342 0.087 1.353
Rx × Sex 1.906 0.815 .019 6.726 1.362 33.213

Log likelihood = −83.475
Model 4:
Rx 1.391 0.457 .002 4.018 1.642 9.834
Sex 0.263 0.449 .558 1.301 0.539 3.139
log WBC 1.594 0.330 .000 4.922 2.578 9.397

Log likelihood = −72.109

a. Use the above computer results to carry out a chunk
test to evaluate whether the two interaction terms in
model 1 are significant. What are your conclusions?

b. Evaluate whether you would prefer model 1 or
model 2. Explain your answer.

c. Using model 2, give an expression for the hazard ratio
for the effect of the Rx variable adjusted for SEX and
log WBC.

d. Using your answer in part 3c, compute the hazard ratio
for the effect of Rx for males and for females separately.

e. By considering the potential confounding of log WBC,
determine which of models 2 and 3 you prefer. Explain.

f. Of the models provided which model do you consider
to be best? Explain.
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Answers to
Practice
Exercises

1. a. h(t,X) = h0(t) exp [β1 SNI + β2 AGE + β3 RACE
+ β4 SEX + β5 SNI × AGE + β6 SNI × RACE
+ β7 SNI × SEX]

b. HR = exp [2β1 +2(AGE)β5 +2(RACE)β6 +2(SEX)β7]
c. H0: β5 = β6 = β7 = 0

Likelihood ratio test statistic: −2 ln L R − (−2 ln L F ),
which is approximately χ2

3 under H0, where R
denotes the reduced model (containing no product
terms) under H0, and F denotes the full model (given
in part 1a above).

d. 95% CI for adjusted HR:

exp
[

2β̂1 ± 1.96 × 2
√

var(β̂1)
]

e. Ŝ(t,X) = [
Ŝ0(t)

]exp[4β̂1+(AGE)β̂2+(RACE)β̂3+(SEX)β̂4]

f. The two survival curves will not cross, because both
are computed using the same proportional hazards
model, which has the property that the hazard
functions, as well as their corresponding estimated
survivor functions, will not cross.

2. a. h(t,X) = h0(t) exp [β1 X1 + β3 X3 + β4 X4 + β5 X5

+ β7 X7 + . . . + β10 X10]
b. Adeno cell type: X∗ = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Large cell type: X = (treatment, 0, 0, 0, perfstat,
disdur, age, prther)

HR = h(t,X∗)
h(t,X)

= exp

[
p∑

i=1

βi (X
∗
i − Xi )

]
= exp [0 + β̂3(1 − 0) + β̂4(0 − 0)

+ β̂5(0 − 0) + 0 + · · · + 0]

= exp [β̂3] = exp [0.789] = 2.20
c. Adeno cell type: X∗ = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Squamous cell type: X = (treatment, 0, 0, 1, perfstat,
disdur, age, prther)

HR = h(t,X∗)
h(t,X)

= exp

[
p∑

i=1

βi (X
∗
i − Xi )

]
= exp [0 + β̂3(1 − 0) + β̂4(0 − 0)

+ β̂5(0 − 1) + 0 + · · · + 0]

= exp [β̂3 − β̂5] = exp[0.789

− (−0.400)] = exp [1.189] = 3.28
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d. There does not appear to be an effect of treatment on
survival time, adjusted for the other variables in the
model. The hazard ratio is 1.3, which is close to the
null value of one, the p-value of 0.162 for the Wald
test for treatment is not significant, and the 95%
confidence interval for the treatment effect
correspondingly includes the null value.

e. Ŝ(t,X)
= [Ŝ0(t)]exp[2β̂1+β̂5+(perfstat)β̂7+(disdur)β̂8+(age)β̂9+(prther)β̂10]

f. HR = h(t, X∗)
h(t,X)

= exp[β1 + (perfstat)β11 + (disdur)β12

+ (age)β13 + (prther)β14]
where β1 is the coefficient of the treatment variable
and β11, β12, β13, and β14 are the coefficients of
product terms involving treatment with the four
variables indicated.

3. a. ĤR = exp[0.470 + (−0.008)age + (−0.503)sex]
b. 40-year-old male:

ĤR = exp[0.470 + (−0.008)40 + (−0.503)1] = 0.70

50-year-old Female:
ĤR = exp[0.470 + (−0.008)50 + (−0.503)2] = 0.39

c. The LR (chunk) test for the significance of both
interaction terms simultaneously yields the following
likelihood ratio statistic which compares models 1
and 2:

LR = [(−2 × −153.253) − (−2 × −153.040)]
= 306.506 − 306.080 = 0.426

This statistic is approximately chi-square with
2 degrees of freedom under the null hypothesis of no
interaction. This LR statistic is highly nonsignificant.
Thus, we conclude that there is no significant
interaction in the model (1).

d. The gold-standard hazard ratio is 0.484, which is
obtained for model 2. Note that model 2 contains no
interaction terms and controls for both covariates of
interest. When either age or sex or both are dropped
from the model, the hazard ratio (for platelets) does
not change appreciably. Therefore, it appears that
neither age nor sex need to be controlled for
confounding.
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e. Models 2–5 are all more or less equivalent, since they
all give essentially the same hazards ratio and
confidence interval for the effect of the platelet
variable. A political choice for best model would be
the gold-standard model (2), because the critical
reviewer can see both age and sex being controlled in
model 2.

f. � The point estimate of the hazard ratio for
normal versus abnormal platelet count is
0.484 = 1/2.07, so that the hazard for an
abnormal count is twice that for a normal
count.� There is a borderline significant effect of
platelet count on survival adjusted for age
and sex (P = .071).� The 95% CI for the hazard ratio is given by
0.221 < HR < 1.063, which is quite wide and
therefore shows a very imprecise estimate.
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Introduction We begin with a brief review of the characteristics of the Cox
proportional hazards (PH) model. We then give an overview
of three methods for checking the PH assumption: graphi-
cal, goodness-of-fit (GOF), and time-dependent variable ap-
proaches.

We then focus on each of the above approaches, starting with
graphical methods. The most popular graphical approach in-
volves the use of “log–log” survival curves. A second graphical
approach involves the comparison of “observed” with “ex-
pected” survival curves.

The GOF approach uses a test statistic or equivalent p-value
to assess the significance of the PH assumption. We illustrate
this test and describe some of its advantages and drawbacks.

Finally, we discuss the use of time-dependent variables in an
extended Cox model as a third method for checking the PH
assumption. A more detailed description of the use of time-
dependent variables is provided in Chapter 6.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Background (pages 134–135)
II. Checking the PH assumption: Overview

(pages 135–137)
III. Graphical approach 1: log–log plots

(pages 137–145)
IV. Graphical approach 2: observed versus expected

plots (pages 145–150)
V. The goodness-of-fit (GOF) testing approach

(pages 151–153)
VI. Assessing the PH assumption using

time-dependent covariates (pages 153–157)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize three general approaches for evaluating
the PH assumption.

2. Summarize how log–log survival curves may be used to
assess the PH assumption.

3. Summarize how observed versus expected plots may be
used to assess the PH assumption.

4. Summarize how GOF tests may be used to assess the PH
assumption.

5. Summarize how time-dependent variables may be used
to assess the PH assumption.

6. Describe—given survival data or computer output from a
survival analysis that uses a Cox PH model—how to assess
the PH assumption for one or more variables in the model
using:
a. a graphical approach
b. the GOF approach
c. an extended Cox model with time-dependent

covariates
7. State the formula for an extended Cox model that pro-

vides a method for checking the PH assumption for one
or more of the time-independent variables in the model,
given survival analysis data or computer output that uses
a Cox PH model.
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Presentation

FOCUS

Evaluating PH:
• graphical
• goodness-of-fit
• time-dependent
   variables

This presentation describes three approaches for
evaluating the proportional hazards (PH) assump-
tion of the Cox model—a graphical procedure, a
goodness-of-fit testing procedure, and a procedure
that involves the use of time-dependent variables.

I. Background Recall from the previous chapter that the general
form of the Cox PH model gives an expression for
the hazard at time t for an individual with a given
specification of a set of explanatory variables de-
noted by the bold X.

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard func-
tion. The second quantity is the exponential ex-
pression e to the linear sum of βi Xi , where the
sum is over the p explanatory X variables.

Cox PH model:

h(t,X) = h0(t)e

p∑
i=1

βi Xi

X = (X1, X2, . . . , X p) explanatory/
predictor variables

h0(t) × e

p∑
i=1

βi Xi

Baseline hazard Exponential

Involves t but Involves X ’s but
not X ’s not t (X ’s are time-

independent)

An important feature of this formula, which con-
cerns the proportional hazards (PH) assumption,
is that the baseline hazard is a function of t, but
does not involve the X ’s, whereas the exponential
expression involves the X ’s, but does not involve t.
The X ’s here are called time-independent X ’s.

X’s involving t: time-dependent

Requires extended Cox model
(no PH) ↑

Chapter 6

It is possible, nevertheless, to consider X ’s that
do involve t. Such X ’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion, and is called the extended Cox model. We
will discuss this extended Cox model in Chapter 6
of this series.
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Hazard ratio formula:

ĤR = exp
[ p∑

i=1
β̂i

(
X ∗

i − Xi
) ]

where X∗ = (
X ∗

1, X ∗
2, . . . , X ∗

p

)
and X = (X1, X2, . . . , X p)
denote the two sets of X ’s.

From the Cox PH model, we can obtain a gen-
eral formula, shown here, for estimating a hazard
ratio that compares two specifications of the X ’s,
defined as X∗ and X.

Adjusted survival curves: 0 or 1
Comparing E groups: ↗

Ŝ(t,X) = [Ŝ0(t)]
exp[β1 E+∑

i �=1
β̂i X i ]

We can also obtain from the Cox model an expres-
sion for an adjusted survival curve. Here we show
a general formula for obtaining adjusted survival
curves comparing two groups adjusted for other
variables in the model. Below this, we give a for-
mula for a single adjusted survival curve that ad-
justs for all X ’s in the model. Computer packages
for these formulae use the mean value of each X
being adjusted in the computation of the adjusted
curve.

Single curve:

Ŝ(t,X)[Ŝ0(t)]exp[β̂i Xi ]

PH assumption:

ĥ (t,X∗)

ĥ (t,X)
= θ̂, constant over t

i.e., ĥ (t,X∗) = θ̂ĥ (t,X)

The Cox PH model assumes that the hazard ratio
comparing any two specifications of predictors is
constant over time. Equivalently, this means that
the hazard for one individual is proportional to the
hazard for any other individual, where the propor-
tionality constant is independent of time.

Hazards cross ⇒ PH not met

Hazards don’t cross ⇒\ PH met

The PH assumption is not met if the graph of
the hazards cross for two or more categories of a
predictor of interest. However, even if the hazard
functions do not cross, it is possible that the PH
assumption is not met. Thus, rather than check-
ing for crossing hazards, we must use other ap-
proaches to evaluate the reasonableness of the PH
assumption.

II. Checking the Proportional
Hazards Assumption:
Overview

There are three general approaches for assess-
ing the PH assumption, again listed here. We
now briefly overview each approach, starting with
graphical techniques.

Three approaches:
� graphical

�
�

�
	� goodness-of-fit test� time-dependent variables
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Graphical techniques:
−ln(−ln) S curves parallel?

−ln(−ln) Ŝ

Time

Females

Males

There are two types of graphical techniques avail-
able. The most popular of these involves compar-
ing estimated –ln(–ln) survivor curves over dif-
ferent (combinations of) categories of variables
being investigated. We will describe such curves
in detail in the next section. Parallel curves, say
comparing males with females, indicate that the
PH assumption is satisfied, as shown in this illus-
tration for the variable Sex.

Observed vs. predicted: Close?

S

Time

Predicted for males
(sex in model)

Observed for males

An alternative graphical approach is to compare
observed with predicted survivor curves. The ob-
served curves are derived for categories of the vari-
able being assessed, say, Sex, without putting this
variable in a PH model. The predicted curves are
derived with this variable included in a PH model.
If observed and predicted curves are close, then
the PH assumption is reasonable.

Goodness-of-fit (GOF) tests:

� Large sample Z or chi-square
statistics� Gives p-value for evaluating PH
assumption for each variable in
the model.

p-value large ⇒ PH satisfied
(e.g. P > 0.10)

p-value small ⇒ PH not satisfied
(e.g. P < 0.05)

A second approach for assessing the PH assump-
tion involves goodness-of-fit (GOF) tests. This ap-
proach provides large sample Z or chi-square
statistics which can be computed for each vari-
able in the model, adjusted for the other variables
in the model. A p-value derived from a standard
normal statistic is also given for each variable.
This p-value is used for evaluating the PH assump-
tion for that variable. A nonsignificant (i.e., large)
p-value, say greater than 0.10, suggest that the
PH assumption is reasonable, whereas a small
p-value, say less than 0.05, suggests that the vari-
able being tested does not satisfy this assumption.

Time-dependent covariates:

Extended Cox model:
Add product term involving some
function of time.

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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EXAMPLE

h(t, X) = h0(t) exp[β Sex + δ(Sex × t)]

δ ≠ 0 ⇒ PH assumption violated

For example, if the PH assumption is being as-
sessed for Sex, a Cox model might be extended to
include the variable “Sex × t” in addition to Sex. If
the coefficient of the product term turns out to be
significant, we can conclude that the PH assump-
tion is violated for Sex.

GOF provides test statistic
Graphical: subjective
Time-dependent: computationally

cumbersome
GOF: global, may not detect

specific departures from PH

The GOF approach provides a single test statis-
tic for each variable being assessed. This ap-
proach is not as subjective as the graphical ap-
proach nor as cumbersome computationally as
the time-dependent variable approach. Neverthe-
less, a GOF test may be too “global” in that it
may not detect specific departures from the PH
assumption that may be observed from the other
two approaches.

III. Graphical Approach 1:
Log–Log Plots

The two graphical approaches for checking the PH
assumption are comparing log–log survival curves
and comparing observed versus expected survival
curves. We first explain what a −ln −ln survival
curve is and how it is used.

� log–log survival curves� observed versus expected
survival curves

log – log Ŝ = transformation of Ŝ
= −ln(−ln Ŝ)

� ln Ŝ is negative ⇒ −(ln Ŝ) is
positive.� can’t take log of ln Ŝ, but can

take log of (−ln Ŝ).� −ln(−ln Ŝ) may be positive or
negative.

A log–log survival curve is simply a transforma-
tion of an estimated survival curve that results
from taking the natural log of an estimated sur-
vival probability twice. Mathematically, we write a
log–log curve as −ln(−ln Ŝ). Note that the log of a
probability such as Ŝ is always a negative number.
Because we can only take logs of positive num-
bers, we need to negate the first log before taking
the second log. The value for −ln(−ln Ŝ) may be
positive or negative, either of which is acceptable,
because we are not taking a third log.1

1An equivalent way to write −ln(−ln Ŝ) is −ln(
∫ t

0 h(u)du),
where

∫ t
0 h(u)du is called the “cumulative hazard” function.

This result follows from the formula S (t) = exp[− ∫ t
0 h(u)du],

which relates the survivor function to the hazard function (see
p. 14 in Chapter 1).
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t t

EXAMPLE

Ŝ

−∞

+∞

0
0

1

−0.327

0.484
0.25

0.54

−ln(−ln)Ŝ

As an example, in the graph at left, the estimated
survival probability of 0.54 is transformed to a log–
log value of 0.484. Similarly, the point 0.25 on the
survival curve is transformed to a −ln −ln value
of −0.327.

Note that because the survival curve is usually
plotted as a step function, so will the log–log curve
be plotted as a step function.

Ŝ = 0.54:   want −ln(−ln 0.54)
−ln(–ln 0.54) = −ln(0.616)

−ln(0.616) = 0.484
since ln(0.54) = −0.616

since ln(0.616) = −0.484
Thus, − ln(−ln 0.54) = 0.484

EXAMPLE To illustrate the computation of a log–log value,
suppose we start with an estimated survival prob-
ability of 0.54. Then the log–log transformation of
this value is −ln(−ln 0.54), which is −ln(0.616),
because ln(0.54) equals −0.616. Now, contin-
uing further, −ln(0.616) equals 0.484, because
ln(0.616) equals −0.484. Thus, the transformation
−ln(−ln 0.54) equals 0.484.

Ŝ = 0.25:   want −ln(−ln 0.25)

−ln(−ln 0.25) = −ln(1.386) = −0.327
Thus, −ln(–ln 0.25) = −0.327

ANOTHER EXAMPLE As another example, if the estimated survival
probability is 0.25, then −ln(−ln 0.25) equals
−ln(1.386), which equals −0.327.

y-axis scale:

1

0

∣∣∣∣∣
+∞

Ŝ

−∞

∣∣∣∣∣∣∣∣ −ln(−ln)Ŝ

Note that the scale of the y-axis of an estimated
survival curve ranges between 0 and 1, whereas the
corresponding scale for a −ln(−ln) curve ranges
between −∞ and +∞.

log–log Ŝ for the Cox PH model: We now show why the PH assumption can be as-
sessed by evaluating whether or not log–log curves
are parallel. To do this, we must first describe the
log–log formula for the Cox PH model.
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Cox PH hazard function:

h(t,X) = h0(t)e

p∑
j=1

β j X j

↓ From math

Cox PH survival function:

S(t,X) = [S0(t)]e

p∑
j=1

βj X j

↗
Baseline survival function.

We start with the formula for the survival curve
that corresponds to the hazard function for the
Cox PH model. Recall that there is a mathemati-
cal relationship between any hazard function and
its corresponding survival function. We therefore
can obtain the formula shown here for the sur-
vival curve for the Cox PH model. In this formula,
the expression S0(t) denotes the baseline survival
function that corresponds to the baseline hazard
function h0(t).

log–log ⇒ takes logs twice

log #1:

The log–log formula requires us to take logs of this
survival function twice. The first time we take logs
we get the expression shown here.

ln S(t,X) = e

p∑
i=1

βi Xi × ln S0(t)
0 ≤ S(t,X) ≤ 1

ln(probability) = negative value,
so ln S(t,X) and ln S0(t) are
negative.

But −ln S(t,X) is positive, which
allows us to take logs again.

Now since S(t,X) denotes a survival probability, its
value for any t and any specification of the vector
X will be some number between 0 and 1. It follows
that the natural log of any number between 0 and
1 is a negative number, so that the log of S(t, X) as
well as the log of S0(t) are both negative numbers.
This is why we have to put a minus sign in front of
this expression before we can take logs a second
time, because there is no such thing as the log of
a negative number.

log #2:

ln[−ln S(t, X)]

= ln

[
− e

p∑
i=1

βi Xi × ln S0(t)

]

= ln

[
e

p∑
i=1

βi Xi

]
+ ln[−ln S0(t)]

=
p∑

i=1

βi Xi + ln[−ln S0(t)]

Thus, when taking the second log, we must obtain
the log of −ln S(t,X), as shown here. After using
some algebra, this expression can be rewritten as
the sum of two terms, one of which is the linear
sum of the βi Xi and the other is the log of the
negative log of the baseline survival function.

−ln[−ln S(t,X)]

= −
p∑

i=1

βi Xi − ln[−ln S0(t)]

or
ln[−ln S(t, X)]

= +
p∑

i=1

βi Xi + ln[−ln S(t)]

This second log may be either positive or nega-
tive, and we aren’t taking any more logs, so we
actually don’t have to take a second negative. How-
ever, for consistency’s sake, a common practice is
to put a minus sign in front of the second log to ob-
tain the −ln −ln expression shown here. Neverthe-
less, some software packages do not use a second
minus sign.
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Two individuals:
X1 = (X11, X12, . . . , X1p)
X2 = (X21, X22, . . . , X2p)

Now suppose we consider two different specifica-
tions of the X vector, corresponding to two differ-
ent individuals, X1 and X2.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−ln[−ln S(t,X1)]

= −
p∑

i=1
βi X1i −ln[−ln S0(t)]

−ln[−ln S(t,X2)]

= −
p∑

i=1
βi X2i −ln[−ln S0(t)]

Then the corresponding log–log curves for these
individuals are given as shown here, where we
have simply substituted X1 and X2 for X in the
previous expression for the log–log curve for any
individual X.

−ln[−ln S(t,X1)]
− (−ln[−ln S(t, X2)])

=
p∑

i=1

βi (X2i − X1i )

does not involve t

Subtracting the second log–log curve from the first
yields the expression shown here. This expression
is a linear sum of the differences in corresponding
predictor values for the two individuals. Note that
the baseline survival function has dropped out, so
that the difference in log–log curves involves an
expression that does not involve time t.

−ln[−ln S(t,X1)]
= −ln[−ln S(t, X2)]

+
p∑

i=1
βi (X2i − X1i )

Alternatively, using algebra, we can write the
above equation by expressing the log–log survival
curve for individual X1 as the log–log curve for
individual X2 plus a linear sum term that is inde-
pendent of t.

t

X2

X1

−ln[−ln Ŝ]
∑βi(X2i − X1i)

The above formula says that if we use a Cox PH
model and we plot the estimated log–log survival
curves for individuals on the same graph, the two
plots would be approximately parallel. The dis-
tance between the two curves is the linear expres-
sion involving the differences in predictor values,
which does not involve time. Note, in general, if
the vertical distance between two curves is con-
stant, then the curves are parallel.

Graphical approach using log–log
plots: PH model is appropriate if
“empirical” plots of log–log survival
curves are parallel.

The parallelism of log–log survival plots for the
Cox PH model provides us with a graphical ap-
proach for assessing the PH assumption. That is,
if a PH model is appropriate for a given set of pre-
dictors, one should expect that empirical plots of
log–log survival curves for different individuals
will be approximately parallel.
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Empirical plots: use −ln[−ln Ŝ]
where

1. Ŝ is a KM curve
2. Ŝ is an adjusted survival curve

for predictors satisfying the PH
assumption; predictor being
assessed not included in model

By empirical plots, we mean plotting log–log sur-
vival curves based on Kaplan–Meier (KM) esti-
mates that do not assume an underlying Cox
model. Alternatively, one could plot log–log sur-
vival curves which have been adjusted for predic-
tors already assumed to satisfy the PH assumption
but have not included the predictor being assessed
in a PH model.

Clinical trial of leukemia patients:
T = weeks until patient goes out of
      remission

Predictors (X ’s):
Rx (= 1 if placebo, 0 if treatment)
log WBC

Cox PH model:

EXAMPLE

Assessing PH assumption:
compare log−log survival curves for
categories of Rx and log WBC

h(t,X) = h0(t)exp[β1Rx + β2log WBC]

One-at-a-time strategy: log WBC

Low
Medium

High

t

−ln−ln S

Placebo

Treatment

t

−ln−ln S

One-at-a-time strategy: Rx variable

ˆ

ˆ

As an example, suppose we consider the compari-
son of treatment and placebo groups in a clinical
trial of leukemia patients, where survival time is
time, in weeks, until a patient goes out of remis-
sion. Two predictors of interest in this study are
treatment group status (1 = placebo, 0 = treat-
ment), denoted as Rx, and log white blood cell
count (log WBC), where the latter variable is being
considered as a confounder.

A Cox PH model involving both these predictors
would have the form shown at the left. To assess
whether the PH assumption is satisfied for either
or both of these variables, we would need to com-
pare log–log survival curves involving categories
of these variables.

One strategy to take here is to consider the vari-
ables one at a time. For the Rx variable, this
amounts to plotting log–log KM curves for treat-
ment and placebo groups and assessing paral-
lelism. If the two curves are approximately par-
allel, as shown here, we would conclude that the
PH assumption is satisfied for the variable Rx. If
the two curves intersect or are not parallel in some
other way, we would conclude that the PH assump-
tion is not satisfied for this variable.

For the log WBC variable, we need to categorize
this variable into categories—say, low, medium,
and high—and then compare plots of log–log KM
curves for each of the three categories. In this il-
lustration, the three log–log Kaplan–Meier curves
are clearly nonparallel, indicating that the PH as-
sumption is not met for log WBC.
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3

2

1

0

−1

−2

−3
0 8 16 24 32

Remission data:
log–log KM curves by Rx

Treatment

Placebo

PH OK for Rx

EXAMPLE: Computer Results

4

2

0

−2

−4
0 8 16 24 32

Remission data: log–log 
KM curves by log WBC

Low

Medium

High PH OK for
log WBC

−2

−4
0 8 16 24 32

4

2

0

Remission data: log–log 
KM curves by Sex

PH not satisfied
for Sex

Females

Males

The above examples are sketches of some of the
possibilities that could occur from comparisons of
log–log curves. For the actual data set containing
42 leukemia patients, computer results are shown
here for each variable separately. Similar output
using Stata, SAS, and SPSS packages is provided
in the Computer Appendix.

We first show the log–log KM curves by treatment,
Rx. Notice that the two log–log curves are roughly
parallel, indicating that the Rx variable satisfies
the PH assumption when being considered by it-
self.

Here we show the log–log KM curves by log WBC,
where we have divided this variable into low (be-
low 2.3), medium (between 2.3 and 3), and high
(above 3) values. Notice that there is some indi-
cation of nonparallelism below 8 days, but that
overall the three curves are roughly parallel. Thus,
these plots suggest that the PH assumption is more
or less satisfied for the variable log WBC, when
considered alone.

As a third example, we consider the log–log KM
plots categorized by Sex from the remission data.
Notice that the two curves clearly intersect, and
are therefore noticeably nonparallel. Thus, the
variable, Sex, when considered by itself, does not
appear to satisfy the PH assumption and therefore
should not be incorporated directly into a Cox PH
model containing the other two variables, Rx and
log WBC.

Problems with log–log survival
curve approach:

How parallel is parallel?
Recommend:

� subjective decision� conservative strategy: assume
PH is OK unless strong evidence
of nonparallelism

The above examples suggest that there are some
problems associated with this graphical approach
for assessing the PH assumption. The main prob-
lem concerns how to decide “how parallel is par-
allel?” This decision can be quite subjective for a
given data set, particularly if the study size is rel-
atively small. We recommend that one should use
a conservative strategy for this decision by assum-
ing the PH assumption is satisfied unless there is
strong evidence of nonparallelism of the log–log
curves.
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How to categorize a continuous
variable?

� many categories ⇒ data “thins
out”� different categorizations may
give different graphical pictures

Another problem concerns how to categorize a
continuous variable like log WBC. If many cat-
egories are chosen, the data “thins out” in each
category, making it difficult to compare different
curves. [Also, one categorization into, say, three
groups may give a different graphical picture from
a different categorization into three groups.]

Recommend:

� small # of categories (2 or 3)� meaningful choice� reasonable balance (e.g.,
terciles)

In categorizing continuous variables, we recom-
mend that the number of categories be kept rea-
sonably small (e.g., two or three) if possible, and
that the choice of categories be as meaningful as
possible and also provide reasonable balance of
numbers (e.g., as when using terciles).

How to evaluate several variables si-
multaneously?

In addition to the two problems just described,
another problem with using log–log survival plots
concerns how to evaluate the PH assumption for
several variables simultaneously.

Strategy:

� categorize variables separately� form combinations of categories� compare log–log curves on same
graph

One strategy for simultaneous comparisons is to
categorize all variables separately, form combi-
nations of categories, and then compare log–log
curves for all combinations on the same graph.

Drawback:

� data “thins out”� difficult to identify variables
responsible for nonparallelism

A drawback of this strategy is that the data will
again tend to “thin out” as the number of com-
binations gets even moderately large. Also, even
if there are sufficient numbers for each combined
category, it is often difficult to determine which
variables are responsible for any nonparallelism
that might be found.

Remission Data

Low Medium High
log WBC

Rx

Treatment

Placebo

EXAMPLE As an example of this strategy, suppose we use the
remission data again and consider both Rx and
log WBC together. Because we previously had two
categories of Rx and three categories of log WBC,
we get a total of six combined categories, consist-
ing of treated subjects with low log WBC, placebo
subjects with low log WBC, treated subjects with
medium log WBC, and so on.
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EXAMPLE (continued)

Log–log KM curves by six combinations of 
Rx by log WBC 
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Plots suggest PH not satisfied. However, 
the study is small, i.e., plots are unreliable.

ˆ
The computer results are shown here for the log–
log curves corresponding to each of the six com-
binations of Rx with log WBC. Notice that there
are several points of intersection among the six
curves. Therefore, these results suggest that the
PH assumption is not satisfied when considering
Rx and log WBC together.

However, the sample sizes used to estimate these
curves are quite small, ranging between four sub-
jects for group 4 (Rx = 1, log WBC = low) to
twelve subjects for group 6 (Rx = 1, log WBC =
high), with the total study size being 42. Thus, for
this small study, the use of six log–log curves pro-
vides unreliable information for assessing the PH
assumption.

Alternative strategy:
Adjust for predictors already
satisfying PH assumption, i.e., use
adjusted log−log Ŝ curves

An alternative graphical strategy for considering
several predictors together is to assess the PH as-
sumption for one predictor adjusted for other pre-
dictors that are assumed to satisfy the PH assump-
tion. Rather than using Kaplan–Meier curves, this
involves a comparison of adjusted log–log survival
curves.

EXAMPLE
Remission data:
• compare Rx categories adjusted for log 
   WBC
• fit PH model for each Rx stratum
• obtain adjusted survival curves using
  overall mean of log WBC

Log–log Ŝ curves for Rx groups using PH 
model adjusted for log WBC
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0 8 16 24 32

Treatment

Placebo

As an example, again we consider the remission
data and the predictors Rx and log WBC. To as-
sess the PH assumption for Rx adjusted for log
WBC, we would compare adjusted log–log survival
curves for the two treatment categories, where
each adjusted curve is derived from a PH model
containing log WBC as a predictor. In computing
the adjusted survival curve, we need to stratify the
data by treatment, fit a PH model in each stratum,
and then obtain adjusted survival probabilities us-
ing the overall mean log WBC in the estimated sur-
vival curve formula for each stratum.

For the remission data example, the estimated
log–log survival curves for the two treatment
groups adjusted for log WBC are shown here. No-
tice that these two curves are roughly parallel, in-
dicating that the PH assumption is satisfied for
treatment.
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Log–log Ŝ curves for log WBC groups using
PH model adjusted for Rx
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(Rx = 0.5)

EXAMPLE (continued)

Remission data:
Assess PH assumption for Sex:
• use PH model containing Rx and log WBC
• use Rx and log WBC in survival
   probability formula

Log–log Ŝ curves for Sex adjusted for Rx and
log WBC
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6

7

0 8 16 24 32

Females

Males

As another example, we consider adjusted log–log
survival curves for three categories of log WBC, ad-
justed for the treatment status (Rx) variable. The
adjusted survival probabilities in this case use the
overall mean Rx score, i.e., 0.5, the proportion of
the 42 total subjects that are in the placebo group
(i.e., half the subjects have a score of Rx = 1).

The three log–log curves adjusted for treatment
status are shown here. Although two of these
curves intersect early in follow-up, they do not sug-
gest a strong departure from parallelism overall,
suggesting that the PH assumption is reasonable
for log WBC, after adjusting for treatment status.

As a third example, again using the remission data,
we assess the PH assumption for Sex, adjusting for
both treatment status and log WBC in the model.
This involves obtaining log–log survival curves for
males and females separately, using a PH model
that contains both treatment status and log WBC.
The adjustment uses the overall mean treatment
score and the overall mean log WBC score in the
formula for the estimated survival probability.

The estimated log–log survival curves for Sex, ad-
justed for treatment and log WBC are shown here.
These curves clearly cross, indicating that the PH
assumption is not satisfied for Sex, after adjusting
for treatment and log WBC.

1. log–log survival curves✓

2. observed versus expected
survival curves

We have thus described and illustrated one of the
two graphical approaches for checking the PH as-
sumption, that is, using log–log survival plots. In
the next section, we describe an alternative ap-
proach that compares “observed” with “expected”
survival curves.

IV. Graphical Approach 2:
Observed Versus
Expected Plots

The use of observed versus expected plots to as-
sess the PH assumption is the graphical analog of
the goodness-of-fit (GOF) testing approach to be
described later, and is therefore a reasonable alter-
native to the log–log survival curve approach.Graphical analog of GOF test
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Two strategies:

1. One-at-a-time: uses KM curves to
obtain observed plots

2. Adjusting for other variables:
uses stratified Cox PH model to
obtain observed plots (see
Chapter 5)

As with the log–log approach, the observed versus
expected approach may be carried out using ei-
ther or both of two strategies—(1) assessing the
PH assumption for variables one-at-a-time, or (2)
assessing the PH assumption after adjusting for
other variables. The strategy which adjusts for
other variables uses a stratified Cox PH model to
form observed plots, where the PH model contains
the variables to be adjusted and the stratified vari-
able is the predictor being assessed. The stratified
Cox procedure is described in Chapter 5.

Here, we describe only the one-at-a-time strat-
egy, which involves using KM curves to obtain ob-
served plots.

One-at-a-time:

� stratify data by categories of
predictor� obtain KM curves for each
category

Using the one-at-a-time strategy, we first must
stratify our data by categories of the predictor to
be assessed. We then obtain observed plots by de-
riving the KM curves separately for each category.
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Ŝ

Ŝ

KM (Observed) Plots by Rx Group

Weeks

Weeks

Expected Survival Plots by Rx Group
Using PH Model

h(t, X) = h0(t) e

Ŝ = [Ŝ0(t)]

EXAMPLE: Remission Data

exp[β̂,Rx]

β1Rx

As an example, for the remission data on 42
leukemia patients we have illustrated earlier, the
KM plots for the treatment and placebo groups,
with 21 subjects in each group, are shown here.
These are the “observed” plots.

To obtain “expected” plots, we fit a Cox PH model
containing the predictor being assessed. We ob-
tain expected plots by separately substituting the
value for each category of the predictor into the
formula for the estimated survival curve, thereby
obtaining a separate estimated survival curve for
each category.

As an example, again using the remission data, we
fit the Cox PH model with Rx as its only variable.
Using the corresponding survival curve formula
for this Cox model, as given in the box at the left,
we then obtain separate expected plots by substi-
tuting the values of 0 (for treatment group) and 1
(for placebo group). The expected plots are shown
here.
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Observed Versus Expected Plots by Rx

EXAMPLE (continued)

Ŝ
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Placebo
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Expected
Observed

To compare observed with expected plots we then
put both sets of plots on the same graph as shown
here.

If observed and expected plots are:

� close, complies with PH
assumption� discrepant, PH assumption
violated

If for each category of the predictor being as-
sessed, the observed and expected plots are “close”
to one another, we then can conclude that the PH
assumption is satisfied. If, however, one or more
categories show quite discrepant observed and ex-
pected plots, we conclude that the PH assumption
is violated.

EXAMPLE: Remission Data (continued)

Observed and expected plots are close
for each treatment group.

Conclude PH assumption not violated.

For the example shown above, observed and ex-
pected curves appear to be quite close for each
treatment group. Thus, we would conclude using
this graphical approach that the treatment vari-
able satisfies the PH assumption.

Drawback: How close is close?

Recommend: PH not satisfied only
when plots are strongly discrepant.

An obvious drawback to this graphical approach
is deciding “how close is close” when comparing
observed versus expected curves for a given cat-
egory. This is analogous to deciding “how par-
allel is parallel” when comparing log–log sur-
vival curves. Here, we recommend that the PH
assumption be considered as not satisfied only
when observed and expected plots are strongly
discrepant.
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Observed Versus Expected Plots by Sex

PH assumption not satisfied for Sex.

Same conclusion as with log–log curves.

EXAMPLE: Remission Data

Ŝ
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Females

Males

As another example, again using the remission
data, we consider observed versus expected plots
by Sex, as shown here. Note that the observed plots
for males and females, which are described by the
thicker lines, cross at about 12 weeks, whereas the
expected plots don’t actually intersect, with the fe-
male plot lying below the male plot throughout
follow-up. Moreover, for males and females sepa-
rately, the observed and expected plots are quite
different from one another.

Thus, the above plots suggest that the PH assump-
tion is not satisfied for the variable Sex. We came
to the same conclusion when using log–log sur-
vival curves, which crossed one another and were
therefore clearly nonparallel.

Continuous variable:

� form strata from categories� observed plots are KM curves
for each category

When using observed versus expected plots to as-
sess the PH assumption for a continuous variable,
observed plots are derived, as for categorical vari-
ables, by forming strata from categories of the con-
tinuous variable and then obtaining KM curves for
each category.

� two options for expected plots
1. Use PH model with k − 1

dummy variables Xi for k
categories, i.e.,

h(t,X) = h0(t) exp
( k−1∑

i=1

βi Xi

)
Obtain adjusted survival
curve:

Ŝ(t,Xc) = [Ŝ0(t)]exp(
∑

β̂i Xci )

where
Xc = (Xc1, Xc2, . . . , Xc,k−1)
gives values of dummy
variables for category c.

However, for continuous predictors, there are two
options available for computing expected plots.
One option is to use a Cox PH model which con-
tains k − 1 dummy variables to indicate k cate-
gories. The expected plot for a given category is
then obtained as an adjusted survival curve by sub-
stituting the values for the dummy variables that
define the given category into the formula for the
estimated survival curve, as shown here for cate-
gory c.
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Options for a continuous variable:

2. Use PH model:

h(t,X ) = h0(t) exp(βX )↖
Continuous

Obtain adjusted survival curve:

Ŝ(t,X c) = [Ŝ0(t)]exp(β̂X c)

where X c denotes the mean value
for the variable X within category
c.

The second option is to use a Cox PH model con-
taining the continuous predictor being assessed.
Expected plots are then obtained as adjusted sur-
vival curves by specifying predictor values that dis-
tinguish categories, as, for example, when using
mean predictor values for each category.

Observed (KM) Plots by log WBC Categories

EXAMPLE: Remission Data

Option 1:
h(t,X) = h0(t) exp(β1X1 + β2X2)

where X1 = {1  if high
0  if other

X2 = {1  if medium
0  if other

so that
high = (1, 0); medium = (0, 1); low = (0, 0)

Expected survival plots:
X1 = 1, X2 = 0: Ŝ(t, Xhigh) = [Ŝ0(t)]exp(β̂1)

X1 = 0, X2 = 1: Ŝ(t, Xmedium) = [Ŝ0(t)]exp(β̂2)

X1 = 0, X2 = 0: Ŝ(t, Xlow) = [Ŝ0(t)]

Ŝ
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As an example to illustrate both options, we con-
sider the continuous variable log WBC from the
remission data example. To assess the PH assump-
tion for this variable, we would first stratify log
WBC into, say, three categories—low, medium,
and high. The observed plots would then be ob-
tained as KM curves for each of the three strata,
as shown here.

Using option 1, expected plots would be obtained
by fitting a Cox PH model containing two dummy
variables X1 and X2, as shown here, where X1
takes the values 1 if high or 0 if other and X2 takes
the values 1 if medium or 0 if other. Thus, when log
WBC is high, the values of X1 and X2 are 1 and 0,
respectively; whereas when log WBC is medium,
the values are 0 and 1, respectively; and when log
WBC is low, the values are both 0.

The expected survival plots for high, medium, and
low categories are then obtained by substituting
each of the three specifications of X1 and X2 into
the formula for the estimated survival curve, and
then plotting the three curves.
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Option 2: Treat log WBC as continuous
h(t, X) = h0(t)exp[β(log WBC)]

log WBCmed = 2.64:

Ŝ(t, Xhigh) = [Ŝ0(t)]exp[3.83β̂]

log WBChigh = 3.83:

Ŝ(t, Xmed) = [Ŝ0(t)]exp[2.64β ̂]

log WBClow = 1.71:

Observed Versus Expected Plots Using 
Option 1

Expected Plots for log WBC Using 
Option 1 (Dummy Variables)

EXAMPLE (continued)
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Observed Versus Expected Plots for log
WBC Using Option 2

Ŝ(t, X
low

) = [Ŝ0(t)]exp[1.71β̂]

The expected plots using option 1 (the dummy
variable approach) are shown here for the three
categories of log WBC.

Here we put the observed and expected plots on
the same graph. Although there are some discrep-
ancies, particularly early in follow-up for the low
log WBC category, these plots suggest overall that
the PH assumption is satisfied for log WBC.

Using option 2, expected plots would be obtained
by first fitting a Cox PH model containing the con-
tinuous variable log WBC, as shown here.

Adjusted survival curves are then obtained for
specified values of log WBC that summarize the
three categories used to form observed curves.
Here, we find that the mean log WBC scores for
low, medium, and high categories are, respec-
tively, 1.71, 2.64, and 3.83. These values are sub-
stituted into the estimated survival curve formula
as shown here.

Here are the observed and expected plots us-
ing option 2. As with option 1, although there
are some discrepancies within categories, overall,
these plots suggest that the PH assumption is sat-
isfied for the log WBC variable.
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V. The Goodness of Fit (GOF)
Testing Approach

The GOF testing approach is appealing because it
provides a test statistic and p-value for assessing
the PH assumption for a given predictor of inter-
est. Thus, the researcher can make a more objec-
tive decision using a statistical test than is typically
possible when using either of the two graphical ap-
proaches described above.

Statistical test appealing

� Provides p-value� More objective decision than
when using graphical approach

Test of Harrel and Lee (1986)

� Variation of test of Schoenfeld� Uses Schoenfeld residuals

A number of different tests for assessing the PH as-
sumption have been proposed in the literature. We
present the test of Harrel and Lee (1986), a varia-
tion of a test originally proposed by Schoenfeld
(1982) and based on the residuals defined by
Schoenfeld, now called the Schoenfeld residuals.

Schoenfeld residuals defined for

� Each predictor in model� Every subject who has event

Consider Cox PH model

h(t) = h0(t) exp(β1RX
+β2log WBC + β3SEX)

3 predictors −→ 3 Schoenfeld
residuals for each
subject who has
event

For each predictor in the model, Schoenfeld resid-
uals are defined for every subject who has an event.
For example, consider a Cox PH model with three
predictors: RX, LOGWBC, and SEX. Then there
are three Schoenfeld residuals defined for each
subject who has an event, one for each of the three
predictors.

Schoenfeld residual for ith subject
for LOGWBC

Observed LOGWBC
– LOGWBC weighted average

Weights are other subjects’ hazard
(from subjects still at risk)

Suppose subject i has an event at time tj. Then
her Schoenfeld residual for LOGWBC is her ob-
served value of log white blood cell count minus a
weighted average of the log white blood cell counts
for the other subjects still at risk at time tj. The
weights are each subject’s hazard.

Underlying idea of test
If PH holds then Schoenfeld residu-
als uncorrelated with time

The idea behind the statistical test is that if the
PH assumption holds for a particular covariate
then the Schoenfeld residuals for that covari-
ate will not be related to survival time.
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Steps for test implementation

1. Obtain Schoenfeld residuals
2. Rank failure times
3. Test correlation of residuals to

ranked failure time H0: ρ = 0

The implementation of the test can be thought of
as a three-step process.

Step 1. Run a Cox PH model and obtain
Schoenfeld residuals for each predictor.
Step 2. Create a variable that ranks the order of
failures. The subject who has the first (earliest)
event gets a value of 1, the next gets a value of
2, and so on.
Step 3. Test the correlation between the vari-
ables created in the first and second steps. The
null hypothesis is that the correlation between
the Schoenfeld residuals and ranked failure
time is zero.

H0 rejected
Conclude PH assumption violated

Rejection of the null hypothesis leads to a conclu-
sion that the PH assumption is violated.

PH test in Stata, SAS, SPSS
shown in Computer Appendix

Stata uses scaled Schoenfeld
residuals rather than Schoenfeld
residuals (typically similar results)

The implementation of the test for the PH assump-
tion in Stata, SAS, and, SPSS is shown in the Com-
puter Appendix. Stata uses a slight variation of the
test we just described in that it uses the scaled
Schoenfeld residual rather than the Schoenfeld
residual (Grambsch and Therneau, 1994). The
tests typically (but not always) yield similar
results.

Column name Coeff. StErr. P(PH)

Both variables satisfy PH assumption.

Note: P(PH) = 0.917 assesses PH for
Rx, assuming PH OK for log WBC.

1.294
1.604

0.422
0.329

0.917
0.944

Rx
log WBC

EXAMPLE: Remission Data To illustrate the statistical test approach, we return
to the remission data example. The printout on the
left gives p-values P(PH) for treatment group and
log WBC variables based on fitting a Cox PH model
containing these two variables.

The P(PH) values are quite high for both variables,
suggesting that both variables satisfy the PH as-
sumption. Note that each of these p-values tests
the assumption for one variable given that the
other predictors are included in the model. For
example, the P(PH) of 0.917 assesses the PH as-
sumption for Rx, assuming the PH assumption is
satisfied for log WBC.
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log WBC and Rx satisfy PH.

Sex does not satisfy PH.

(Same conclusions using graphical
approaches).

1.391
1.594
0.263

0.457
0.330
0.449

0.935
0.828
0.038

Rx
log WBC
Sex

Column name Coeff. StErr. P(PH)

EXAMPLE As another example, consider the computer re-
sults shown here for a Cox PH model contain-
ing the variable SEX in addition to log WBC and
treatment group. The P(PH) values for log WBC
and treatment group are still nonsignificant. How-
ever, the P(PH) value for SEX is significant below
the 0.05 level. This result suggests that log WBC
and treatment group satisfy the PH assumption,
whereas SEX does not. We came to the same con-
clusion about these variables using the graphical
procedures described earlier.

Statistical Tests An important point concerning a testing approach
is that the null hypothesis is never proven with a
statistical test. The most that may be said is that
there is not enough evidence to reject the null. A
p-value can be driven by sample size. A gross viola-
tion of the null assumption may not be statistically
significant if the sample is very small. Conversely,
a slight violation of the null assumption may be
highly significant if the sample is very large.

Null is never proven

� May say not enough evidence to
reject

p-value can be driven by sample size

� Small sample—gross violation
of null may not be significant� Large sample—slight violation
of null may be highly significant

Test—more objective
Graph—more objective, but can

detect specific violations

Recommend—Use both graphs and
tests

A statistical test offers a more objective approach
for assessing the PH assumption compared to the
subjectivity of the graphical approach. However,
the graphical approach enables the researcher to
detect specific kinds of departures from the PH
assumption; the researcher can see what is going
on from the graph. Consequently, we recommend
that when assessing the PH assumption, the inves-
tigator use both graphical procedures and statis-
tical testing before making a final decision.

VI. Assessing the PH
Assumption Using Time-
Dependent Covariates

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.

Extended Cox model:
contains product terms of the form
X × g (t), where g (t) is a function
of time.
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One-at-a-time model:

h(t,X) = h0(t) exp[βX + δX × g (t)]

When assessing predictors one-at-a-time, the ex-
tended Cox model takes the general form shown
here for the predictor X.

Some choices for g (t):
g (t) = t
g (t) = log t

g (t) =
{

1 if t ≥ t0
0 if t < t0

(heaviside
function)

One choice for the function g(t) is simply g(t) equal
to t, so that the product term takes the form X × t.
Other choices for g(t) are also possible, for exam-
ple, log t.

H0: δ = 0
Under H0, the model reduces to:

h(t,X) = h0(t) exp[βX ]

Using the above one-at-a-time model, we assess
the PH assumption by testing for the significance
of the product term. The null hypothesis is there-
fore “δ equal to zero.” Note that if the null hypoth-
esis is true, the model reduces to a Cox PH model
containing the single variable X.

Use either Wald statistic or
likelihood ratio statistic:
X 2 with 1 df under H0

The test can be carried out using either a Wald
statistic or a likelihood ratio statistic. In either
case, the test statistic has a chi-square distribu-
tion with one degree of freedom under the null
hypothesis.

EXAMPLE 
h(t,X) = h0(t)exp[β1 Sex + β2  (Sex × t)]

β2 ≠ 0 ⇒ PH assumption violated

For example, if the PH assumption is being as-
sessed for Sex, a Cox model might be extended to
include the variable Sex × t in addition to Sex. If
the coefficient of the product term turns out to be
significant, we can conclude that the PH assump-
tion is violated for Sex.2

Strategies for assessing PH:

� one-at-a-time� several predictors
simultaneously� for a given predictor adjusted for
other predictors

In addition to a one-at-a-time strategy, the ex-
tended Cox model can also be used to assess the
PH assumption for several predictors simultane-
ously as well as for a given predictor adjusted for
other predictors in the model.

2In contrast, if the test for H0: β2 = 0 is nonsignificant, we
can conclude only that the particular version of the extended
Cox model being considered is not supported by the data.
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Several predictors simultaneously:

h(t, X) = h0(t) exp

(
p∑

i=1

[βi Xi

+ δi Xi × gi (t)]

)
gi (t) = function of time for ith
predictor

To assess the PH assumption for several predictors
simultaneously, the form of the extended model
is shown here. This model contains the predic-
tors being assessed as main effect terms and also
as product terms with some function of time.
Note that different predictors may require differ-
ent functions of time; hence, the notation gi (t)
is used to define the time function for the ith
predictor.

H0: δ1 = δ2 = . . . = δp = 0
L R = −2 ln LPH model

− (−2 ln Lext. Cox model)
∼̇X 2

p under H0

Cox PH (reduced) model:

h(t,X) = h0(t) exp

(
p∑

i=1

βi Xi

)

With the above model, we test for the PH assump-
tion simultaneously by assessing the null hypoth-
esis that all the δi coefficients are equal to zero.
This requires a likelihood ratio chi-square statis-
tic with p degrees of freedom, where p denotes
the number of predictors being assessed. The LR
statistic computes the difference between the log
likelihood statistic— −2 ln L—for the PH model
and the log likelihood statistic for the extended
Cox model. Note that under the null hypothesis,
the model reduces to the Cox PH model shown
here.

EXAMPLE: Remission Data 

If test is significant, use backward
elimination to find predictors not
satisfying PH assumption.

h(t,X) = h0(t)exp [β1 (Rx)
+ β2 (log WBC) + β3 (Sex)
+ δ1 (Rx) × g(t) + δ2 (log WBC)
× g(t) + δ3 (Sex) × g(t)]

H0: δ1 = δ2 = δ3 = 0

LR ∼ χ2 with 3 df

where g(t) =  1  if t ≥7
0  if t <7{

.

As an example, we assess the PH assumption for
the predictors Rx, log WBC, and Sex from the re-
mission data considered previously. The extended
Cox model is given as shown here, where the func-
tions gi (t) have been chosen to be the same “heav-
iside” function defined by g (t) equals 1 if t is
7 weeks or more and g (t) equals 0 if t is less than
7 weeks. The null hypothesis is that all three δ co-
efficients are equals to zero. The test statistic is a
likelihood-ratio chi-square with 3 degrees of free-
dom.

If the above test is found to be significant, then we
can conclude that the PH assumption is not satis-
fied for at least one of the predictors in the model.
To determine which predictor(s) do not satisfy the
PH assumption, we could proceed by backward
elimination of nonsignificant product terms until
a final model is attained.
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Heavyside function:

g (t) =
{

1 if t ≥ 7
0 if t < 7

h(t,X) differs for t ≥ 7 and t < 7.

Properties of heaviside functions
and numerical results are described
in Chapter 6.

Note that the use of a heaviside function for g (t)
in the above example yields different expressions
for the hazard function depending on whether t
is greater than or equal to 7 weeks or t is less
than 7 weeks. Chapter 6 provides further details
on the properties of heaviside functions, and also
provides numerical results from fitting extended
Cox models.

Assessing PH for a given predictor
adjusted for other predictors:

h(t,X) = h0(t) exp

[
p−1∑
i=1

βi Xi +β∗X ∗

+ δ∗ X ∗ × g (t)

]
X ∗ = Predictor of interest
H0: δ∗ = 0
Wald or LR statistic ∼̇χ2 with 1 df

We show here an extended Cox model that can be
used to evaluate the PH assumption for a given
predictor adjusted for predictors already satis-
fying the PH assumption. The predictor of inter-
est is denoted as X ∗, and the predictors consid-
ered to satisfy the PH assumption are denoted as
Xi . The null hypothesis is that the coefficient δ∗ of
the product term X ∗g (t) is equal to zero. The test
statistic can either be a Wald statistic or a likeli-
hood ratio statistic, with either statistic having a
chi-square distribution with 1 degree of freedom
under the null hypothesis.

For Sex, adjusted for Rx and log WBC:
h(t,X) = h0(t) exp[β1 (Rx)

+ β2 (log WBC) + β* (Sex)
+ δ* (Sex) × g(t)

EXAMPLE: Remission Data As an example, suppose, again considering the re-
mission data, we assess the PH assumption for the
variable, Sex, adjusted for the variables Rx and log
WBC, which we assume already satisfy the PH as-
sumption. Then, the extended Cox model for this
situation is shown here.

Two models for LR test of PH:

1. Cox PH model
2. extended Cox model

See Computer Appendix for Stata,
SAS, and SPSS

To carry out the computations for any of the like-
lihood ratio tests described above, two different
types of models, a PH model and an extended Cox
model, need to be fit. See the Computer Appendix
for details on how the extended Cox model is fit
using SAS, SPSS, and Stata.

Drawback: choice of gi (t)

Different choices may lead to differ-
ent conclusions about PH assump-
tion.

The primary drawback of the use of an extended
Cox model for assessing the PH assumption con-
cerns the choice of the functions gi (t) for the
time-dependent product terms in the model. This
choice is typically not clear-cut, and it is possible
that different choices, such as g (t) equal to t ver-
sus log t versus a heaviside function, may result
in different conclusions about whether the PH as-
sumption is satisfied.
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Chapter 6: Time-dependent
covariates

Further discussion of the use of time-dependent
covariates in an extended Cox model is provided
in Chapter 6.

This presentation:
Three methods for assessing PH.

i. graphical
ii. GOF

iii. time-dependent covariates

Recommend using at least two
methods.

This presentation is now complete. We have de-
scribed and illustrated three methods for assess-
ing the PH assumption: graphical, goodness-of-
fit (GOF), and time-dependent covariate methods.
Each of these methods has both advantages and
drawbacks. We recommend that the researcher
use at least two of these approaches when assess-
ing the PH assumption.

Chapters We suggest that the reader review this presenta-
tion using the detailed outline that follows. Then
answer the practice exercises and the test that fol-
low.

The next Chapter (5) is entitled “The Stratified Cox
Procedure.” There, we describe how to use a strat-
ification procedure to fit a PH model when one
or more of the predictors do not satisfy the PH
assumption.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

✓ 4. Evaluating the Proportional
Hazards Assumption

�
�

�
�

Next:

5. The Stratified Cox Procedure
6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent Variables
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Detailed
Outline

I. Background (pages 134–135)
A. The formula for the Cox PH model:

h(t,X) = h0(t) exp
[ p∑

i=1
βi Xi

]
B. Formula for hazard ratio comparing two

individuals,

X∗ = (X ∗
1, X ∗

2, . . . , X ∗
p) and X = (X1, X2, . . . , X p):

h(t,X∗)
h(t,X)

= exp

[
p∑

i=1

βi

(
X ∗

i − Xi
)]

C. Adjusted survival curves using the Cox PH model:

S(t,X) = [S0(t)]exp[
∑

βi Xi ]

i. To graph S(t, X), must specify values for

X = (X1, X2, . . . , X p).

ii. To obtain “adjusted” survival curves, usually use
overall mean values for the X ’s being adjusted.

D. The meaning of the PH assumption
i. Hazard ratio formula shows that hazard ratio is

independent of time:

ĥ (t,X∗)

ĥ (t,X)
= θ̂

ii. Hazard ratio for two X ’s are proportional:

ĥ (t,X∗) = θ̂ĥ (t,X)

II. Checking the PH assumption: Overview (pages
135–137)
A. Three methods for checking the PH assumption:

i. Graphical: compare −ln −ln survival curves or
observed versus predicted curves.

ii. Goodness-of-fit test: use a large sample Z
statistic.

iii. Time-dependent covariates: use product (i.e.,
interaction) terms of the form X × g (t).

B. Abbreviated illustrations of each method are
provided.

III. Graphical approach 1: log–log plots (pages 137–145)
A. A log–log curve is a transformation of an estimated

survival curve, where the scale for a log–log curve is
−∞ to +∞.
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B. The log–log expression for the Cox model survival
curve is given by

−ln[−lnS(t,X)] = −
p∑

i=1

βi Xi −ln[−lnS0(t)]

C. For the Cox model, the log–log survival curve for
individual X1 can be written as the log–log curve for
individual X2 plus a linear sum term that is
independent of time t. This formula is given by
−ln[−lnS(t,X1)]

= −ln[−lnS(t,X2)] +
p∑

i=1

βi (X2i − X1i )

D. The above log–log formula can be used to check the
PH assumption as follows: the PH model is
appropriate if “empirical” plots of log–log survival
curves are parallel.

E. Two kinds of empirical plots for −ln −ln Ŝ:
i. Ŝ is a KM curve

ii. Ŝ is an adjusted survival curve where predictor
being assessed is not included in the Cox
regression model.

F. Several examples of log–log plots are provided using
remission data from a clinical trial of leukemia
patients.

G. Problems with log–log curves:
i. How parallel is parallel?

ii. How to categorize a continuous variable?
iii. How to evaluate several variables

simultaneously?
H. Recommendation about problems:

i. Use small number of categories, meaningful
choice, reasonable balance.

ii. With several variables, two options:
a. Compare log–log curves from combinations of

categories.
b. Adjust for predictors already satisfying PH

assumption.
IV. Graphical approach 2: observed versus expected

plots (pages 145–150)
A. Graphical analog of the GOF test.
B. Two strategies

i. One-at-a-time: uses KM curves to obtain
observed plots.

ii. Adjusting for other variables: uses stratified Cox
PH model to obtain observed plots.
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C. Expected plots obtained by fitting a Cox model
containing the predictor being assessed; substitute
into the fitted model the value for each category of
the predictor to obtain the expected value for each
category.

D. If observed and expected plots are close, conclude
PH assumption is reasonable.

E. Drawback: how close is close?
F. Recommend: conclude PH not satisfied only if plots

are strongly discrepant.
G. Another drawback: what to do if assessing

continuous variable.
H. Recommend for continuous variable:

i. Form strata from categories.
ii. Observed plots are KM curves for each category.

iii. Two options for expected plots:
a. Use PH model with k − 1 dummy variables

for k categories.
b. Use PH model with continuous predictor and

specify predictor values that distinguish
categories.

V. The goodness-of-fit (GOF) testing approach (pages
151–153)
A. Appealing approach because

i. provides a test statistic (p-value).
ii. researcher can make clear-cut decision.

B. References
i. methodological: Schoenfeld (1982), Harrel and

Lee (1986).
ii. SAS and Stata use different GOF formulae.

C. The method:
i. Schoenfeld residuals for each predictor uses a

chi-square statistic with 1 df.
ii. Correlations between Schoenfeld’s residuals and

ranked failure times.
iii. If p-value small, then departure from PH.

D. Examples using remission data.
E. Drawbacks:

i. global test: may fail to detect a specific kind of
departure from PH; recommend using both
graphical and GOF methods.

ii. several strategies to choose from, with no one
strategy clearly preferable (one-at-a-time, all
variables, each variable adjusted for others).
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VI. Assessing the PH assumption (using time-
dependent covariates) (pages 153–157)
A. Use extended Cox model: contains product terms of

form X × g (t), where g (t) is function of time, e.g.,
g (t) = t, or log t, or heaviside function.

B. One-at-a-time model:
h(t,X) = h0(t) exp[βX + δg (t)].
Test H0: δ = 0 using Wald or LR test (chi-square
with 1 df).

C. Evaluating several predictors simultaneously:

h(t, X) = h0(t) exp

(
p∑

i=1

[βi Xi + δi Xi gi (t)]

)
where gi (t) is function of time for ith predictor. Test
H0 : δ1 = δ2 = · · · = δp = 0 using LR (chi-square)
test with p df.

D. Examples using remission data.
E. Two computer programs, required for test:

i. Cox PH model program.
ii. Extended Cox model program.

F. Drawback: choice of g (t) not always clear; different
choices may lead to different conclusions about PH
assumption.

Practice
Exercises

The dataset “vets.dat” considers survival times in days for 137
patients from the Veteran’s Administration Lung Cancer Trial
cited by Kalbfleisch and Prentice in their text (The Statistical
Analysis of Survival Time Data, Wiley, pp. 223–224, 1980). The
exposure variable of interest is treatment status (standard =
1, test = 2). Other variables of interest as control variables
are cell type (four types, defined by dummy variables), perfor-
mance status, disease duration, age, and prior therapy status.
Failure status is defined by the status variable (0 if censored,
1 if died). A complete list of the variables is given below.

Column 1: Treatment (standard = 1, test = 2)
Column 2: Cell type 1 (large = 1, other = 0)
Column 3: Cell type 2 (adeno = 1, other = 0)
Column 4: Cell type 3 (small = 1, other = 0)
Column 5: Cell type 4 (squamous = 1, other = 0)
Column 6: Survival time (days)
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Column 7: Performance status (0 = worst, · · · ,
100 = best)

Column 8: Disease duration (months)
Column 9: Age
Column 10: Prior therapy (none = 0, some = 10)
Column 11: Status (0 = censored, 1 = died)

1. State the hazard function form of the Cox PH model that
describes the effect of the treatment variable and controls for
the variables, cell type, performance status, disease duration,
age, and prior therapy. In stating this model, make sure to
incorporate the cell type variable using dummy variables, but
do not consider possible interaction variables in your model.

2. State three general approaches that can be used to evaluate
whether the PH assumption is satisfied for the variables in-
cluded in the model you have given in question 1.

3. The following printout is obtained from fitting a Cox PH
model to these data. Using the information provided,
what can you conclude about whether the PH assumption
is satisfied for the variables used in the model? Explain briefly.

[95% Conf.
Cox regression Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Performance −0.033 0.006 0.000 0.968 0.958 0.978 0.000

status
Disease 0.000 0.009 0.992 1.000 0.982 1.018 0.919

duration
Age −0.009 0.009 0.358 0.991 0.974 1.010 0.198
Prior therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

4. For the variables used in the PH model in question 3, describe
a strategy for evaluating the PH assumption using log–log
survival curves for variables considered one-at-a-time.

5. Again considering the variables used in question 3, describe
a strategy for evaluating the PH assumption using log–log
survival curves that are adjusted for other variables in the
model.
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6. For the variable “performance status,” describe how you
would evaluate the PH assumption using observed versus
expected survival plots?

7. For the variable “performance status,” log–log plots which
compare high (≥50) with low (<50) are given by the follow-
ing graph. Based on this graph, what do you conclude about
the PH assumption with regard to this variable?
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8. What are some of the drawbacks of using the log–log ap-
proach for assessing the PH assumption and what do you
recommend to deal with these drawbacks?

9. For the variable “performance status,” observed versus ex-
pected plots that compare high (≥50) with low (<50) are
given by the following graph. Based on this graph, what do
you conclude about the PH assumption with regard to this
variable?
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10. State the form of an extended Cox model that allows for
the one-at-a-time assessment of the PH assumption for the
variable “performance status,” and describe how you would
carry out a statistical test of the assumption for this variable.

11. State the form of an extended Cox model that allows for the
simultaneous assessment of the PH assumption for the vari-
ables, treatment, cell type, performance status, disease du-
ration, age, and prior therapy. For this model, describe how
you would carry out a statistical test of the PH assump-
tion for these variables. Also, provide a strategy for assess-
ing which of these variables satisfy the PH assumption and
which do not using the extended Cox model approach.
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12. Using any of the information provided above and any addi-
tional analyses that you perform with this dataset, what do
you conclude about which variables satisfy the PH assump-
tion and which variables do not? In answering this question,
summarize any additional analyses performed.

Test The following questions consider a dataset from a study by
Caplehorn et al. (“Methadone Dosage and Retention of Pa-
tients in Maintenance Treatment,” Med. J. Aust., 1991). These
data comprise the times in days spent by heroin addicts from
entry to departure from one of two methadone clinics. There
are two additional covariates, namely, prison record and max-
imum methadone dose, believed to affect the survival times.
The dataset name is addicts.dat. A listing of the variables is
given below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)
Column 3: Survival status (0 = censored, 1 = departed

from clinic)
Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting
a Cox PH model to these data:

Cox regression
Analysis time t: [95% Conf.
survt Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Clinic −1.009 0.215 0.000 0.365 0.239 0.556 0.001
Prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
Dose −0.035 0.006 0.000 0.965 0.953 0.977 0.347

No. of subjects: 238 Log likelihood = −673.403

Based on the information provided in this printout, what
do you conclude about which variables satisfy the PH
assumption and which do not? Explain briefly.
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2. Suppose that for the model fit in question 1, log–log
survival curves for each clinic adjusted for prison and
dose are plotted on the same graph. Assume that these
curves are obtained by substituting into the formula for
the estimated survival curve the values for each clinic
and the overall mean values for the prison and dose
variables. Below, we show these two curves. Are they
parallel? Explain your answer.
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3. The following printout was obtained from fitting a
stratified Cox PH model to these data, where the
variable being stratified is clinic:

Stratified
Cox regression
Analysis time t: [95% Conf.
survt (in days) Coef. Std. Err. p > |z| Haz. Ratio Interval]

Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose −0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = −597.714 Stratified by clinic

Using the above fitted model, we can obtain the log–log
curves below that compare the log–log survival for each
clinic (i.e., stratified by clinic) adjusted for the variables
prison and dose. Using these curves, what do you con-
clude about whether or not the clinic variable satisfies
the PH assumption? Explain briefly.
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4. Consider the two plots of log–log curves below that
compare the log–log survival for the prison variable
ignoring other variables and adjusted for the clinic
and dose variables. Using these curves, what do you
conclude about whether or not the prison variable
satisfies the PH assumption? Explain briefly.
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5. How do your conclusions from question 1 compare with
your conclusions from question 4? If the conclusions dif-
fer, which conclusion do you prefer? Explain.

6. Describe briefly how you would evaluate the PH assump-
tion for the variable maximum methadone dose using
observed versus expected plots.

7. State an extended Cox model that would allow you to as-
sess the PH assumption for the variables clinic, prison,
and dose simultaneously. For this model, state the null
hypothesis for the test of the PH assumption and de-
scribe how the likelihood ratio statistic would be ob-
tained and what its degrees of freedom would be under
the null hypothesis.

8. State at least one drawback to the use of the extended
Cox model approach described in question 7.

9. State an extended Cox model that would allow you to
assess the PH assumption for the variable clinic alone,
assuming that the prison and dose variables already sat-
isfy the PH assumption. For this model, state the null
hypothesis for the test of the PH assumption, and de-
scribe how the likelihood ratio (LR) statistic would be
obtained. What is the degrees of freedom of the LR test
under the null hypothesis?
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10. Consider the situation described in question 9, where
you wish to use an extended Cox model that would allow
you to assess the PH assumption for the variable clinic
alone, assuming that the assumption is satisfied for the
prison and dose variables. Suppose you use the following
extended Cox model:

h(t,X) = h0(t) exp[β1(prison) + β2(dose)
+ β3(clinic) + δ1(clinic)g (t)]

where g (t) is defined as follows:

g (t) =
{

1 if t > 365 days
0 if t ≤ 365 days

For the above model, what is the formula for the haz-
ard ratio that compares clinic 1 to clinic 2 when t is
greater than 365 days? when t is less than or equal to
365 days? In terms of the hazard ratio formulae just de-
scribed, what specific departure from the PH assumption
is being tested when the null hypothesis is H0: δ1 = 0?

Answers to
Practice
Exercises

1. h(t,X) = h0(t) exp[β1(treatment) + β2(CT1) + β3(CT2)
+β4(CT3) + β5(PS) + β6(DD) + β7(Age) + β8(PT)]

where CTi denotes the cell type i dummy variable, PS de-
notes the performance status variable DD denotes the dis-
ease duration variable, and PT denotes the prior therapy
variable.

2. The three general approaches for assessing the PH model
for the above model are:
(a) graphical, using either log–log plots or observed

versus expected plots;
(b) statistical test;
(c) an extended Cox model containing product terms

involving the variables being assessed with some
function(s) of time.

3. The P(PH) values given in the printout provide goodness-
of-fit tests for each variable in the fitted model adjusted for
the other variables in the model. The P(PH) values shown
indicate that the large cell type variables and the perfor-
mance status variable do not satisfy the PH assumption,
whereas the treatment, age, disease duration, and prior
therapy variables satisfy the PH assumption, and the adeno
and small cell type variable are of borderline significance.



168 4. Evaluating the Proportional Hazards Assumption

4. A strategy for evaluating the PH assumption using log–log
survival curves for variables considered one-at-a-time is
given as follows:

For each variable separately, obtain a plot of obtain log–
log Kaplan–Meier curves for the different categories of that
variable. For the cell type variable, this requires obtaining
a plot of four log–log KM curves, one for each cell type.
(Note that this is not the same as obtaining four separate
plots of two log–log curves, where each plot corresponds
to one of the dummy variables used in the model.) For
the variables PS, DD, and Age, which are interval vari-
ables, each variable must be separately categorized into
two or more groups—say, low versus high values—and
KM curves are obtained for each group. For the variable
PT, which is a dichotomous variable, two log–log curves
are obtained which compare the “none” versus “some”
groups.

For each plot (i.e., one for each variable), those plots that
are noticeably nonparallel indicate variables which do not
satisfy the PH assumption. The remaining variables are as-
sumed to satisfy the PH assumption.

5. One strategy for evaluating the PH assumption for each
variable adjusted for the others is to use adjusted log–log
survival curves instead of KM curves separately for each of
the variables in the model. That is, for each variable sepa-
rately, a stratified Cox model is fit stratifying on the given
variable while adjusting for the other variables. Those vari-
ables that yield adjusted log–log plots that are noticeably
nonparallel are then to be considered as not satisfying the
PH assumption. The remaining variables are assumed to
satisfy the PH assumption.

A variation of the above strategy uses adjusted log–log
curves for only those variables not satisfying the PH as-
sumption from a one-at-a-time approach, adjusting for
those variables satisfying the PH assumption from the one-
at-a-time approach. This second iteration would flag a sub-
set of the one-at-a-time flagged variables for further itera-
tion. At each new iteration, those variables found to satisfy
the assumption get added to the list of variables previously
determined to satisfy the assumption.
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6. For the performance status (PS) variable, observed plots
are obtained by categorizing the variable into strata (say,
two strata: low versus high) and then obtaining KM sur-
vival plots for each stratum. Expected plots can be ob-
tained by fitting a Cox model containing the (continuous)
PS variable and then obtaining estimated survival curves
for values of the performance status (PS) variable that rep-
resent summary descriptive statistics for the strata previ-
ously identified. For example, if there are two strata, say,
high (PS > 50) and low (PS ≤ 50), then the values of PS to
be used could be the mean or median PS score for persons
in the high stratum and the mean or median PS score for
persons in the low stratum.

An alternative method for obtaining expected plots in-
volves first dichotomizing the PS variable—say, into high
and low groups—and then fitting a Cox model contain-
ing the dichotomized PS variable instead of the original
continuous variable. The expected survival plots for each
group are estimated survival curves obtained for each value
of the dichotomized PS variable.

Once observed and expected plots are obtained for each
stratum of the PS variable, they are then compared on the
same graph to determine whether or not corresponding
observed and expected plots are “close.” If it is determined
that, overall, comparisons for each stratum are close, then
it is concluded that the PH assumption is satisfied for the
PH variable. In determining how close is close, the re-
searcher should look for noticeably discrepant observed
versus expected plots.

7. The log–log plots that compare high versus low PS groups
(ignoring other variables) are arguably parallel early in
follow-up, and are not comparable later because survival
times for the two groups do not overlap after 400 days.
These plots do not strongly indicate that the PH assump-
tion is violated for the variable PS. This contradicts the
conclusion previously obtained for the PS variable using
the P(PH) results.

8. Drawbacks of the log–log approach are:

� How parallel is parallel?� How to categorize a continuous variable?� How to evaluate several variables simultaneously?
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Recommendations about problems:

� Look for noticeable nonparallelism; otherwise PH as-
sumption is OK.� For continuous variables, use a small number of cat-
egories, a meaningful choice of categories, and a rea-
sonable balance in sample size for categories.� With several variables, there are two options:

i. Compare log–log curves from combinations of cate-
gories.

ii. Adjust for predictors already satisfying PH assump-
tion.

9. The observed and expected plots are relatively close for
low and high groups separately, although there is some-
what more discrepancy for the high group than for the low
group. Deciding how close is close is quite subjective for
these plots. Nevertheless, because there are no major dis-
crepancies for either low or high groups, we consider the
PH assumption satisfied for this variable.

10. h(t,X) = h0(t) exp[β1(PS) + δ(PS) g (t)]

where g (t) is a function of t, such as g (t) = t, or g (t) =
log t, or a heaviside function. The PH assumption is tested
using a 1 df Wald or LR statistic for H0: δ = 0.

11. h(t,X) = h0(t) exp[β1(treatment) + β2(CT1) + β3(CT2)
+ β4(CT3) + β5(PS) + β6(DD) + β7(Age) + β8(PT)
+ δ1(treatment × g (t)) + δ2(CT1 × g (t)) + δ3(CT2 × g (t))
+ δ4(CT3 × g (t)) + δ5(PS × g (t)) + δ6(DD × g (t))
+ δ7(Age × g (t)) + δ8(PT × g (t))]

where g (t) is some function of time, such as g (t) = t, or
g (t) = log t, or a heavyside function. To test the PH as-
sumption simultaneously for all variables, the null hypoth-
esis is stated as H0: δ1 = δ2 = . . . = δ8 = 0. The test statis-
tic is a likelihood-ratio statistic of the form

L R = −2 ln L R − (−2 ln L F )

where R denotes the reduced (PH) model obtained when
all δ’s are 0, and F denotes the full model given above. Un-
der H0, the LR statistic is approximately chi-square with
8 df.
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12. The question here is somewhat open-ended, leaving the
reader the option to explore additional graphical, GOF, or
extended Cox model approaches for evaluating the PH as-
sumption for the variables in the model. The conclusions
from the GOF statistics provided in question 3 are likely to
hold up under further scrutiny, so that a reasonable con-
clusion is that cell type and performance status variables
do not satisfy the PH assumption, with the remaining vari-
ables satisfying the assumption.
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Introduction We begin with an example of the use of the stratified Cox
procedure for a single predictor that does not satisfy the PH
assumption. We then describe the general approach for fitting
a stratified Cox model, including the form of the (partial) like-
lihood function used to estimate model parameters.

We also describe the assumption of no interaction that is
typically incorporated into most computer programs that
carry out the stratified Cox procedure. We show how the no-
interaction assumption can be tested, and what can be done
if interaction is found.

We conclude with a second example of the stratified Cox pro-
cedure in which more than one variable is stratified.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 176)
II. An Example (pages 176–180)

III. The General Stratified Cox (SC) Model
(pages 180–181)

IV. The No-Interaction Assumption and How to Test
It (pages 182–188)

V. A Second Example Involving Several Stratification
Variables (pages 188–193)

VI. A Graphical View of the Stratified Cox Approach
(pages 193–194)

VII. Summary (pages 195–196)
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Objectives Upon completing the chapter, the learner should be able to:

1. Recognize a computer printout for a stratified Cox proce-
dure.

2. State the hazard form of a stratified Cox model for a given
survival analysis scenario and/or a given set of computer
results for such a model.

3. Evaluate the effect of a predictor of interest based on com-
puter results from a stratified Cox procedure.

4. For a given survival analysis scenario and/or a given set
of computer results involving a stratified Cox model,

� state the no-interaction assumption for the given model;� describe and/or carry out a test of the no-interaction
assumption;� describe and/or carry out an analysis when the no-
interaction assumption is not satisfied.
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I. Preview

Stratified Cox model:

� modification of Cox PH model� Stratification of predictor not
satisfying PH� includes predictors satisfying
PH

FOCUS

How stratification is
carried out:
•  computer results
•  hazard function
•  single predictor
    vs. ≥ 2 predictors
•  no-interaction vs.
    interaction

The “stratified Cox model” is a modification of the
Cox proportional hazards (PH) model that allows
for control by “stratification” of a predictor that
does not satisfy the PH assumption. Predictors
that are assumed to satisfy the PH assumption are
included in the model, whereas the predictor be-
ing stratified is not included.

In this presentation, we focus on how stratification
is carried out by describing the analysis of com-
puter results and the form of the hazard function
for a stratified Cox model. We first consider strati-
fying on a single predictor and then later consider
stratifying on two or more predictors. Further, we
distinguish between the use of a “no-interaction”
version of the stratified Cox model and an alterna-
tive approach that allows interaction.

II. An Example Consider the computer results shown here for a
Cox PH model containing the three variables, log
WBC, treatment group (Rx), and SEX. These re-
sults derive from a clinical trial of 42 leukemia
patients, where the response of interest is days in
remission.

EXAMPLE

Clinical trial: 42 leukemia patients 
Response-days in remission

log WBC 
Rx
Sex

1.594
1.391
0.263

0.330
0.457
0.449

0.828
0.935
0.031

Coef. Std. Err. P(PH)

•      log WBC and Rx satisfy PH
•     Sex does not satisfy PH

(Same conclusions using graphical 
approaches)

Stratified Cox (SC): 

•     control for sex (stratified); 
• simultaneously include log WBC and 

Rx in the model

From the printout, the P (PH) values for log WBC
and treatment group are nonsignificant. However,
the P (PH) value for SEX is significant below the
.05 level. These results indicate that log WBC
and treatment group satisfy the PH assumption,
whereas the SEX variable does not. The same con-
clusions regarding the PH assumption about these
variables would also be made using the graphical
procedures described earlier.

Because we have a situation where one of the
predictors does not satisfy the PH assumption,
we carry out a stratified Cox (SC) procedure
for the analysis. Using SC, we can control for
the SEX variable—which does not satisfy the
PH assumption—by stratification while simulta-
neously including in the model the log WBC and
treatment variables—which do satisfy the PH as-
sumption.
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EXAMPLE (continued) 

STATA OUTPUT USING SC:

Stratified Cox regression 
Analysis time _t: survt

Stratified Cox regression 
Analysis time _t: survt

Appendix  A  illustrates SC  procedures 
using Stata, SAS, and SPSS.

• Log WBC and Rx are included in SC 
   model. 
• SC model is stratified by SEX.

Effect of Rx adjusted for log WBC and 
SEX:

•    Hazard ratio: 2.537 = e0.931

•    Interpretation: Placebo group 
      (Rx = 1) has 2.5 times the hazard as 
      the treatment group (Rx = 0)

95% CI for Rx (1.006, 6.396) indicates 
considerable variability.

CI formula: exp(0.931 ± 1.96 × 0.472)

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

2.072
1.006

7.783
6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

No. of subjects = 42 Log likelihood =    −57.560 Stratified by sex

2.072
1.006

7.783
6.396

Wald test: P = 0.048 (two-tailed), 
significant at the 0.05 level.

The computer results from a SC procedure are
shown here. These results come from the Stata
package. (See the Computer Appendix for running
a SC procedure in Stata, SAS, or SPSS).

The computer results show that the log WBC and
Rx variables are included in the model listing,
whereas the SEX variable is not included; rather,
the model stratifies on the SEX variable, as indi-
cated at the bottom of the output. Note that the
SEX variable is being adjusted by stratification,
whereas log WBC is being adjusted by its inclu-
sion in the model along with Rx.

In the above output, we have also circled some key
information that can be used to assess the effect
of the Rx variable adjusted for both log WBC and
SEX. In particular, we can see that the hazard ra-
tio for the effect of Rx adjusted for log WBC and
SEX is given by the value 2.537. This value can be
obtained by exponentiating the coefficient 0.931
of the Rx variable. The hazard ratio value can be
interpreted to mean that the placebo group (for
which Rx = 1) has 2.5 times the hazard for going
out of remission as the treatment group (for which
Rx = 0).

Also, we can see from the output that a 95% con-
fidence interval for the effect of the Rx variable is
given by the limits 1.006 to 6.396. This is a fairly
wide range, thus indicating considerable variabil-
ity in the 2.537 hazard ratio point estimate. Note
that these confidence limits can be obtained by ex-
ponentiating the quantity 0.931 plus or minus 1.96
times the standard error 0.472.

From the above output, a test for the significance
of the Rx variable adjusted for log WBC and SEX is
given by the Wald statistic P value of 0.048. This is
a two-tailed P-value, and the test is just significant
at the 0.05 level.
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LR test: Output for reduced model

EXAMPLE (continued) 

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC

p > |z|

1.456 0.320 0.000 4.289 2.291 8.03

No. of subjects = 42 Log likelihood =   −59.648 Stratified by sex

SC model for males and females:
Females (g = 1):

h1(t,X) = h01(t)exp[β1Rx + β2 log WBC]

Males (g = 2):

h2(t,X) = h02(t)exp[β1Rx + β2 log WBC]

Rx and log WBC in the model
Sex not in the model (stratified)

Hazard function for stratified Cox
model:

hg(t,X) = h0g(t)exp[β1Rx + β2 log WBC]
g = 1,2;

g denotes stratum #.

LR and Wald give same conclusion.

Stratified Cox regression
Analysis time _t: survt

LR = (−2 × −59.648) − (−2 × −57.560)
       =  119.296 − 115.120 = 4.179 (P < 0.05)

ĤR for effect of Rx adjusted for log WBC
and sex:

eβ̂
1

where β1 is the coefficient of Rx.

An alternative test involves a likelihood ratio (LR)
statistic that compares the above model (full
model) with a reduced model that does not con-
tain the Rx variable. The output for the reduced
model is shown here. The log-likelihood statistic
for the reduced model is −2 times −59.648,
which is to be compared with the log-likelihood
statistic of −2 times −57.560 for the full model.

The LR statistic is therefore 119.296 minus
115.120, which equals 4.179. Under H0, this
statistic has a chi-square distribution with one
degree of freedom and is significant at the 0.05
level. Thus, the LR and Wald tests lead to the
same conclusion.

So far, we have illustrated the results from a strat-
ified Cox procedure without actually describing
the model form being used. For the remission
data example, we now present the hazard func-
tion form for the stratified Cox model, as shown
here. This hazard function formula contains a
subscript g that indicates the g th stratum.

Thus, in our remission data example, where we
have stratified on SEX, g takes on one of two
values, so that we have a different baseline hazard
function for males and females.

Notice that the hazard function formula contains
the variables Rx and log WBC, but does not
contain the variable SEX. SEX is not included
in the model because it doesn’t satisfy the PH
assumption. So, instead, the SEX variable is
controlled by stratification.

Because the variables Rx and log WBC are
included in the model, we can estimate the effect
of each variable adjusted for the other variable
and the SEX variable using standard exponential
hazard ratio expressions. For example, the esti-
mated hazard ratio for the effect of Rx, adjusted
for log WBC and SEX, is given by e to the β1 “hat,”
where β1 is the coefficient of the Rx variable.
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Cannot estimate HR for SEX variable
(SEX doesn’t satisfy PH).

Different    baseline  hazard   functions:

h01(t) for females and h02(t) for males.

No interaction assumption
(see Section IV)

Same coefficients β1 and β2 for both
female and male models. 

EXAMPLE (continued) 

Females and males:
same β1 and β2⇒ same HR’s, e.g., eβ̂

1ˆ

Different
baselines

h01(t) ⇒  Survival curve
               for females
h02(t) ⇒  Survival curve
               for males

{

Estimates of β1 and β2:

Maximize partial likelihood (L),
where L = L1 × L2
L1 is the likelihood for females derived
from h1(t),
and L2 is the likelihood for males derived
from h2(t).

Nevertheless, because the SEX variable is not
included in the model, it is not possible to obtain
a hazard ratio value for the effect of SEX adjusted
for the other two variables. This is the price to be
paid for stratification on the SEX variable. Note
that a single value for the hazard ratio for SEX
is not appropriate if SEX doesn’t satisfy the PH
assumption, because the hazard ratio must then
vary with time.

Notice also that the hazard functions for males
and females differ only insofar as they have
different baseline hazard functions, namely,
h01(t) for females and h02(t) for males. However,
the coefficients β1 and β2 are the same for both
female and male models.

Because there are different baseline hazard
functions, the fitted stratified Cox model will yield
different estimated survival curves for females
and males. These curves will be described shortly.

Note, however, that because the coefficients of Rx
and log WBC are the same for females and males,
estimates of hazard ratios, such as e to the β1
“hat,” are the same for both females and males.
This feature of the stratified Cox model is called
the “no-interaction” assumption. It is possible
to evaluate whether this assumption is tenable
and to modify the analysis if not tenable. We will
discuss this assumption further in Section IV.

To obtain estimates of β1 and β2, a (partial)
likelihood function (L) is formed from the model
and the data; this function is then maximized
using computer iteration. The likelihood function
(L) for the stratified Cox (SC) model is different
from the nonstratified Cox model. For the SC
model, L is obtained by multiplying together
likelihood functions for each stratum. Thus, L
is equal to the product of L1 and L2, where L1
and L2 denote the female and male likelihood
functions, respectively, which are derived from
their respective hazard functions h1(t) and h2(t).
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EXAMPLE (continued)

Adjusted Survival Curves for Rx
from Stratified Cox Model
(adjusted for log WBC)

1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

Treatment, female

Treatment, male
Placebo, female

Placebo, male

Days

Ŝ

As mentioned above, adjusted survival curves can
be obtained for each stratum as shown here. Here
we have shown four survival curves because we
want to compare the survival for two treatment
groups over each of two strata.

If we compare treatment and placebo group sepa-
rately by sex, we can see that the treatment group
has consistently better survival prognosis than the
placebo group for females and males separately.
This supports our findings about the hazard ratio
for the treatment effect derived earlier from the
computer results for the stratified Cox model.

III. The General Stratified
Cox (SC) Model

In the previous example, we illustrated the SC
model for one binary predictor not satisfying the
PH assumption. We now describe the general form
of the SC model that allows for stratification of
several predictors over several strata.

Example: one binary predictor
↓

General: several predictors, several
strata

Z1, Z2, . . . , Zk, do not satisfy PH
X1, X2, . . . , X p, satisfy PH

We assume that we have k variables not satisfying
the PH assumption and p variables satisfying the
PH assumption. The variables not satisfying
the PH assumption we denote as Z1, Z2, . . . , Zk;
the variables satisfying the PH assumption we de-
note as X1, X2, . . . , X p.

Define a single new variable Z ∗:

1. categorize each Z i

2. form combinations of categories
(strata)

3. the strata are the categories of Z ∗

To perform the stratified Cox procedure, we de-
fine a single new variable, which we call Z ∗, from
the Z’s to be used for stratification. We do this by
forming categories of each Zi , including those Zi
that are interval variables. We then form combi-
nations of categories, and these combinations are
our strata. These strata are the categories of the
new variable Z ∗.

EXAMPLE
Age

Young Middle Old

Placebo

Treatment

Treatment
status

1 2 3

4 5 6

Z∗ = new variable with six categories
Stratify on Z∗

For example, suppose k is 2, and the two Z’s are
age (an interval variable) and treatment status
(a binary variable). Then we categorize age into,
say, three age groups—young, middle, and old. We
then form six age group–by–treatment-status com-
binations, as shown here. These six combinations
represent the different categories of a single new
variable that we stratify on in our stratified Cox
model. We call this new variable Z ∗.
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Z ∗ has k∗ categories where k∗ =
total # of combinations (strata), e.g.,
k∗ = 6 in above example.

In general, the stratification variable Z ∗ will have
k∗ categories, where k∗ is the total number of
combinations (or strata) formed after categoriz-
ing each of the Z’s. In the above example, k∗ is
equal to 6.

The general SC model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2
+ · · · + βp X p]

g = 1, 2, . . . , k∗, strata defined
from Z ∗

We now present the general hazard function form
for the stratified Cox model, as shown here. This
formula contains a subscript g which indicates the
gth stratum. The strata are defined as the different
categories of the stratification variable Z ∗, and the
number of strata equals k∗.

Z ∗ not included in the model

X1, X2, . . . , X p included in the
model

Note that the variable Z ∗ is not explicitly included
in the model but that the X ’s, which are assumed
to satisfy the PH assumption, are included in the
model.

Different baseline hazard functions:
h0g (t), g = 1, 2, . . . , k∗

Same coefficients: β1, β2, . . . ,βp

Different
baselines

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĥ 01(t) ⇒ Ŝ1(t)
ĥ 02(t) ⇒ Ŝ2(t)

...
ĥ 0k(t) ⇒ Ŝk(t)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Different
survival
curves

Note also that the baseline hazard function h0g (t)
is allowed to be different for each stratum. How-
ever, the coefficients β1,β2, . . . ,βp are the same
for each stratum.

As previously described by example, the fitted
SC model will yield different estimated survival
curves for each stratum because the baseline haz-
ard functions are different for each stratum.

ĤR same for each stratum

(no-interaction assumption, Sec-
tion IV)

However, because the coefficients of the X ’s are the
same for each stratum, estimates of hazard ratios
are the same for each stratum. This latter feature
of the SC model is what we previously have called
the “no-interaction” assumption to be discussed
further in Section IV.

(Partial) likelihood function:

L = L1 × L2, × · · · × Lk∗

Strata: 1 2 . . . k∗

Likelihood: L1 L2 . . . Lk∗

Hazard: h1(t,X) h2(t,X) . . . hk∗ (t,X)

To obtain estimates of the regression coefficients
β1,β2, . . . ,βp, we maximize a (partial) likelihood
function L that is obtained by multiplying together
likelihood functions for each stratum, as shown
here. Thus, L is equal to the product of L1 times
L2, and so on, up until Lk∗ , where the subscripted
L’s denote the likelihood functions for different
strata, with each of these L’s being derived from
its corresponding hazard function.
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IV. The No-Interaction
Assumption and How
to Test It

We previously pointed out that the SC model con-
tains regression coefficients, denoted as β’s, that
do not vary over the strata. We have called this
property of the model the “no-interaction assump-
tion.” In this section, we explain what this assump-
tion means. We also describe how to evaluate the
assumption and what to do if the assumption is
violated.

Stratified Cox model

hg (t,X) = h0g (t)exp[β1 X1
+β2 X2 + · · · + βp X p]

β coefficients do not vary over
strata (no-interaction assumption)

� how to evaluate� what to do if violated

EXAMPLE 

No-interaction SC model:
Stratified Cox regression
Analysis time _t: survt

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

2.072
1.006

7.783
6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Interaction by fitting separate models:
Cox regression (Females)
Analysis time _t: survt

Cox regression (Males)
Analysis time _t: survt

Column p-
valuename Coeff StErr. 0.95 CI P(PH)HR

4 log 
WBC

5 Rx

1.639

1.859

0.519 0.002 5.150 1.862 14.242 0.228

0.729 0.011 6.418 1.537 26.790 0.603

Log likelihood = −22.100

Column p-
valuename Coeff StErr. 0.95 CI P(PH)HR

4 log 
WBC

5 Rx

1.170

0.267

0.499 0.019 3.222 1.213 8.562 0.674

0.566 0.637 1.306 0.431 3.959 0.539

No. of subjects = 22  Log likelihood = −33.736

No. of subjects = 20

Which model is more appropriate 
statistically?

We return to the SC output previously illustrated.
Notice that only one set of coefficients, namely,
1.390 for log WBC and 0.931 for Rx, are provided,
even though there are two strata, one for females
and one for males. These results assume no
interaction of the sex variable with either log
WBC or Rx.

If we allow for interaction, then we would
expect to obtain different coefficients for each
of the (SEX) strata. This would happen if we fit
separate hazard models to the female and male
data, with each model containing the log WBC
and Rx variables. The computer results from
fitting separate models are shown here.

Notice that the coefficient of log WBC is 1.639 for
females but is 1.170 for males. Also, the coefficient
for Rx is 1.859 for females but 0.267 for males.
These results show different coefficients for
females than for males, particularly for the Rx
variable.

But are corresponding coefficients statistically
different? That is, which model is more appropri-
ate statistically, the no-interaction model or the
interaction model? To answer this question, we
must first look at the hazard function model for
the interaction situation.
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EXAMPLE (continued) 

Interaction model: 

No-interaction model: 

Alternative interaction model: 
(  ) hg(t,X) = h0g(t)exp[β1

∗ log WBC 
+ β2

∗Rx + β3
∗ (SEX × log WBC) + β4

∗

× (SEX × Rx)]

where SEX = {1 if female 
0

h0g(t) are different for g = 1,2 
β∗ coefficients do not involve g

Equivalence of models (�) and (  ): 
g = 1 (females), so that sex = 1:

h1(t,X) = h01(t)exp[β1
∗ log WBC + β2

∗ Rx

+ β3
∗ (1 × log WBC) + β4

∗ (1 × Rx)]

h2(t,X) = h02(t)exp[β1
∗ log WBC + β2

∗ Rx 

+β3
∗ (0 × log WBC) + β4

∗ (0 × Rx)]

= h01(t)exp[ (β1
∗ + β3

∗)  log WBC 

+  (β2
∗ + β4

∗)  Rx] 

g = 2 (males), so that sex = 0:

= h02(t)exp[ β1
∗ log WBC + β2

∗ Rx]

Interaction models in same format:

Females (g = 1): h1 (t,X)
(�) = h01(t)exp[β11log WBC + β21Rx]

(  ) = h01(t)exp[(β1
∗ + β3

∗) log WBC 

+ (β2
∗ + β4

∗)Rx]

Males (g = 2): h2 (t,X)
(�) = h02(t)exp[β12log WBC + β22Rx]

( ) = h02(t)exp[β1
∗log WBC + β2

∗ Rx]

if male 

(�) hg(t,X)
= h0g(t)exp[β1g log WBC + β2gRx]
where g = 1 (females), g = 2 (males) 

hg(t,X) = h0g(t)exp[β1 log WBC + β2Rx]
where g = 1 (females), g = 2 (males) 

One way to state the hazard model formula when
there is interaction is shown here (�). Notice
that each variable in this model has a different
coefficient for females than for males, as indicated
by the subscript g in the coefficients β1g and β2g .

In contrast, in the no-interaction model, the
coefficient (β1) of log WBC is the same for
females and for males; also, the coefficient (β2)
of Rx is the same for females and for males.

An alternative way to write the interaction model
is shown here (	). This alternative form contains
two product terms—SEX × log WBC and SEX ×
Rx—as well as the main effects of log WBC and
Rx. We have coded the SEX so that 1 denotes
female and 0 denotes male.

In this alternative model, note that although the
baseline hazards h0g (t) are different for each sex,
the β∗ coefficients do not involve the subscript g
and therefore are the same for each sex.

Nevertheless, this alternative formula (	) is
equivalent to the interaction formula (�) above.
We show this by specifying the form that the
model takes for g = 1 (females) and g = 2
(males).

Notice that the coefficients of log WBC are
different in each formula, namely, (β∗

1 + β∗
3) for

females versus β∗
1 for males.

Similarly, the coefficients of Rx are different,
namely, (β∗

2 + β∗
4) for females versus β∗

2 for
males.

The preceding formulae indicate that two seem-
ingly different formulae for the interaction
model—(�) versus (	), shown earlier—can be
written in the same format. We show these
formulae here separately for females and males.
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EXAMPLE (continued) 

Females (g = 1): β11 = β1
∗ + β3

∗

β21 = β2
∗ + β4

∗

(�) (  )

Males (g = 2): β12 = β1
∗

β22 = β2
∗

(�) (  )

Stratified Cox regression 
Analysis time _t: survt

log
WBC

Rx

Sex
× log 
WBC

Sex
×  Rx

Std.
Err.

0.499

0.566

0.720

0.923

p > |z|

0.019

0.637

0.515

0.084

Haz.
Ratio

3.222

1.306

1.598

4.915

 [95% Conf. 
Interval]

1.213 8.562

0.431 3.959

0.390 6.549

0.805 30.003

Coef.

0.469

1.170

0.267

1.592

No. of subjects = 42  Log likelihood = –55.835  Stratified by sex

Females:

Males:

β̂1
∗ + β̂3

∗ = 1.170 + 0.469 = 1.639

β21 = 1.859 

β̂2
∗ + β̂4

∗ = 0.267 + 1.592 = 1.859
Rx

{
{

log WBC

log WBC β̂12 = 1.170 = β̂1
∗

Interaction model: 

hg(t,X) = h0g(t)exp[β1
∗ log WBC + β2

∗ Rx

+ β3
∗ (SEX × log WBC) 

+ β4
∗ (SEX × Rx)]

β11 = 1.639

Rx β̂22 = 0.267 = β̂2
∗

Notice that for females, the coefficient β11 in
model (�) must be equivalent to (β∗

1 + β∗
3) in

model (	) because both models have the same for-
mat, and both β11 and (β∗

1 + β∗
3) are coefficients

of the same variable, log WBC. Similarly, β21 in
model (�) is equivalent to (β∗

2 + β∗
4) in model (	)

because both are coefficients of the same variable,
Rx.

For males, it follows in an analogous way,
that the coefficient β12 is equivalent to β∗

1, and,
similarly, β22 equals β∗

2.

Here we provide computer results obtained
from fitting the alternative interaction model (	).
The estimated regression coefficients β̂

∗
1, β̂

∗
2, β̂

∗
3,

and β̂
∗
4, respectively, are circled.

We have shown above that the sums β̂
∗
1 + β̂

∗
3 and

β̂
∗
2 + β̂

∗
4 are equal to the coefficients β̂11 and β̂21,

respectively, in the original interaction model for
females.

Also, we have shown that β̂
∗
1 and β̂

∗
2 are equal

to the coefficients β̂12 and β̂22, respectively, in
the original interaction model for the males. The
numerical equivalences are shown here. Note
again that the coefficients of log WBC and Rx
for females are different from males, as is to be
expected if sex interacts with each variable.

We have thus seen that the interaction model
can be written in a format that contains product
terms involving the variable being stratified—
SEX—being multiplied by each of the predictors
not being stratified. We show this model involving
product terms again here. We will use this
model to describe a test of the no-interaction
assumption.
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EXAMPLE (continued) 

LR = −2 ln LR − (−2 ln LF)
R = reduced (no-interaction) model
F =  full (interaction) model

LR ~ χ2
2df under H0: no interaction

(2 df because two product terms tested
in interaction model)

Output: –2 log L: 111.670

No interaction (reduced model):

LR = 115.120 – 111.670 = 3.45
(P > 0.05 not significant).
Thus, the no-interaction model is accep-
table.

.

–2 ln LR

–2 ln LF

Output: –2 log L: 115.120

Interaction (full model):

Testing the no-interaction assumption:

The test is a likelihood ratio (LR) test which
compares log-likelihood statistics for the interac-
tion model and the no-interaction model. That
is, the LR test statistic is of the form −2 ln L R
minus −2 ln L F , where R denotes the reduced
model, which in this case is the no-interaction
model, and F denotes the full model, which is the
interaction model.

This LR test statistic has approximately a
chi-square distribution with 2 degrees of freedom
under the null hypothesis that the no-interaction
model is correct. The degrees of freedom here is 2
because there are two product terms being tested
in the interaction model.

The log-likelihood statistic for the reduced
model comes from the computer output for the
no-interaction model and is equal to −2 times
−57.560, or 115.120.

The log-likelihood statistic for the full model
comes from the computer results for the interac-
tion model and is equal to −2 times −55.835, or
111.670.

The LR statistic is therefore 115.120 minus
111.670, which equals 3.45. This value is not sig-
nificant at the 0.05 level for 2 degrees of freedom.
Thus, it appears that despite the numerical dif-
ference between corresponding coefficients in the
female and male models, there is no statistically
significant difference. We can therefore conclude
for these data that the no-interaction model is
acceptable (at least at the 0.05 level).

Remission data example:
� described no-interaction

assumption� evaluated assumption using LR
test� provided interaction model if
needed

Now, we generalize this process.

Using the remission data example, we have
described the no-interaction assumption, have
shown how to evaluate this assumption using a
likelihood ratio test, and have provided the form
of an interaction model that should be used in case
the no-interaction assumption does not hold. We
now describe this process more generally for any
stratified Cox analysis.
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No-interaction SC model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2

+ · · · + βp X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

Recall that the general form of the no-interaction
model for the stratified Cox procedure is given as
shown here. This model allows for several vari-
ables being stratified through the use of a newly
defined variable called Z ∗, whose strata consist of
combinations of categories of the variables being
stratified.

SC model allowing interaction:

hg (t,X) = h0g (t)exp[β1g X1

+β2g X2 + · · · + βpg X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

If, in contrast, we allow for interaction of the Z ∗
variable with the X ’s in the model, we can write
the model as shown here. Notice that in this inter-
action model, each regression coefficient has the
subscript g , which denotes the g th stratum and
indicates that the regression coefficients are dif-
ferent for different strata of Z ∗.

Alternative SC interaction model:

� uses product terms involving Z ∗
� define k∗ − 1 dummy variables

Z ∗
1 , Z ∗

2 , . . . , Z ∗
k∗−1, from Z ∗

� products of the form Z ∗
i × X j ,

where i = 1, . . . , k∗ − 1 and
j = 1, . . . , p.

An alternative way to write the interaction model
uses product terms involving the variable Z ∗
with each of the predictors. However, to write
this model correctly, we need to use k∗ − 1
dummy variables to distinguish the k∗ categories
of Z ∗; also, each of these dummy variables,
which we denote as Z ∗

1 , Z ∗
2 , . . . , Z ∗

k∗−1, needs to
be involved in a product term with each of
the X ’s.

hg (t,X) = h0g (t) exp[β1 X1 + · · · + βp X p

+β11(Z ∗
1 × X1) + · · · + βp1(Z ∗

1 × X p)

+β12(Z ∗
2 × X1) + · · · + βp2(Z ∗

2 × X p)

+ · · · + β1,k∗−1(Z ∗
k∗−1 × X1) + · · ·

+βp,k∗−1(Z ∗
k∗−1 × X p)]

g = 1, 2, . . . , k∗, strata defined from Z ∗

The hazard model formula alternative model is
shown here. Notice that the first line of the for-
mula contains the X ’s by themselves, the next line
contains products of each X j with Z ∗

1 , the third
line contains the products with Z ∗

2 , and the last
line contains products with Zk∗−1. Note also that
the subscript g occurs only with the baseline haz-
ard function h0g (t), and is not explicitly used in
the β coefficients.
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EXAMPLE (Remission Data) 

Z∗ = sex, k∗ = 2, 

g =1, 2 

β1 = β1
∗, β2 = β2

∗, β11 = β3
∗, and β21 = β4

∗

+ β11(Z∗
1 × X1)

= h0g(t)exp[β1
∗log WBC 

+ β2
∗Rx + β3

∗(sex × log WBC) 

+ β4
∗(sex × Rx)]

Z∗
1 = sex(0,1), 

X1 = log WBC, X2 = Rx (p = 2) 

hg(t,X) = h0g(t)exp[β1X1 + β2X2

+ β21(Z∗
1 × X2)]

In our previous example involving the remission
data, the stratification variable (Z ∗) was the vari-
able SEX, and k∗ was equal to 2; thus, we have
only one dummy variable Z ∗

1 , which uses a (0,1)
coding to indicate sex, and we have only ( p equal
to) two predictors—X1 equal to log WBC and X2
equal to Rx. The interaction model is then written
in either of the forms shown here.

The latter version of the interaction model is what
we previously presented for the remission data ex-
ample. Because the two versions presented here
are equivalent, it follows that β∗

1 = β1,β2 = β∗
2,

β11 = β∗
3, and β21 = β∗

4.

We have thus seen that the interaction model can
be written in a format that contains product terms
involving dummy variables (i.e., Z ∗

i ) for the vari-
able being stratified being multiplied by each of
the predictors (i.e., Xi ) not being stratified. We
will use this model to describe a test of the no-
interaction assumption.

Testing the no-interaction assump-
tion:
LR = −2 ln L R − (−2 ln L F )
R = reduced (no-interaction) model
F = full (interaction) model

contains product terms

H0 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β11 = · · · = βp1 = 0
β12 = · · · = βp2 = 0
...
β1,k∗−1 = · · · = βp,k∗−1 = 0

The test is a likelihood ratio (LR) test which com-
pares log likelihood statistics for the interaction
model and the no-interaction model. That is, the
LR test statistic is of the form −2 ln L R minus
−2 ln L F , where R denotes the reduced model,
which in this case is the no-interaction model, and
F denotes the full model, which is the interaction
model.

The no-interaction model differs from the inter-
action model in that the latter contains additional
product terms. Thus, one way to state the null hy-
pothesis of no interaction is that the coefficients
of each of these product terms are all zero.

LR ∼̇ χ2
p(k∗−1) df

under H0: no interaction

p(k∗ − 1) gives number of product
terms being tested in interaction
model

The LR test statistic has approximately a chi-
square distribution with p(k∗ − 1) degrees of free-
dom under the null hypothesis. The degrees of
freedom here is p(k∗ − 1) because this value gives
the number of product terms that are being tested
in the interaction model.
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EXAMPLE (Remission Data) 

Z∗ = sex , k∗ = 2, 

Z∗
1 = sex(0,1), 

X1 = log WBC, X2 = Rx (p = 2) 
p(k∗ − 1) = 2, so 
LR ~ χ2

2df under H0: no interaction .

Returning to the remission data example, for
which p = 2 and k∗ = 2, the value of p(k∗ − 1)
is equal to two times (2 − 1), which equals two.
Thus, to test whether the SEX variable interacts
with the log WBC and Rx predictors, the degrees
of freedom for the LR statistic is two, as previously
described.

V. A Second Example
Involving Several
Stratification Variables

The dataset “vets.dat” considers survival times in
days for 137 patients from the Veteran’s Adminis-
tration Lung Cancer Trial cited by Kalbfleisch and
Prentice in their text (The Statistical Analysis of
Survival Time Data, Wiley, pp. 223–224, 1980). The
exposure variable of interest is treatment status.
Other variables of interest as control variables are
cell type (four types, defined in terms of dummy
variables), performance status, disease duration,
age, and prior therapy status. Failure status is de-
fined by the status variable. A complete list of the
variables is shown here.

Here we provide computer output obtained from
fitting a Cox PH model to these data. Using the
P(PH) information in the last column, we can see
that at least four of the variables listed have P(PH)
values below the 0.100 level. These four variables
are labeled in the output as large cell (0.033),
adeno cell (0.081), small cell (0.078), and Perf. Stat
(0.000). Notice that the three variables, large cell,
adeno cell, and small cell, are dummy variables
that distinguish the four categories of cell type.

Thus, it appears from the P(PH) results that the
variables cell type (defined using dummy vari-
ables) and performance status do not satisfy the
PH assumption.

Based on the conclusions just made about the PH
assumption, we now describe a stratified Cox anal-
ysis that stratifies on the variables, cell type and
performance status.

EXAMPLE 
vets.dat: survival time in days, n = 137 

Veteran’s Administration Lung Cancer Trial 
Column   1: Treatment (standard = 1, test = 2) 
Column   2: Cell type 1 (large = 1, other = 0) 
Column   3: Cell type 2 (adeno = 1, other = 0) 
Column   4: Cell type 3 (small = 1, other = 0) 
Column   5: Cell type 4 (squamous = 1, other = 0)
Column   6: Survival time (days) 
Column   7: Performance status (0 = worst, ..., 

100 = best) 
Column   8: Disease duration (months) 
Column   9: Age 
Column 10: Prior therapy (none = 0, some = 10) 
Column 11: Status (0 = censored, 1 = died)

Cox regression 
Analysis time _t: survt

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf. 
Interval] P(PH)

Treatment 0.290  0.207  0.162 1.336  0.890 2.006  0.628
Large cell 0.400  0.283  0.157 1.491  0.857 2.594  0.033
Adeno cell 1.188  0.301  0.000 3.281 1.820 5.915  0.081
Small cell 0.856  0.275  0.002 2.355 1.374 4.037  0.078
Perf. Stat –0.033  0.006  0.000 0.968  0.958 0.978  0.000
Dis. Durat. 0.000  0.009  0.992 1.000 0.982 1.018  0.919
Age –0.009  0.009  0.358 0.991 0.974 1.010  0.198
Pr. Therapy 0.007  0.023  0.755 1.007  0.962 1.054  0.145

No. of subjects = 137  Log likelihood = –475.180

Variables not satisfying PH: 
•    cell type (3 dummy variables) 
•   performance status 
•   prior therapy (possibly)

SC model: stratifies on cell type and per-
formance status
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EXAMPLE (continued) 

Z∗ given by combinations of categories:

Z∗ has k∗= 4 × 2 = 8 categories 

•    cell type (four categories)
•  performance status (interval) change

  to
•  PSbin (two categories)

•  treatment status
•  disease duration
•   age
•  prior therapy

Four other variables considered as X’s:

Here, we use treatment status and age
as X’s

Stratified Cox regression
Analysis time _t: survt

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf.
Interval]

Treatment

Age

0.125 0.208 0.548 1.134 0.753 1.706

– 0.001 0.010 0.897 0.999 0.979 1.019

No. of subjects = 137  Log likelihood = –262.020  Stratified by Z
∗

No-interaction model

HR = 1.134 (P = 0.548)

T̂reatment effect (adjusted for age
and Z∗) is nonsignificant

No-interaction model:

Interaction model:

hg(t,X)
= h0g(t)exp[β1 Treatment + β2 Age]
g = 1, 2 , . . ., 8 (= # of strata

defined from Z∗)

hg(t,X)
= h0g(t)exp[β1g Treatment + β2g Age]
g = 1, 2 , . . ., 8

Because we are stratifying on two variables, we
need to form a single new categorical variable
Z ∗ whose categories represent combinations of
categories of the two variables. The cell type
variable has four categories by definition. The
performance status variable, however, is an
interval variable ranging between 0 for worst to
100 for best, so it needs to be categorized. We
categorize this variable into two groups using a
cutpoint of 60, and we denote this binary variable
as PSbin. Thus, the number of categories for our
Z ∗ variable is 4 × 2, or 8; that is, k∗ = 8.

In addition to the two stratification variables, cell
type and performance status, there are four other
variables to be considered as predictors in the
stratified Cox model. These are treatment status,
disease duration, age, and prior therapy.

For illustrative purposes here, we use only
treatment status and age as predictors. The
other two variables, disease duration and prior
therapy, are considered in exercises following this
presentation.

Here we show computer output from fitting a
stratified Cox model that stratifies on cell type
and performance status using the eight-category
stratification variable Z ∗. This model also in-
cludes treatment and age as predictors. These
results consider a no-interaction model, because
only one regression coefficient is provided for
the treatment and age predictors. Notice that the
estimated hazard ratio is 1.134 for the effect of
the treatment variable adjusted for age and Z ∗,
the latter being adjusted by stratification. The
p-value for this adjusted treatment effect is 0.548,
which is highly nonsignificant.

The no-interaction model we have just described
has the hazard function formula shown here.

To evaluate whether the no-interaction model
is appropriate, we need to define an interaction
model that allows different regression coeffi-
cients for different strata. One way to write this
interaction model is shown here.
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EXAMPLE (continued) 

Alternative interaction model: 

hg(t,X) = h0g(t)exp[β1 Treatment + β2 Age
+ β11(tr Z∗

1) + β12(tr Z∗
2) + β13(tr Z∗

3)
+ β14(tr Z∗

4) + β15(tr Z∗
1Z∗

4)
+ β16(tr Z∗

2Z∗
4) + β17(tr Z∗

3 Z∗
4)

+ β21(AGE Z∗
1) + β22(AGE Z∗

2)
+ β23(AGE Z∗

3) + β24(AGE Z∗
4)

+ β25(AGE Z∗
1Z∗

4) + β26(AGE Z∗
2 Z∗

4)
+ β27(AGE Z∗

3Z∗
4)]

Another version of interaction model:
Replace Z∗

1, ..., Z∗
7 by

Z∗
1 = large cell (binary) 

Z∗
2 = adeno cell (binary)

Z∗
3 = small cell (binary)

Z∗
4 = PSbin (binary)

Z∗
5 = Z∗

1 × Z∗
4

Z∗
6 = Z∗

2 × Z∗
4

Z∗
7 = Z∗

3 × Z∗
4

hg(t,X)
= h0g(t)exp[β1 Treatment

+ β2 Age

   + β11(Z∗
1 × Treatment) + . . . 

+ β17(Z∗
7 × Treatment)

+ β21(Z∗
1 × Age) + . . . + β27(Z∗

7 × Age)]

g = 1, 2 , . . ., 8

An alternative version of this interaction model
that involves product terms is shown here. This
version uses seven dummy variables denoted as
Z ∗

1 , Z ∗
2 up through Z ∗

7 to distinguish the eight cat-
egories of the stratification variable Z ∗. The model
contains the main effects of treatment and age
plus interaction terms involving products of each
of the seven dummy variables with each of the two
predictors.

Yet another version of the interaction model is to
replace the seven dummy variables Z ∗

1 to Z ∗
7 by

the seven variables listed here. These variables are
three of the binary variables making up the cell
type variable, the binary variable for performance
status, plus three product terms involving each of
the cell type dummy variables multiplied by the
PSbin dummy variable (Z ∗

4).

The latter interaction model is shown here. In this
model, the variable tr Z ∗

1 denotes the product of
treatment status with the large cell dummy Z ∗

1 , the
variable tr Z ∗

2 denotes the product of treatment
status with the adeno cell variable Z ∗

2 , and so on.
Also, the variable tr Z ∗

1 Z ∗
4 denotes the triple prod-

uct of treatment status times the large cell vari-
able Z ∗

1 times the PSbin variable Z ∗
4 , and so on,

for the other triple product terms involving treat-
ment. Similarly, for the terms involving age, the
variable Age Z ∗

1 denotes the product of age with
Z ∗

1 , and the variable Age Z ∗
1 Z ∗

4 denotes the triple
product of age times Z ∗

1 times Z ∗
4 .

Note that we are just considering the interaction
between the stratified variables and the predictors.
We could also (but do not) consider the interaction
between the two predictors, treatment, and age.
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EXAMPLE (continued) 

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf. 
Interval]

Treatment 0.286 0.664 0.667 1.331 0.362 4.893
Age 0.000 0.030 0.978 0.999 0.942 1.060
tr Z∗

1 2.351 1.772 0.184 10.495 0.326 337.989

tr Z∗
2 –1.158 0.957 0.226 0.314 0.048 2.047

tr Z∗
3 0.582 0.855 0.496 1.790 0.335 9.562

tr Z∗
4 –1.033 0.868 0.234 0.356 0.065 1.950

tr Z∗
1Z∗

4 –0.794 1.980 0.688 0.452 0.009 21.882

tr Z∗
2Z∗

4 2.785 1.316 0.034 16.204 1.229 213.589

tr Z∗
3Z∗

4 0.462 1.130 0.683 1.587 0.173 14.534

Age Z∗
1 0.078 0.064 0.223 1.081 0.954 1.225

Age Z∗
2 –0.047 0.045 0.295 0.954 0.873 1.042

Age Z∗
3 –0.059 0.042 0.162 0.943 0.868 1.024

Age Z∗
4 0.051 0.048 0.287 1.053 0.958 1.157

Age Z∗
1Z∗

4 –0.167 0.082 0.042 0.847 0.721 0.994

Age Z∗
2Z∗

4 –0.045 0.068 0.511 0.956 0.838 1.092

Age Z∗
3Z∗

4 0.041 0.061 0.499 1.042 0.924 1.175

Stratified Cox Regression Analysis on 
Variable: Z∗

Response: Surv. Time

No. of subjects = 137  Log likelihood = –249.972  Stratified by Z∗

Eight possible combinations of Z∗
1 to Z∗

4:

g = 1: Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0
g = 2: Z∗

1 = 1, Z∗
2 = Z∗

3 = Z∗
4 = 0

g = 3: Z∗
2 = 1, Z∗

1 = Z∗
3 = Z∗

4 = 0
g = 4: Z∗

3 = 1, Z∗
1= Z∗

2 = Z∗
4 = 0

g = 5: Z∗
1 = Z∗

2 = Z∗
3 = 0, Z∗

4 = 1
g = 6: Z∗

1 = 1, Z∗
2 = Z∗

3 = 0, Z∗
4 = 1

g = 7: Z∗
2 = 1, Z∗

1 = Z∗
3 = 0, Z∗

4 = 1
g = 8: Z∗

3 = 1, Z∗
1 = Z∗

2 = 0, Z∗
4 = 1

g = 1: Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0
(Squamous cell type and PSbin = 0)

All product terms are zero:
h1(t,X)
= h01(t)exp[β1Treatment + β2 Age],

where β̂1 = 0.286, 

β̂2 = 0.000, so that 
ĥ1(t,X) = ĥ01(t)exp[(0.286)Treatment]

g = 2: Z∗
1 = 1, Z∗

2 = Z∗
3 = Z∗

4 = 0
(Large cell type and PSbin = 0)

Nonzero product terms     Coefficients

Age Z∗
1 = Age β21

tr Z∗
1 = Treatment β11

Here we provide the computer results from fitting
the interaction model just described. Notice that
the first two variables listed are the main effects
of treatment status and age. The next seven vari-
ables are product terms involving the interaction
of treatment status with the seven categories of Z ∗.
The final seven variables are product terms involv-
ing the interaction of age with the seven categories
of Z ∗. As defined on the previous page, the seven
variables used to define Z ∗ consist of three dummy
variables Z ∗

1 , Z ∗
2 and Z ∗

3 for cell type, a binary vari-
able Z ∗

4 for performance status and products of Z ∗
4

with each of Z ∗
1 , Z ∗

2 , and Z ∗
3 . Note that once the

variables Z ∗
1 , Z ∗

2 , Z ∗
3 , and Z ∗

4 are specified, the val-
ues of the three product terms are automatically
determined.

We can use these results to show that the inter-
action model being fit yields different regression
coefficients for each of the eight categories defined
by the subscript g for the stratification variable Z ∗.
These eight categories represent the possible com-
binations of the four variables Z ∗

1 to Z ∗
4 , as shown

here.

Consider the hazard function when the variables
Z ∗

1 through Z ∗
4 are all equal to zero. This stratum

is defined by the combination of squamous cell
type and a binary performance status value of 0.
In this case, all product terms are equal to zero
and the hazard model contains only the main ef-
fect terms treatment and age. The estimated haz-
ard function for this stratum uses the coefficients
0.286 for treatment and 0.000 for age, yielding the
expression shown here. Note that age drops out
of the expression because its coefficient is zero to
three decimal places.

Now consider the hazard function when the vari-
able Z ∗

1 equals 1 and Z ∗
2 through Z ∗

4 are equal to
zero. This stratum is defined by the combination
of large cell type and a PSbin value of 0. In this
case, the only nonzero product terms are Age Z ∗

1
and tr Z ∗

1 , whose coefficients are β21 and β11, re-
spectively.
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EXAMPLE (continued) 

h2(t,X) = h02(t)exp[(β1 + β11)Treatment
+ (β2 + β21) Age]

β̂1 = 0.286, β̂2 = 0.000

β̂11 = 2.351, β̂21 = 0.078

Hazard functions for interaction model:

g = 1: (Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0):
ĥ1(t,X) = ĥ01(t)exp[(0.286)Treatment]

g = 2: (Z∗
1 = 1, Z∗

2 = Z∗
3 = Z∗

4 = 0):
ĥ2(t,X) = ĥ02(t)exp[(2.637)Treatment

+ (0.078)Age]
g = 3: (Z∗

2 = 1, Z∗
1 = Z∗

3 = Z∗
4 = 0):

ĥ3(t,X) = ĥ03(t)exp[(−0.872)Treatment

+ (–0.047)Age]
g = 4: (Z∗

3 = 1, Z∗
1 = Z∗

2 = Z∗
4 = 0):

ĥ4(t,X) = ĥ04(t)exp[(0.868)Treatment

+ (−0.059)Age]
g = 5: (Z∗

1 = Z∗
2 = Z∗

3 = 0, Z∗
4 = 1):

ĥ5(t,X) = ĥ05(t)exp[(–0.747)Treatment

+ (0.051)Age]
g = 6: (Z∗

1 = 1, Z∗
2 = Z∗

3 = 0, Z∗
4 = 1):

ĥ6(t,X) = ĥ06(t)exp[(0.810)Treatment

+ (−0.038)Age]
g = 7: (Z∗

2 = 1, Z∗
1 = Z∗

3 = 0, Z∗
4 = 1):

ĥ7(t,X) = ĥ07(t)exp[(0.880)Treatment

+ (−0.041)Age]
g = 8: (Z∗

3 = 1, Z∗
1 = Z∗

2 = 0, Z∗
4 = 1):

ĥ8(t,X) = ĥ08(t)exp[(0.297)Treatment

+ (0.033)Age]

LR test to compare no-interaction model
with interaction model:

H0: no-interaction model acceptable, i.e.,
Treatment: β11 = β12 = . . . = β17 = 0
and Age: β21 = β22 = . . . = β27 = 0 

14 coefficients ⇒ df = 14 

LR = –2 ln LR − (2 ln LF)

F = full (interaction) model

R = reduced (no-interaction) model

The hazard function for this second stratum is
shown here. Notice that the coefficients of the
treatment and age variables are (β1 + β11) and
(β2 + β21), respectively. The estimated values of
each of these coefficients are given here.

The corresponding estimated hazard function for
the second stratum (i.e., g = 2) is shown here. For
comparison, we repeat the estimated hazard func-
tion for the first stratum.

The estimated hazard functions for the remain-
ing strata are provided here. We leave it up to the
reader to verify these formulae. Notice that the co-
efficients of treatment are all different in the eight
strata, and the coefficients of age also are all dif-
ferent in the eight strata.

We have presented computer results for both the
no-interaction and the interaction models. To eval-
uate whether the no-interaction assumption is sat-
isfied, we need to carry out a likelihood ratio test
to compare these two models.

The null hypothesis being tested is that the no-
interaction model is acceptable. Equivalently, this
null hypothesis can be stated by setting the co-
efficients of all product terms in the interaction
model to zero. That is, the seven coefficients of
product terms involving treatment and the seven
coefficients of the product terms involving age are
set equal to zero as shown here.

Because the null hypothesis involves 14 coeffi-
cients, the degrees of freedom of the LR chi-
square statistic is 14. The test statistic takes the
usual form involving the difference between log-
likelihood statistics for the reduced and full mod-
els, where the reduced model is the no-interaction
model and the full model is the interaction model.
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EXAMPLE (continued) 

LR~χ2
14df under H0: no interaction

LR = (−2 × –262.020) − (−2 × –249.972)
= 524.040 − 499.944 = 24.096

P = 0.045 (significant at 0.05)
Conclusion:
Reject H0: interaction model is
preferred.

Might use further testing to simplify
interaction model, e.g., test for seven
products involving treatment or test for
seven products involving age.

.

Thus, under the null hypothesis, the LR statistic
is approximately chi-square with 14 degrees of
freedom.

The computer results for the no-interaction and
interaction models give log-likelihood values of
524.040 and 499.944, respectively. The difference
is 24.096. A chi-square value of 24.096 with 14 de-
grees of freedom yields a p-value of 0.045, so that
the test gives a significant result at the 0.05 level.
This indicates that the no-interaction model is not
acceptable and the interaction model is preferred.

Note, however, that it may be possible from fur-
ther statistical testing to simplify the interaction
model to have fewer than 14 product terms. For
example, one might test for only the seven prod-
uct terms involving treatment or only the seven
product terms involving age.

VI. A Graphical View of the
Stratified Cox Approach

a. h(t) = h0(t)exp(β1RX
+β2SEX)

ln(− ln S(t)) = ln(− ln S0(t))
+β1RX + β2SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t

In this section we examine four log–log survival
plots illustrating the assumptions underlying a
stratified Cox model with or without interaction.
Each of the four models considers two dichoto-
mous predictors: treatment (coded RX = 1 for
placebo and RX = 0 for new treatment) and SEX
(coded 0 for females and 1 for males). The four
models are as follows (see left).

a. h0(t)exp(β1RX + β2SEX). This model
assumes the PH assumption for both RX
and SEX and also assumes no interaction
between RX and SEX. Notice all four
log–log curves are parallel (PH assumption)
and the effect of treatment is the same for
females and males (no interaction). The
effect of treatment (controlling for SEX)
can be interpreted as the distance between
the log–log curves from RX = 1 to RX = 0,
for males and for females, separately.
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b. h(t) = h0(t) exp(β1RX + β2SEX
+β3 RX × SEX)

ln(−ln S(t)) = ln(−ln S0(t))
+ β1RX+β2SEX+β3RX×SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0
females, RX = 1

t

c. h(t) = h0g(t)exp(β1RX)
(g = 1 for males, g = 0 for
females)
ln(−lnS(t)) = ln(− ln S0g(t))

+ β1RX

ln(−lnS(t))

males, RX = 1
males, RX = 0

females, RX = 0

females, RX = 1
t

d. h(t) = h0g(t)exp(β1RX
+ β2 RX × SEX)

(g = 1 for males, g = 0 for
females)
ln(−ln S(t)) = ln(−ln S0g(t))

+β1RX + β2 RX ×SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t

b. h(t) = h0(t)exp(β1RX + β2SEX + β3
RX × SEX). This model assumes the PH
assumption for both RX and SEX and
allows for interaction between these two
variables. All four log–log curves are
parallel (PH assumption) but the effect of
treatment is larger for males than females
as the distance from RX = 1 to RX = 0 is
greater for males.

c. h(t) = h0g(t)exp(β1RX), where g = 1 for
males, g = 0 for females. This is a stratified
Cox model in which the PH assumption is
not assumed for SEX. Notice the curves for
males and females are not parallel.
However, the curves for RX are parallel
within each stratum of SEX indicating that
the PH assumption is satisfied for RX. The
distance between the log–log curves from
RX = 1 to RX = 0 is the same for males
and females indicating no interaction
between RX and SEX.

d. h(t) = h0g(t) exp(β1RX + β2RX × SEX),
where g = 1 for males, g = 0 for females.
This is a stratified Cox model allowing for
interaction of RX and SEX. The curves for
males and females are not parallel
although the PH assumption is satisfied for
RX within each stratum of SEX. The
distance between the log–log curves from
RX = 1 to RX = 0 is greater for males than
females indicating interaction between RX
and SEX.
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VII. Summary We now summarize the most important features
of the stratified Cox (SC) model described in this
presentation.

The SC model is a modification of the Cox PH
model to allow for control by “stratification” of
predictors not satisfying the PH assumption. Vari-
ables that are assumed to satisfy the assumption
are included in the model as predictors; the strat-
ified variables are not included in the model.

Stratified Cox (SC) model:

� stratification of predictors not
satisfying PH assumption� includes predictors satisfying
PH� does not include stratified
variables

Computer Results

Stratified Cox regression
Analysis time t: survt

Std. Haz. [95% Conf.
Coef. Err. p > |z| Ratio Interval]

log
WBC 1.390 0.338 0.000 4.016 2.072 7.783
RX 0.931 0.472 0.048 2.537 1.006 6.396
No. of Log likelihood Stratified
subjects = 42 = −57.560 by sex

The computer results for a SC model provides
essentially the same type of output as provided
for a Cox PH model without stratification. An ex-
ample of SC output using the remission data is
shown here. The variables included as predictors
in the model are listed in the first column followed
by their estimated coefficients, standard errors,
p-values, hazard ratio values, and 95% confidence
limits. Such information cannot be provided for
the variables being stratified, because these lat-
ter variables are not explicitly included in the
model.

Hazard function for stratified Cox
model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2

+ · · · + βp X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

Z ∗ has k∗ categories
X1, X2, . . . , X p satisfy PH

The general hazard function form for the stratified
Cox model is shown here. This formula contains
a subscript g that indicates the gth stratum, where
the strata are different categories of the stratifica-
tion variable Z ∗ and the number of strata equals
k∗. Notice that the baseline hazard functions are
different in each stratum.

Stratification variable Z∗:

� identify Z1, Z2, . . . , Zk not
satisfying PH� categorize each Z� form combinations of categories
(strata)� each combination is a stratum
of Z ∗

The variable Z ∗ is defined by first identifying the
Zi variables not satisfying the PH assumption. We
then categorize each Z and form combinations of
categories of each of the Z’s. Each combination
represents a different stratum making up the vari-
able Z ∗.
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No-interaction model:
Same coefficients β1,β2, . . . ,βp
for each g, i.e., Z ∗ does not interact
with the X ’s.

The above model is designated as a “no-
interaction” model because the β’s in the model
are the same for each subscript g. The no-
interaction assumption means that the variables
being stratified are assumed not to interact with
the X ’s in the model.

Different
baselines

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h01(t) ⇒ Ŝ1(t)
h02(t) ⇒ Ŝ2(t)

...
h0k(t) ⇒ Ŝk∗ (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Different
survival
curves

For the no-interaction model, the fitted SC model
will yield different estimated survival curves for
each stratum because the baseline hazard func-
tions are different for each stratum.

ĤR same for each stratum However, because the coefficients of the X ’s are the
same for each stratum, estimates of hazard ratios
are the same for each stratum.

(Partial) likelihood function:

L = L1 × L2 × · · · × Lk∗

Regression coefficients in the SC model are esti-
mated by maximizing a partial likelihood function
that is obtained by multiplying likelihood func-
tions for each stratum.

Stratified Cox model allowing interaction:

hg (t,X) = h0 g (t) exp[β1g X1 + β2g X2

+ · · · + βpg X p]

g = 1, 2, . . . , k∗, strata defined from Z ∗.

In order to evaluate the no-interaction assump-
tion, we must define an interaction model for com-
parison. One version of the interaction model is
shown here. This version shows regression coeffi-
cients with different subscripts in different strata;
that is, each β coefficient has a subscript g.

Alternative stratified Cox interac-
tion model:

� uses product terms involving Z ∗
� define k∗ − 1 dummy variables

from Z ∗
� products of the form Z ∗

i × X j

An alternative way to write the interaction model
uses product terms involving the Z ∗ variable with
each predictor. This model uses k∗−1 dummy vari-
ables to distinguish the k∗ categories of Z ∗. Each
of these dummy variables is included as a product
term with each of the X ’s.

Testing the no-interaction assump-
tion:

LR = −2 ln L R − (2 ln L F )
R = reduced (no-interaction) model
F = full (interaction) model

contains product terms
LR∼̇χ2

p(k∗−1)df under H0: no
interaction

To evaluate the no-interaction assumption, we can
perform a likelihood ratio test that compares the
(reduced) no-interaction model to the (full) inter-
action model. The null hypothesis is that the no-
interaction assumption is satisfied. The test statis-
tic is given by the difference between the log-
likelihood statistics for the no-interaction and in-
teraction models. This statistic is approximately
chi-square under the null hypothesis. The degrees
of freedom is p(k∗−1) where p denotes the num-
ber of X ’s and k∗ is the number of categories mak-
ing up Z ∗.
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PRESENTATION COMPLETE!

Chapters This presentation is now complete. We suggest
that the reader review this presentation using the
detailed outline that follows. Then answer the
practice exercises and the test that follow.

The next Chapter (6) is entitled “Extension of the
Cox PH Model for Time-Dependent Variables.”
There we show how an “extended” Cox model
can be used as an alternative to the stratified Cox
model when one or more predictors do not satisfy
the PH assumption. We also discuss more gener-
ally what is a time-dependent variable, and show
how such a variable can be evaluated using an ex-
tended Cox model.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

√
5.

�
�

�
�The Stratified Cox Procedure

Next:

6. Extension of the Cox
Proportional Hazards Model for
Time-Dependent Variables
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Detailed
Outline

I. Preview (page 176)
A. Focus on how stratified Cox (SC) procedure is

carried out:� analysis of computer results from SC
procedure;� hazard function for SC model;� stratifying on a single predictor versus two or
more predictors;� no-interaction versus interaction models.

II. An Example (pages 176–180)
A. Cox PH results for remission data yield

P (PH) = 0.031 for SEX.
B. SC model used: control for SEX (stratified);

include log WBC and Rx in model.
C. Analysis of Rx effect from stratified Cox

results:
ĤR = 2.537; 95% CI: (1.006,6.396); LR and
Wald tests: P < 0.05.

D. Hazard model: hg (t, X) =
h0g(t) exp[β1 log WBC + β2 Rx], g = 1,2� different baseline hazard functions and

survival curves for females and males;� same coefficients β1 and β2 for both females
and males (no-interaction assumption);� obtain estimates by maximizing partial
likelihood L = L1 × L2.

E. Graph of four adjusted survival curves for Rx
(adjusted for log WBC).

III. The General Stratified Cox (SC) Model
(pages 180–181)
A. hg (t,X) = h0g (t) exp [β1 X1 +β2 X2 + · · · +βp X p],

g = 1, 2, · · · , k∗ ,

where the strata are defined from the stratification
variable Z ∗.

B. Z ∗ defined from Z1, Z2, . . . , Zk variables that do
not satisfy PH:� categorize each Zi� form combinations of categories� each combination is a stratum of Z ∗

C. Different baseline hazard functions and survival
curves for each stratum.
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D. Assumes no interaction: same coefficients
β1,β2, . . . ,βp for each g; i.e., Z ∗ does not interact
with the X’s; i.e., estimated HR is same for each
stratum.

E. Obtain estimates by maximizing partial likelihood
L = L1 × L2 × · · · × Lk∗ , where Li is likelihood
for ith stratum.

IV. The No-Interaction Assumption and How to Test It
(pages 182–188)
A. Assumes same coefficients β1,β2, . . . ,βp for each

g.
B. Interaction model:

hg (t, X) = h0g (t)exp[β1g X1 + β2g X2 + · · · + βpg X p] ,

g = 1, 2, . . . , k∗ strata defined from Z ∗.
C. Alternative stratified Cox interaction model:� uses product terms involving Z ∗

� define k∗−1 dummy variables
Z ∗

1 , Z ∗
2 , . . . , Zk∗−1

∗ from Z ∗
� products of the form Z ∗

i × X j , where
i = 1, . . . , k∗ − 1; j = 1, . . . , p� hazard function: g = 1, 2, . . . , k∗ strata
defined from Z ∗

hg (t,X) = h0g (t)exp[β1 X1 + · · · + βp X p + β11(Z ∗
1 × X1)

+ · · · + βp1(Z ∗
1 × X p) + β12(Z ∗

2 × X1) + · · · + βp2(Z ∗
2 × X p)

+ · · · + β1,k∗−1(Z ∗
k∗−1 × X1) + · · · + βp,k∗−1(Z ∗

k∗−1 × X p)]

D. Testing the no-interaction assumption: use LR
statistic given by L R = −2 ln L R − (−2 ln LF)
where R = reduced (no interaction) model and
F = full (interaction) model
L R∼̇χ2

p(k∗−1)df under H0: no interaction,
i.e., β11 = β21 = . . . = βp,k∗−1 = 0

V. A Second Example Involving Several Stratification
Variables (pages 188–193)
A. Dataset “vets.dat” from Veteran’s Administration

Lung Cancer Trial; n = 137; survival time in days.
B. Variables are: treatment status, cell type (four

types), performance status, disease duration, age,
and prior therapy status.

C. Cox PH results indicate [using P (PH)] that cell
type and performance status do not satisfy PH
assumption.
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D. Example stratifies on cell type and performance
status using four categories of cell type and two
categories of performance status, so that Z ∗ has
k∗ = 8 strata.

E. X ’s considered in model are treatment status and
age.

F. Computer results for no-interaction model:
estimated HR for effect of treatment adjusted for
age and Z ∗ is 1.134 (P = 0.548); not significant.

G. Hazard function for no-interaction model:
hg (t,X) = h0g(t) exp [β1 Treatment + β2 Age],
g = 1, 2, . . . , 8

H. Hazard function for interaction model:
hg (t,X) = h0g(t) exp [β1g Treatment + β2g Age],
g = 1, 2, . . . , 8

I. Alternative version of interaction model:
hg (t,X) = h0g (t) exp [β1 Treatment + β2 Age
+ β11(Z ∗

1 × Treatment) + · · · + β17(Z ∗
7 × Treatment)

+ β21(Z ∗
1 × Age) + · · · + β27(Z ∗

7 × Age)],
g = 1, 2, . . . , 8
where Z ∗

1 = large cell (binary), Z ∗
2 = adeno cell

(binary), Z ∗
3 = small cell (binary), Z ∗

4 = PSbin
(binary), Z ∗

5 = Z ∗
1 × Z ∗

4 , Z ∗
6 = Z ∗

2 × Z ∗
4 ,

Z ∗
7 = Z ∗

3 × Z ∗
4

J. Demonstration that alternative interaction version
(in item I) is equivalent to original interaction
formulation (in item H) using computer results for
the alternative version.

K. Test of no-interaction assumption:� null hypothesis: β11 = β12 = . . . = β17 = 0
and β21 = β22 = . . . = β27 = 0� LR∼̇χ2

14 df under H0: no interaction� LR = 524.040 − 499.944 = 24.096
(P = 0.045)
Conclusion: Reject null hypothesis;
interaction model is preferred.

VI. A Graphical View of the Stratified Cox Approach
(pages 193–194)
Comparison of log–log survival curves
1. Describe interaction of Rx and Sex.
2. Describe violation of PH assumption for Sex.

VII. Summary (pages 195–196)
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Practice
Exercises

The following questions derive from the dataset vets.dat con-
cerning the Veteran’s Administration Lung Cancer Trial that
we previously considered in the presentation on the stratified
Cox model. Recall that survival times are in days and that
the study size contains 137 patients. The exposure variable
of interest is treatment status (standard = 1, test = 2). Other
variables of interest as control variables are cell type (four
types, defined in terms of dummy variables), performance
status, disease duration, age, and prior therapy status. Fail-
ure status is defined by the status variable (0 = censored,
1 = died).

1. Consider the following two edited printouts obtained
from fitting a Cox PH model to these data.

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Perf.Stat −0.033 0.006 0.000 0.968 0.958 0.978 0.000
Dis.Durat. 0.000 0.009 0.992 1.000 0.982 1.018 0.919
Age −0.009 0.009 0.358 0.991 0.974 1.010 0.198
Pr.Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects = 137 Log likelihood = −475.180

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.298 0.197 0.130 1.347 0.916 1.981 0.739
Small cell 0.392 0.210 0.062 1.481 0.981 2.235 0.382
Perf.Stat −0.033 0.005 0.000 0.968 0.958 0.978 0.000
Dis.Durat. −0.001 0.009 0.887 0.999 0.981 1.017 0.926
Age −0.006 0.009 0.511 0.994 0.976 1.012 0.211
Pr.Therapy −0.003 0.023 0.884 0.997 0.954 1.042 0.146

No. of subjects = 137 Log likelihood = −487.770

How do the printouts differ in terms of what the P(PH)
information says about which variables do not satisfy
the PH assumption?

2. Based on the above information, if you were going to
stratify on the cell type variable, how would you define
the strata? Explain.



202 5. The Stratified Cox Procedure

3. Consider a stratified analysis that stratifies on the vari-
ables Z1 = “small cell” and Z2 = “performance status.”
The small cell variable is one of the dummy variables for
cell type defined above. The performance status variable
is dichotomized into high (60 or above) and low (below
60) and is denoted as PSbin. The stratification variable
which combines categories from Z1 and Z2 is denoted as
SZ ∗ and consists of four categories. The predictors in-
cluded (but not stratified) in the analysis are treatment
status, disease duration, age, and prior therapy. The com-
puter results are as follows:

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.090 0.197 0.647 1.095 0.744 1.611
Dis.Durat. 0.000 0.010 0.964 1.000 0.982 1.019
Age 0.002 0.010 0.873 1.002 0.983 1.021
Pr.Therapy −0.010 0.023 0.656 0.990 0.947 1.035

No. of subjects = 137 Log likelihood = −344.848 Stratified by SZ∗

Based on these results, describe the point and interval
estimates for the hazard ratio for the treatment effect ad-
justed for the other variables, including SZ ∗. Is this haz-
ard ratio meaningfully and/or statistically significant?
Explain.

4. State the form of the hazard function for the model being
fit in question 3. Why does this model assume no interac-
tion between the stratified variables and the predictors
in the model?

5. State two alternative ways to write the hazard function
for an “interaction model” that allows for the interac-
tion of the stratified variables with the treatment status
variable, but assumes no other type of interaction.

6. State two alternative versions of the hazard function for
an interaction model that allows for the interaction of
the stratified variables (small cell and performance sta-
tus) with each of the predictors treatment status, disease
duration, age, and prior therapy.

7. For the interaction model described in question 6, what
is the formula for the hazard ratio for the effect of treat-
ment adjusted for the other variables? Does this formula
give a different hazard ratio for different strata? Explain.
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8. State two alternative versions of the null hypothesis for
testing whether the no-interaction assumption is satis-
fied for the stratified Cox model. Note that one of these
versions should involve a set of regression coefficients
being set equal to zero.

9. State the form of the likelihood ratio statistic for evaluat-
ing the no-interaction assumption. How is this statistic
distributed under the null hypothesis, and with what de-
grees of freedom?

10. Provided below are computer results for fitting the in-
teraction model described in question 6. In this print-
out the variable Z ∗

1 denotes the small cell variable and
the variable Z ∗

2 denotes the PSbin variable. The variable
DDZ∗

1 denotes the product of Z∗
1 with disease duration,

and other product terms are defined similarly.

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.381 0.428 0.374 1.464 0.632 3.389
Dis.Durat. 0.015 0.021 0.469 1.015 0.975 1.057
Age 0.000 0.017 0.994 1.000 0.968 1.033
Pr.Therapy 0.023 0.041 0.571 1.023 0.944 1.109
DDZ∗

1 −0.029 0.024 0.234 0.971 0.926 1.019
AgeZ∗

1 −0.055 0.037 0.135 0.946 0.880 1.018
PTZ∗

1 0.043 0.075 0.564 1.044 0.901 1.211
DDZ∗

2 0.025 0.032 0.425 1.026 0.964 1.092
AgeZ∗

2 0.001 0.024 0.956 1.001 0.956 1.049
PTZ∗

2 −0.078 0.054 0.152 0.925 0.831 1.029
DDZ1Z∗

2 −0.071 0.059 0.225 0.931 0.830 1.045
AgeZ1Z∗

2 0.084 0.049 0.084 1.088 0.989 1.196
PTZ1Z∗

2 −0.005 0.117 0.963 0.995 0.791 1.250
trZ∗

1 0.560 0.732 0.444 1.751 0.417 7.351
trZ∗

2 −0.591 0.523 0.258 0.554 0.199 1.543
trZ1Z∗

2 −0.324 0.942 0.731 0.723 0.114 4.583

No. of subjects = 137 Log likelihood = −335.591 Stratified by SZ∗

Use the above computer results to state the form of the
estimated hazard model for each of the four strata of the
stratification variable SZ∗. Also, for each strata, compute
the hazard ratio for the treatment effect adjusted for dis-
ease duration, age, and prior therapy.
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11. Carry out the likelihood ratio test to evaluate the no-
interaction model described in question 4. In carrying
out this test, make sure to state the null hypothesis in
terms of regression coefficients being set equal to zero in
the interaction model fitted in question 10. Also, deter-
mine the p-value for this test and state your conclusions
about significance as well as which model you prefer, the
no-interaction model or the interaction model.

12. The adjusted log–log survival curves for each of the four
strata defined by the stratification variable SZ ∗ (adjusted
for treatment status, disease duration, age, and prior
therapy) are presented below.

6

4

2

0

0 200 400 600 800 Days
−2

Adjusted log–log survival curves by SZ∗Ŝ adj ∗∗∗

Using this graph, what can you conclude about whether
the PH assumption is satisfied for the variables, small
cell type and PSbin?

13. Comment on what you think can be learned by graphing
adjusted survival curves that compare the two treatment
groups for each of the four strata of SZ ∗.

Test The following questions consider a dataset from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin addicts
from entry to departure from one of two methadone clinics.
Two other covariates, namely, prison record and maximum
methadone dose, are believed to affect the survival times. The
dataset name is addicts.dat. A listing of the variables is given
below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)
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Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting a
Cox PH model to these data:

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

clinic −1.009 0.215 0.000 0.365 0.239 0.556 0.001
prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
dose −0.035 0.006 0.000 0.965 0.953 0.977 0.341

No. of subjects = 238 Log likelihood = −673.403

Based on the P(PH) information in the above printout, it
appears that clinic does not satisfy the PH assumption;
this conclusion is also supported by comparing log–log
curves for the two clinics and noticing strong nonparal-
lelism. What might we learn from fitting a stratified Cox
(SC) model stratifying on the clinic variable? What is a
drawback to using a SC procedure that stratifies on the
clinic variable?

2. The following printout was obtained from fitting a SC PH
model to these data, where the variable being stratified is
clinic:

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose −0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = −597.714 Stratified by clinic

Using the above fitted model, we can obtain the adjusted
curves below that compare the adjusted survival probabil-
ities for each clinic (i.e., stratified by clinic) adjusted for
the variables, prison and maximum methadone dose.
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Based on these adjusted survival curves, what conclusions
can you draw about whether the survival experience is differ-
ent between the two clinics? Explain.

3. State the hazard function model being estimated in
the above computer results. Why is this model a no-
interaction model?

4. Using the above computer results, provide point and inter-
val estimates for the effect of prison adjusted for clinic and
dose. Is this adjusted prison effect significant? Explain.

5. The following computer results consider a SC model that
allows for interaction of the stratified variable clinic with
each of the predictors, prison and dose. Product terms
in the model are denoted as clinpr = clinic × prison and
clindos = clinic × dose.

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. P > |z| Haz. Ratio [95% Conf. Interval]

prison 1.087 0.539 0.044 2.966 1.032 8.523
dose −0.035 0.020 0.079 0.966 0.929 1.004
clinpr −0.585 0.428 0.172 0.557 0.241 1.290
clindos −0.001 0.015 0.942 0.999 0.971 1.028

No. of subjects = 238 Log likelihood = −596.779 Stratified by clinic

State two alternative versions of the interaction model be-
ing estimated by the above printout, where one of these
versions should involve the product terms used in the
above printout.

6. Using the computer results above, determine the esti-
mated hazard models for each clinic. (Note that the clinics
are coded as 1 or 2.)
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7. Below are the adjusted survival curves for each clinic
based on the interaction model results above. These
curves are adjusted for the prison and dose variables.
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Clinic 2

Clinic 1

Compare the survival curves by clinic obtained for the
interaction model with the corresponding curves previ-
ously shown for the no-interaction model. Do both curves
indicate the similar conclusions about the clinic effect?
Explain.

8. Carry out a likelihood ratio test to determine whether the
no-interaction model is appropriate. In doing so, make use
of the computer information described above, state the
null hypothesis, state the form of the likelihood statistic
and its distribution under the null hypothesis, and com-
pute the value of the likelihood statistic and evaluate its
significance. What are your conclusions?

Answers to
Practice
Exercises

1. The first printout indicates that the variables large cell,
adeno cell, small cell, and performance status do not sat-
isfy the PH assumption at the 0.10 level. The second print-
out considers a different model that does not contain the
large cell and adeno cell variables. This latter printout in-
dicates that small cell satisfies the PH assumption, in con-
trast to the first printout. The performance status variable,
however, does not satisfy the PH assumption as in the first
printout.

2. The cell type variable is defined to have four categories,
as represented by the three dummy variables in the first
printout. The “small cell” variable dichotomizes the cell
type variable into the categories small cell type versus the
rest. From the second printout, the small cell variable does
not appear by itself to violate the PH assumption. This re-
sult conflicts with the results of the first printout, for which
the cell type variable considered in four categories does not
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satisfy the PH assumption at the 0.10 level of significance.
We therefore think it is more appropriate to use a SC pro-
cedure only if four strata are to be used. A drawback to
using four strata, however, is that the number of survival
curves to be plotted is larger than for two strata; conse-
quently, a large number of curves is more difficult to in-
terpret graphically than when there are only two curves.
Thus, for convenience of interpretation, we may choose
to dichotomize the cell type variable instead of consider-
ing four strata. We may also consider dichotomies other
than those defined by the small cell variable. For instance,
we might consider dichotomizing on either the adeno or
large cell variables instead of the small cell variable. Al-
ternatively, we may combine categories so as to compare,
say, large and adeno cell types with small and squamous
types. However, a decision to combine categories should
not be just a statistical decision, but should also be based
on biologic considerations.

3. ĤRadj = 1.095, 95% CI: (0.744,1.611), two-tailed P-value is
0.647, not significant. The estimated hazard ratio for treat-
ment is neither meaningfully or statistically significant.
The point estimate is essentially 1, which says that there is
no meaningful effect of treatment adjusted for the predic-
tors in the model and for the stratified predictor SZ ∗.

4. hg (t,X) = h0g(t)exp[β1Treatment + β2DD + β3 Age
+ β4PT], g = 1, . . . , 4, where the strata are defined from
the stratification variable SZ ∗, DD = disease duration,
and PT = prior therapy. This model assumes no interac-
tion because the coefficient of each predictor in the model
is not subscripted by g, i.e., the regression coefficients are
the same for each stratum.

5. Version 1: hg (t, X) = h0g (t)exp[β1g Treatment + β2 DD
+ β3 Age + β4 PT], g = 1, . . . , 4.

Version 2: hg (t,X) = h0g(t)exp[β1 Treatment + β2 DD
+ β3 Age + β4 PT + β5(Z ∗

1 × Treatment)
+ β6(Z ∗

2 × Treatment) + β7(Z ∗
1 × Z ∗

2 × Treatment)],
where Z ∗

1 = small cell type (0, 1), Z ∗
2 = PSbin (0, 1),

and g = 1, . . . , 4.
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6. Version 1: hg (t,X) = h0g (t)exp[β1g Treatment + β2g DD
+ β3g Age + β4g PT], g = 1, . . . , 4.

Version 2: hg (t,X) = h0g (t)exp[β1 Treatment + β2 DD

+ β3 Age + B4 PT + β5(Z ∗
1 × Treatment) + β6(Z ∗

1 × DD)

+ β7(Z ∗
1 × Age) + β8(Z ∗

1 × PT) + β9(Z ∗
2 × Treatment)

+ β10(Z ∗
2 × DD) + β11(Z ∗

2 × Age) + β12(Z ∗
2 × PT)

+ β13(Z ∗
1 × Z ∗

2 × Treatment) + β14(Z ∗
1 × Z ∗

2 × DD)

+ β15(Z ∗
1 × Z ∗

2 × Age) + β16(Z ∗
1 × Z ∗

2 × PT)],

g = 1, . . . , 4.

7. HRg = exp(β1g ), using version 1 model form. Yes, this for-
mula gives different hazard ratios for different strata be-
cause the value of the hazard ratio changes with the sub-
script g.

8. H0: No interaction assumption is satisfied.

H0: β11 = β12 = β13 = β14, β21 = β22 = β23 = β24,

β31 = β32 = β33 = β34, β41 = β42 = β43 = β44
from version 1.

H0: β5 = β6 = β7 = β8 = β9 = β10 = β11 = β12
= β13 = β14 = β15 = β16 = 0 from version 2.

9. LR = −2 ln L R − (−2 ln L F ), where R denotes the reduced
(no-interaction) model and F denotes the full (interaction)
model. Under the null hypothesis, LR is approximately a
chi-square with 12 degrees of freedom.

10. Estimated hazard models for each stratum:

g = 1; Z ∗
1 = Z ∗

2 = 0:
ĥ 1(t,X) = ĥ 01(t)exp[(0.381)Treatment + (0.015)DD
+ (0.000)Age + (0.023)PT]

g = 2; Z ∗
1 = 1, Z ∗

2 = 0:
ĥ 2(t,X) = ĥ 02(t)exp[(0.941)Treatment + (−0.014)DD
+ (−0.055)Age + (0.066)PT]

g = 3; Z ∗
1 = 0, Z ∗

2 = 1:
ĥ 3(t,X) = ĥ 03(t) exp[(−0.210)Treatment + (0.040)DD
+ (0.001)Age + (−0.055)PT]

g = 4; Z ∗
1 = 1, Z ∗

2 = 1:
ĥ 4(t,X) = ĥ 04(t)exp[(0.026)Treatment + (−0.060)DD
+ (0.030)Age + (−0.017)PT]
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Estimated hazard ratios for treatment effect adjusted for
DD, Age, and PT:

g = 1: ĤR1 = exp (0.381) = 1.464
g = 2: ĤR2 = exp (0.941) = 2.563
g = 3: ĤR3 = exp (−0.210) = 0.811
g = 4: ĤR4 = exp (0.026) = 1.026

11. H0: β5 = β6 = β7 = β8 = β9 = β10 = β11 = β12 = β13 =
β14 = β15 = β16 = 0

LR = 689.696 − 671.182 = 18.514, which is approxi-
mately chi-square with 12 df.

P = 0.101, which is not significant below the .05 level.
Conclusion: Accept the null hypothesis and conclude that
the no-interaction model is preferable to the interaction
model.

12. The three curves at the bottom of the graph appear to be
quite non-parallel. Thus, the PH assumption is not satis-
fied for one or both of the variables, small cell type and
PSbin. Note, however, that because both these variables
have been stratified together, it is not clear from the graph
whether only one of these variables fails to satisfy the PH
assumption.

13. If we graph adjusted survival curves that compare the two
treatment groups for each of the four strata, we will be
able to see graphically how the treatment effect, if any,
varies over time within each strata. The difficulty with this
approach, however, is that eight adjusted survival curves
will be produced, so that if all eight curves are put on the
same graph, it may be difficult to see what is going on.
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Introduction We begin by defining a time-dependent variable and providing
some examples of such a variable. We also state the general
formula for a Cox model that is extended to allow time depen-
dent variables, followed by a discussion of the characteristics
of this model, including a description of the hazard ratio.

In the remainder of the presentation, we give examples of
models with time-dependent variables, including models that
allow for checking the PH assumption for time-independent
variables. In particular, we describe a method that uses “heav-
iside functions” to evaluate the PH assumption for time-
independent variables. We also describe two computer appli-
cations of the extended Cox model, one concerning a study on
the treatment of heroin addiction and the other concerning
the Stanford heart transplant study.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214–216)

III. Definition and Examples of Time-Dependent
Variables (pages 216–219)

IV. The Extended Cox Model for Time-Dependent
Variables (pages 219–221)

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 221–223)

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224–229)

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230–234)

VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235–239)

IX. The Extended Cox Likelihood (pages 239–242)
X. Summary (pages 242–245)
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Objectives Upon completing the chapter, the learner should be able to:

1. State or recognize the general form of the Cox model ex-
tended for time-dependent variables.

2. State the specific form of an extended Cox model appro-
priate for the analysis, given a survival analysis scenario
involving one or more time-dependent variables.

3. State the formula for a designated hazard ratio of interest,
given a scenario describing a survival analysis using an
extended Cox model.

4. State the formula for an extended Cox model that pro-
vides a method for checking the PH assumption for one
more of the time-independent variables in the model, given
a scenario describing a survival analysis involving time-
independent variables.

5. State the formula for an extended Cox model that uses
one or more heaviside functions to check the PH assump-
tion for one more of the time-independent variables in the
model, given a scenario describing a survival analysis in-
volving time-independent variables.

6. State the formula for the hazard ratio during different time
interval categories specified by the heaviside function(s),
for a model involving heaviside function(s).

7. Carry out an appropriate analysis of the data to evaluate
the effect of one or more of the explanatory variables in
the model(s) being used, given computer results for a sur-
vival analysis involving time-dependent variables. Such an
analysis will involve:� computing and interpreting any hazard ratio(s) of

interest;� carrying out and interpreting appropriate test(s) of
hypotheses for effects of interest;� obtaining confidence intervals for hazard ratios of
interest;� evaluating interaction and confounding involving one
or more covariates.
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Presentation

I. Preview This presentation describes how the Cox propor-
tional hazards (PH) model can be extended to al-
low time-dependent variables as predictors. Here,
we focus on the model form, characteristics of this
model, the formula for and interpretation of the
hazard ratio, and examples of the extended Cox
model. We also show how the extended Cox model
can be used to check the PH assumption for time-
independent variables, and we provide computer
applications to illustrate different types of time-
dependent variables. Finally, we describe the ex-
tended cox likelihood and how it contrasts with
the Cox PH likelihood function.

FOCUS

•  model form
•  characteristics
•  hazard ratio
•  examples of models
•  checking the PH
    assumption
•  computer 
    applications

II. Review of the Cox
PH Model

The general form of the Cox PH model is shown
here. This model gives an expression for the haz-
ard at time t for an individual with a given spec-
ification of a set of explanatory variables denoted
by the bold X. That is, the bold X represents a col-
lection (sometimes called a “vector”) of predictor
variables that is being modeled to predict an indi-
vidual’s hazard.

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

]

X = (X1, X2, . . . , Xp)
Explanatory/predictor variables

h0(t) × exp

[
p∑

i=1

βi Xi

]

Baseline hazard Exponential

Involves t but Involves X ’s but
not X ’s not t (X ’s are

time-
independent)

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard func-
tion. The second quantity is the exponential ex-
pression e to the linear sum of βi Xi , where the
sum is over the p explanatory X variables.

An important feature of this formula, which con-
cerns the proportional hazards (PH) assumption,
is that the baseline hazard is a function of t but
does not involve the X ’s, whereas the exponential
expression involves the X ’s but does not involve t.
The X ’s here are called time-independent X ’s.
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X ’s involving t: time dependent

Requires extended Cox model
(no PH)

It is possible, nevertheless, to consider X ’s that
do involve t. Such X ’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion and is called the extended Cox model. We
will discuss time-dependent variables and the cor-
responding extended Cox model beginning in the
next section.

Hazard ratio formula:

ĤR = exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
where X∗ = (X ∗

1, X ∗
2, . . . , X ∗

p) and
X = (X1, X2, . . . , X p) denote the
two sets of X ’s.

From the Cox PH model, we can obtain a gen-
eral formula, shown here, for estimating a hazard
ratio that compares two specifications of the X ’s,
defined as X∗ and X.

PH assumption:

ĥ (t,X∗)

ĥ (t,X)
= θ̂ (a constant over t)

i.e., ĥ (t,X∗) = θ̂ĥ (t,X)

The (PH) assumption underlying the Cox PH
model is that the hazard ratio comparing any
two specifications of X predictors is constant over
time. Equivalently, this means that the hazard for
one individual is proportional to the hazard for
any other individual, where the proportionality
constant is independent of time.

Hazards cross ⇒ PH not met

Hazards don’t cross ⇒\ PH met

An example of when the PH assumption is not met
is given by any study situation in which the haz-
ards for two or more groups cross when graphed
against time. However, even if the hazard func-
tions do not cross, it is possible that the PH as-
sumption is not met.

Three approaches:

� graphical� time-dependent variables� goodness-of-fit test

As described in more detail in Chapter 4, there
are three general approaches for assessing the PH
assumption. These are

� a graphical approach;� the use of time-dependent variables in an ex-
tended Cox model; and� the use of a goodness-of-fit test.

Time-dependent covariates:

Extend Cox model: add product
term(s) involving some function of
time

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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h(t,X) = h0(t) exp[β1sex + β2(sex × t)]

EXAMPLE

H0:β2 = 0 ⇒ PH assumption satisfied 

For example, if the PH assumption is being as-
sessed for gender, a Cox model might be extended
to include the variable sex × t in addition to sex.
If the coefficient of the product term turns out to
be non-significant, we can conclude that the PH
assumption is satisfied for sex provided that the
variable sex × t is an appropriate choice of time-
dependent variable.

Options when PH assumption not
satisfied:

� Use a stratified Cox (SC) model.� Use time-dependent variables.

There are two options to consider if the PH as-
sumption is not satisfied for one or more of the
predictors in the model. In Chapter 5, we de-
scribed the option of using a stratified Cox (SC)
model, which stratifies on the predictor(s) not sat-
isfying the PH assumption, while keeping in the
model those predictors that satisfy the PH as-
sumption. In this chapter, we describe the other
option, which involves using time-dependent vari-
ables.

Time-dependent variables may be:

� inherently time-dependent� defined to analyze a time-
independent predictor not
satisfying the PH assumption.

Note that a given study may consider predictors
that are inherently defined as time-dependent, as
we will illustrate in the next section. Thus, in addi-
tion to considering time-dependent variables as an
option for analyzing a time-independent variable
not satisfying the PH assumption, we also discuss
predictors which are inherently defined as time-
dependent.

III. Definition and Examples
of Time-Dependent
Variables

A time-dependent variable is defined as any vari-
able whose value for a given subject may differ
over time (t). In contrast, a time-independent vari-
able is a variable whose value for a given subject
remains constant over time.

As a simple example, the variable RACE is a
time-independent variable, whereas the variable
RACE × time is a time-dependent variable.

Definition:

Time-dependent Time-independent

Value of variable Value of variable
differs over time is constant over

time

Example:�
�

�
�Race × t

�
�

�
	Race
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EXAMPLES OF
DEFINED VARIABLES 

Defined variable: RACE × t

Time-independent
Race = 1 ⇒ Race × t = t
Race = 0 ⇒ Race × t = 0 (at any t)

E × (log t – 3){

{

Function of t

[E denotes a (0,1) exposure variable].

E × g(t) where g(t) = 1  if t ≥ t0
0  if t < t0

Heavyside function

t ≥ t0: E × g(t) = E

t < t0: E × g(t) = 0

1

0

Heavyside functions used when PH
assumptions not met.

The variable RACE × time is an example of what is
called a “defined” time-dependent variable. Most
defined variables are of the form of the product of a
time-independent variable (e.g., RACE) multiplied
by time or some function of time. Note that after
RACE is determined for a given subject, all the val-
ues of the RACE × time variable are completely
defined over a specified time interval of study.

A second example of a defined variable is given by
E× (log t − 3), where E denotes, say, a (0,1) expo-
sure status variable determined at one’s entry into
the study. Notice that here we have used a func-
tion of time—that is, log t − 3—rather than time
alone.

Yet another example of a defined variable, which
also involves a function of time, is given by E ×
g (t), where g (t) is defined to take on the value 1 if
t is greater than or equal to some specified value
of t, called t0, and takes on the value 0 if t is less
than t0.

The function g (t) is called a “heaviside” function.
Note that whenever t is greater than or equal to
t0, g (t) equals 1, so E × g (t) = E; however, when-
ever t is less than t0, g (t) = 0, so the value of
E × g (t) is always 0. We will later return to illus-
trate how heaviside functions may be used as one
method for the analysis when a time-independent
variable like E does not satisfy the proportional
hazards assumption.

Internal variable: Another type of time-dependent variable is called
an “internal” variable. Examples of such a variable
include exposure level E at time t, employment
status (EMP) at time t, smoking status (SMK) at
time t, and obesity level (OBS) at time t.

EXAMPLES OF INTERNAL
VARIABLES
E(t), EMP(t), SMK(t), OBS(t),

Values change because of “internal”
characteristics or behavior of the in-
dividual.

All these examples consider variables whose val-
ues may change over time for any subject under
study; moreover, for internal variables, the reason
for a change in value depends on “internal” char-
acteristics or behavior specific to the individual.
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“Ancillary” variable:
Value changes because of “external”
characteristics.

In contrast, a variable is called an “ancillary” vari-
able if its value changes primarily because of “ex-
ternal” characteristics of the environment that
may affect several individuals simultaneously. An
example of an ancillary variable is air pollution
index at time t for a particular geographical area.
Another example is employment status (EMP) at
time t, if the primary reason for whether some-
one is employed or not depends more on general
economic circumstances than on individual char-
acteristics.

EXAMPLES OF ANCILLARY 
VARIABLES

Air pollution index at time t; EMP(t)

ANOTHER EXAMPLE
Heart transplant status at time t:

Transplant

Heart transplant status = HT(t)

Internal:
Status determined
from individual
traits

Ancillary:
Status determined
from external
availability of a
donor

HT(t) = 1  if received transplant at some time t0 ≤ t
0  if did not receive transplant by time t

HT(t): 0000...0 111111111

t0
t

T

T

HT(t):
No transplant HT(t): 0000...00000

t

As another example, which may be part internal
and part ancillary, we consider heart transplant
status (HT) at time t for a person identified to have
a serious heart condition, making him or her el-
igible for a transplant. The value of this variable
HT at time t is 1 if the person has already received
a transplant at some time, say t0, prior to time t.
The value of HT is 0 at time t if the person has not
yet received a transplant by time t.

Note that once a person receives a transplant,
at time t0, the value of HT remains at 1 for all
subsequent times. Thus, for a person receiving a
transplant, the value of HT is 0 up to the time of
transplant, and then remains at 1 thereafter. In
contrast, a person who never receives a transplant
has HT equal to 0 for all times during the period
he or she is in the study.

The variable “heart transplant status,” HT(t), can
be considered essentially an internal variable, be-
cause individual traits of an eligible transplant re-
cipient are important determinants of the decision
to carry out transplant surgery. Nevertheless, the
availability of a donor heart prior to tissue and
other matching with an eligible recipient can be
considered an “ancillary” characteristic external
to the recipient.
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Computer commands differ for
defined vs. internal vs. ancillary.

But, the form of extended Cox
model and procedures for analysis
are the same regardless of variable
type.

The primary reason for distinguishing among de-
fined, internal, or ancillary variables is that the
computer commands required to define the vari-
ables for use in an extended Cox model are some-
what different for the different variable types,
depending on the computer program used. Never-
theless, the form of the extended Cox model is the
same regardless of variable type, and the proce-
dures for obtaining estimates of regression coeffi-
cients and other parameters, as well as for carrying
out statistical inferences, are also the same.

IV. The Extended Cox Model
for Time-Dependent
Variables

Given a survival analysis situation involving both
time-independent and time-dependent predictor
variables, we can write the extended Cox model
that incorporates both types as shown here at the
left. As with the Cox PH model, the extended model
contains a baseline hazards function h0(t) which
is multiplied by an exponential function. How-
ever, in the extended model, the exponential part
contains both time-independent predictors, as de-
noted by the Xi variables, and time-dependent pre-
dictors, as denoted by the X j (t) variables. The en-
tire collection of predictors at time t is denoted by
the bold X(t).

h(t,X(t)) = h0(t) exp
[ p1∑

i=1
βi Xi

+
p2∑

j=1
δ j X j (t)

]

X(t) = (X1, X2, . . . X p1︸ ︷︷ ︸
Time-independent

,

X1(t), X2(t), . . . X p2 (t))︸ ︷︷ ︸
Time-dependent

h(t,X(t)) = h0(t) exp[βE + δ(E × t)],

EXAMPLE

p1 = 1, p2 = 1,
X(t) = (X1 = E , X1(t) = E ×  t)

As a simple example of an extended Cox model,
we show here a model with one time-independent
variable and one time-dependent variable. The
time-independent variable is exposure status E,
say a (0,1) variable, and the time-dependent vari-
able is the product term E × t.

Estimating regression
coefficients:
ML procedure:
Maximize (partial) L.
Risk sets more complicated than for
PH model.

As with the simpler Cox PH model, the regression
coefficients in the extended Cox model are esti-
mated using a maximum likelihood (ML) proce-
dure. ML estimates are obtained by maximizing a
(partial) likelihood function L. However, the com-
putations for the extended Cox model are more
complicated than for the Cox PH model, because
the risk sets used to form the likelihood function
are more complicated with time-dependent vari-
ables. The extended Cox likelihood is described
later in this chapter.
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Computer programs for the
extended Cox model:

Stata (Stcox)
SAS (PHREG)
SPSS (COXREG)

⎫⎬⎭ Computer
Appendix

Computer packages that include programs for fit-
ting the extended Cox model include Stata, SAS,
and SPSS. See the Computer Appendix at the end
of this text for a comparison of the Stata, SAS, and
SPSS procedures applied to the same dataset.

Statistical inferences:
Wald and/or LR tests
Large sample confidence intervals

Methods for making statistical inferences are es-
sentially the same as for the PH model. That is, one
can use Wald and/or likelihood ratio (LR) tests and
large sample confidence interval methods.

Assumption of the model:
The hazard at time t depends on the
value of X j (t) at that same time.

An important assumption of the extended Cox
model is that the effect of a time-dependent vari-
able X j (t) on the survival probability at time t de-
pends on the value of this variable at that same
time t, and not on the value at an earlier or later
time.

h(t,X(t)) = h0(t) exp

[
p1∑

i=1

βi Xi

+
p2∑

j=1

δ j X j (t)

]
↑

One coefficient forX j (t)

Note that even though the values of the vari-
able X j (t) may change over time, the hazard
model provides only one coefficient for each time-
dependent variable in the model. Thus, at time t,
there is only one value of the variable X j (t) that
has an effect on the hazard, that value being mea-
sured at time t.

Can modify for lag-time effect It is possible, nevertheless, to modify the definition
of the time-dependent variable to allow for a “lag-
time” effect.

Lag-time effect:

EMP(t) = employment status at week t

EXAMPLE

Model without lag-time: 

Same week

h(t,X(t)) = h0(t) exp[δEMP(t)]

One-week earlier

Model with 1-week lag-time:
h(t,X(t)) = h0(t) exp[δ∗EMP(t – 1)]

To illustrate the idea of a lag-time effect, suppose,
for example, that employment status, measured
weekly and denoted as EMP (t), is the time-
dependent variable being considered. Then, an ex-
tended Cox model that does not consider lag-time
assumes that the effect of employment status on
the probability of survival at week t depends on the
observed value of this variable at the same week t,
and not, for example, at an earlier week.

However, to allow for, say, a time-lag of one week,
the employment status variable may be modified
so that the hazard model at time t is predicted by
the employment status at week t − 1. Thus, the
variable EMP (t) is replaced in the model by the
variable EMP (t − 1).
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General lag-time extended model:

h(t,X(t)) = h0(t) exp

[
p1∑

i=1

βi Xi

+
p2∑

j=1

δ j X j (t − L j )

]
↗

X j (t − L j ) replaces X j (t)

More generally, the extended Cox model may be
alternatively written to allow for a lag-time modi-
fication of any time-dependent variable of interest.
If we let L j denote the lag-time specified for time-
dependent variable j, then the general “lag-time
extended model” can be written as shown here.
Note that the variable X j (t) in the earlier version
of the extended model is now replaced by the vari-
able X j (t − L j ).

V. The Hazard Ratio Formula
for the Extended
Cox Model

We now describe the formula for the hazard ra-
tio that derives from the extended Cox model.
The most important feature of this formula is
that the proportional hazards assumption is no
longer satisfied when using the extended Cox
model.

The general hazard ratio formula for the extended
Cox model is shown here. This formula describes
the ratio of hazards at a particular time t, and re-
quires the specification of two sets of predictors
at time t. These two sets are denoted as bold X∗(t)
and bold X(t).

The two sets of predictors, X∗(t) and X(t), identify
two specifications at time t for the combined set of
predictors containing both time-independent and
time-dependent variables. The individual compo-
nents for each set of predictors are shown here.

PH assumption is not satisfied for
the extended Cox model.

ĤR(t) = ĥ (t,X∗(t))

ĥ (t,X(t))

= exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ j
[
X ∗

j (t) − X j (t)
]]

Two sets of predictors:

X∗(t) = (X ∗
1, X ∗

2, . . . , X ∗
p1

, X ∗
1(t),

X ∗
2(t), . . . , X ∗

p2
(t))

X(t) = (X1, X2, . . . , X p1, X1(t),
X2(t), . . . , X p2 (t))
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h(t,X(t)) = h0(t) exp[βE + δ(E × t)]

EXAMPLE

E = { 1  if exposed 
0  if unexposed

X*(t) = (E = 1, E × t = t)
X(t) = (E = 0, E × t = 0)

HR(t) =ˆ ĥ(t, E = 1) 

ĥ(t, E = 0)
= exp[β̂(1 – 0) + δ̂((1 × t) – (0 × t))]
= exp[β̂ + δ̂t]

δ̂ > 0 ⇒ HR(t) ↑ as t ↑
PH assumption not satisfied

ˆ

As a simple example, suppose the model contains
only one time-independent predictor, namely, ex-
posure status E, a (0,1) variable, and one time-
dependent predictor, namely, E × t. Then, to com-
pare exposed persons, for whom E = 1, with
unexposed persons, for whom E = 0, at time
t, the bold X∗(t) set of predictors has as its
two components E = 1 and E × t = t; the bold
X(t) set has as its two components E = 0 and
E × t = 0.

If we now calculate the estimated hazard ratio that
compares exposed to unexposed persons at time
t, we obtain the formula shown here; that is, HR
“hat” equals the exponential of β “hat” plus δ “hat”
times t. This formula says that the hazard ratio is
a function of time; in particular, if δ “hat” is posi-
tive, then the hazard ratio increases with increas-
ing time. Thus, the hazard ratio in this example is
certainly not constant, so that the PH assumption
is not satisfied for this model.

ĤR(t) = exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ̂ j

�
�

�
�

[
X ∗

j (t) − X j (t)
] ]

↗
A function of time

More generally, because the general hazard ratio
formula involves differences in the values of the
time-dependent variables at time t, this hazard ra-
tio is a function of time. Thus, in general, the ex-
tended Cox model does not satisfy the PH assump-
tion if any δ j is not equal to zero.

In general, PH assumption not sat-
isfied for extended Cox model.

δ̂ j is not time-dependent.

δ̂ j represents “overall” effect of
X j (t).

Note that, in the hazard ratio formula, the co-
efficient δ j “hat” of the difference in values
of the jth time-dependent variable is itself not
time-dependent. Thus, this coefficient represents
the “overall” effect of the corresponding time-
dependent variable, considering all times at which
this variable has been measured in the study.
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EXAMPLE
E(t) = chemical exposure status
       at time t (weekly)

= 0  if unexposed at time t
1  if exposed at time t

A

B

:

:

E(t)     0 1 0 1 1

t        1 2 3 4 5...

E(t)     1 1 0 1 0

t        1 2 3 4 5...

Exposed vs. unexposed
E = 1 E = 0

h(t,X(t)) = h0(t) exp[δE(t)]

One coefficient

δ represents the overall effect of E(t).

......

{

= eδ,  a fixed number

HR(t) = ˆ
h(t,E(t) = 0)

h(t,E(t) = 1)

= exp[δ[1 – 0]]

ˆ
But, PH is not satisfied:
HR(t) is time-dependent because E(t) is
time-dependent.

As another example to illustrate the formula for
the hazard ratio, consider an extended Cox model
containing only one variable, say a weekly mea-
sure of chemical exposure status at time t. Sup-
pose this variable, denoted as E(t), can take one of
two values, 0 or 1, depending on whether a person
is unexposed or exposed, respectively, at a given
weekly measurement.

As defined, the variable E(t) can take on differ-
ent patterns of values for different subjects. For
example, for a five-week period, subject A’s values
may be 01011, whereas subject B’s values may be
11010.

Note that in this example, we do not consider
two separate groups of subjects, with one group
always exposed and the other group always un-
exposed throughout the study. This latter situa-
tion would require a (0,1) time-independent vari-
able for exposure, whereas our example involves
a time-dependent exposure variable.

The extended Cox model that includes only the
variable E(t) is shown here. In this model, the val-
ues of the exposure variable may change over time
for different subjects, but there is only one coeffi-
cient, δ, corresponding to the one variable in the
model. Thus, δ represents the overall effect on sur-
vival time of the time-dependent variable E(t).

Notice, also, that the hazard ratio formula, which
compares an exposed person to an unexposed per-
son at time t, yields the expression e to the δ “hat.”

Although this result is a fixed number, the PH as-
sumption is not satisfied. The fixed number gives
the hazard ratio at a given time, assuming that the
exposure status at that time is 1 in the numerator
and is 0 denominator. Thus, the hazard ratio is
time-dependent, because exposure status is time-
dependent, even though the formula yields a single
fixed number.



224 6. Extension of the Cox Proportional Hazards Model

VI. Assessing Time-
Independent Variables
That Do Not Satisfy the
PH Assumption

Use an extended Cox model to

� check PH assumption;� assess effect of variable not
satisfying PH assumption.

We now discuss how to use an extended Cox model
to check the PH assumption for time-independent
variables and to assess the effect of a variable that
does not satisfy the PH assumption.

Three methods for checking PH as-
sumption:

1. graphical
2.

�
�

�
�extended Cox model

3. GOF test

As described previously (see Chapter 4), there are
three methods commonly used to assess the PH
assumption: (1) graphical, using, say, log–log sur-
vival curves; (2) using an extended Cox model; and
(3) using a goodness-of-fit (GOF) test. We have pre-
viously (in Chapter 4) discussed items 1 and 3, but
only briefly described item 2, which we focus on
here.

Cox PH model for p time-
independent X ’s:

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

]
If the dataset for our study contains several, say p,
time-independent variables, we might wish to fit a
Cox PH model containing each of these variables,
as shown here.

Extended Cox model:
Add product terms of the form:

Xi × gi (t)

However, to assess whether such a PH model is
appropriate, we can extend this model by defin-
ing several product terms involving each time-
independent variable with some function of time.
That is, if the ith time-independent variable is de-
noted as Xi , then we can define the ith product
term as Xi × gi (t) where gi (t) is some function of
time for the ith variable.

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi

+
p∑

i=1
δi Xi gi (t)

]
The extended Cox model that simultaneously con-
siders all time-independent variables of interest is
shown here.
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EXAMPLE

gi(t) = 0 for all i implies no time- 
dependent variable involving Xi, i.e.,

h(t,X(t)) = h0(t) exp
p

i=1
ΣβiXi[ ]  

In using this extended model, the crucial decision
is the form that the functions gi (t) should take.
The simplest form for gi (t) is that all gi (t) are
identically 0 at any time; this is another way of
stating the original PH model, containing no time-
dependent terms.

EXAMPLE 2

gi(t) = t ⇒ Xigi(t) = Xi × t

h(t,X(t)) = h0(t) exp
p

i=1
ΣβiXi + Σδi(Xi × t)[  ]  p

i=1

Another choice for the gi (t) is to let gi (t) = t. This
implies that for each Xi in the model as a main ef-
fect, there is a corresponding time-dependent vari-
able in the model of the form Xi × t. The extended
Cox model in this case takes the form shown here.

EXAMPLE 3: one variable 
at a time

XL only ⇒ { gL(t) = t,

gi(t) = 0 for other i

h(t,X(t)) = h0(t) exp[ βiXi + δL(XL × t)]∑
p

i=1

Suppose, however, we wish to focus on a partic-
ular time-independent variable, say, variable X L .
Then gi (t) = t for i = L , but equals 0 for all other
i. The corresponding extended Cox model would
then contain only one product term X L × t, as
shown here.

h(t,X(t)) = h0(t) exp[ βiXi +      δ i(Xi × ln t)]
gi(t) = ln t ⇒ Xigi(t) = Xi ×  ln t

∑ ∑
p p

i=1 i=1

EXAMPLE 4 Another choice for the gi (t) is the log of t, rather
than simply t, so that the corresponding time-
dependent variables will be of the form Xi × ln t.

EXAMPLE 5: Heaviside Function

gi(t) =
0  if t ≥ t0
1  if t < t0

{
And yet another choice would be to let gi (t) be a
“heaviside function” of the form gi (t) = 1 when
t is at or above some specified time, say t0, and
gi (t) = 0 when t is below t0. We will discuss this
choice in more detail shortly.

Extended Cox model:

h(t,X(t)) = h0(t) exp

[
p∑

i=1

βi Xi

+
p∑

i=1

δi Xi gi (t)

]
� Check PH assumption.� Obtain hazard ratio when PH

assumption not satisfied.

H0 : δ1 = δ2 = · · · = δp = 0

Given a particular choice of the gi (t), the corre-
sponding extended Cox model, shown here again
in general form, may then be used to check the PH
assumption for the time-independent variables in
the model. Also, we can use this extended Cox
model to obtain a hazard ratio formula that con-
siders the effects of variables not satisfying the PH
assumption.

To check the PH assumption using a statistical
test, we consider the null hypothesis that all the δ
terms, which are coefficients of the Xi gi (t) prod-
uct terms in the model, are zero.
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Under H0, the model reduces to PH
model:

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

] Under this null hypothesis, the model reduces to
the PH model.

L R = −2 ln LPH model

−(−2 ln Lext. Cox model)

∼̇χ2
p under H0

This test can be carried out using a likelihood ratio
(LR) test which computes the difference between
the log likelihood statistic, −2 ln L, for the PH
model and the log likelihood statistic for the ex-
tended Cox model. The test statistic thus obtained
has approximately a chi-square distribution with
p degrees of freedom under the null hypothesis,
where p denotes the number of parameters being
set equal to zero under H0.

EXAMPLE 

h(t,X(t)) = h0(t) exp[βE + δ(E × t)]
H0: δ = 0 (i.e., PH assumption is

satisfied)

Reduced model:
h(t,X) = h0(t) exp[βE]

LR = −2 ln LR − (−2 ln LF)
~χ2 with 1 df under H0
.

F = full (extended), R = reduced (PH)

As an example of this test, suppose we again con-
sider an extended Cox model that contains the
product term E × t in addition to the main effect
of E, where E denotes a (0,1) time-independent ex-
posure variable.

For this model, a test for whether or not the PH
assumption is satisfied is equivalent to testing the
null hypothesis that δ = 0. Under this hypothesis,
the reduced model is given by the PH model con-
taining the main effect E only. The likelihood ra-
tio statistic, shown here as the difference between
log-likelihood statistics for the full (i.e., extended
model) and the reduced (i.e., PH) model, will have
an approximate chi-square distribution with one
degree of freedom in large samples.

SAS: PHREG fits both PH and
extended Cox models.

Stata: Stcox fits both PH and
extended Cox models.

Note that to carry out the computations for this
test, two different types of models, a PH model
and an extended Cox model, need to be fit.

If PH test significant: Extended Cox
model is preferred; HR is time-
dependent.

If the result of the test for the PH assumption is sig-
nificant, then the extended Cox model is preferred
to the PH model. Thus, the hazard ratio expression
obtained for the effect of an exposure variable of
interest is time-dependent. That is, the effect of the
exposure on the outcome cannot be summarized
by a single HR value, but can only be expressed as
a function of time.
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EXAMPLE

h(t,X(t)) = h0(t) exp[βE + δ(E × t)]

t

HR = exp[β̂ + δ̂t]

HR

δ̂>0

We again consider the previous example, with the
extended Cox model shown here. For this model,
the estimated hazard ratio for the effect of expo-
sure is given by the expression e to the quantity
β “hat” plus δ “hat” times t. Thus, depending on
whether δ “hat” is positive or negative, the esti-
mated hazard ratio will increase or decrease ex-
ponentially as t increases. The graph shown here
gives a sketch of how the hazard ratio varies with
time if δ “hat” is positive.

Heaviside function:

t0 t

HR

g (t) =
{

1 if t ≥ t0
0 if t < t0

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

We now provide a description of the use of a “heav-
iside” function. When such a function is used, the
hazard ratio formula yields constant hazard ratios
for different time intervals, as illustrated in the ac-
companying graph.

Recall that a heaviside function is of the form g (t),
which takes on the value 1 if t is greater than or
equal to some specified value of t, called t0, and
takes on the value 0 if t is less than t0. An extended
Cox model which contains a single heaviside func-
tion is shown here.

t ≥ t0: g (t) = 1 ⇒ E × g (t) = E
h(t,X) = h0(t) exp[(β+δ)E]

ĤR = exp[β̂ + δ̂]

Note that if t ≥ t0, g (t) = 1, so the value of E ×
g (t) = E; the corresponding hazard function is of
the form h0(t) × e to the quantity (β + δ) times E,
and the estimated hazard ratio for the effect of E
has the form e to the sum of β “hat” plus δ “hat.”

t < t0: g (t) = 0 ⇒ E × g (t) = 0
h(t,X) = h0(t) exp[βE]

ĤR = exp[β̂]

If t < t0, g (t) = 0, the corresponding hazard ratio
is simplified to e to the β “hat.”

A single heaviside function in the
model

h(t,X)
= h0(t) exp[βE + δ(E × g (t))]

yields two hazard ratios:

t ≥ t0 : ĤR = exp(β̂ + δ̂)

t < t0 : ĤR = exp(β̂)

Thus, we have shown that the use of a single heav-
iside function results in an extended Cox model
which gives two hazard ratio values, each value
being constant over a fixed time interval.
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Alternative model with two heavi-
side functions:

h(t,X) = h0(t) exp[δ1(E × g1(t))
+ δ2(E × g2(t))]

g1(t) =
{

1 if t ≥ t0
0 if t < t0

g2(t) =
{

1 if t < t0
0 if t ≥ t0

Note: Main effect for E not in model.

There is actually an equivalent way to write this
model that uses two heaviside functions in the
same model. This alternative model is shown here.
The two heaviside functions are called g1(t) and
g2(t). Each of these functions are in the model as
part of a product term with the exposure variable
E. Note that this model does not contain a main
effect term for exposure.

Two HR’s from the alternative
model:

t ≥ t0 : g1(t) = 1, g2(t) = 0
h(t,X) = h0(t) exp[δ1(E × 1)

+ δ2(E × 0)]
= h0(t) exp[δ1 E]

so that ĤR = exp(δ̂1)

For this alternative model, as for the earlier model
with only one heaviside function, two different
hazard ratios are obtained for different time inter-
vals. To obtain the first hazard ratio, we consider
the form that the model takes when t ≥ t0. In this
case, the value of g1(t) is 1 and the value of g2(t)
is 0, so the exponential part of the model simpli-
fies to δ1 × E; the corresponding formula for the
estimated hazard ratio is then e to the δ1 “hat.”

t < t0 : g1(t) = 0, g2(t) = 1
h(t,X) = h0(t) exp[δ1(E × 0)

+ δ2(E × 1)]
= h0(t) exp[δ2 E]

so that ĤR = exp(δ̂2)

When t < t0, the value of g1(t) is 0 and the value of
g2(t) is 1. Then, the exponential part of the model
becomes δ2 × E, and the corresponding hazard
ratio formula is e to the δ2 “hat.”

Alternative model:

h(t,X(t)) = h0(t) exp[δ1(E × g1(t))
+ δ2(E × g2(t))]

Original model:

h(t,X(t))
= h0(t) exp[βE + δ(E × g (t))]

t ≥ t0 : ĤR = exp(δ̂1) = exp(β̂ + δ̂)

t < t0 : ĤR = exp(δ̂2) = exp(β̂)

Thus, using the alternative model, again shown
here, we obtain two distinct hazard ratio values.
Mathematically, these are the same values as ob-
tained from the original model containing only
one heaviside function. In other words, δ1 “hat” in
the alternative model equals β “hat” plus δ “hat” in
the original model (containing one heaviside func-
tion), and δ2 “hat” in the alternative model equals
β “hat” in the original model.
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Heaviside functions:

� two ĤR’s constant within two
time intervals� extension: several ĤR’s constant
within several time intervals

We have thus seen that heaviside functions can
be used to provide estimated hazard ratios that
remain constant within each of two separate time
intervals of follow-up. We can also extend the use
of heaviside functions to provide several distinct
hazard ratios that remain constant within several
time intervals.

Four time intervals:

HR

0 .5 1.0 1.5 t (years)

Extended Cox model contains either

� E, E × g1(t), E × g2(t),
E × g3(t)
or� E × g1(t), E × g2(t), E ×
g3(t), E × g4(t)

| 1 | 2 | 3 | 4−−−−−−−−−−−−−−−
0 0.5 1.0 1.5 t(years)

Suppose, for instance, that we wish to separate the
data into four separate time intervals, and for each
interval we wish to obtain a different hazard ratio
estimate as illustrated in the graph shown here.

We can obtain four different hazard ratios using
an extended Cox model containing a main effect of
exposure and three heaviside functions in the model
as products with exposure. Or, we can use a model
containing no main effect exposure term, but with
product terms involving exposure with four heav-
iside functions.

To illustrate the latter model, suppose, as shown
on the graph, that the first time interval goes from
time 0 to 0.5 of a year; the second time interval
goes from 0.5 to 1 year; the third time interval goes
from 1 year to a year and a half; and the fourth
time interval goes from a year and a half onward.

h(t,X(t))
= h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)

+δ3 Eg3(t) + δ4 Eg4(t)]

where

g1(t) =
{

1 if 0 ≤ t < 0.5 year
0 if otherwise

g2(t) =
{

1 if 0.5 year ≤ t < 1.0 year
0 if otherwise

g3(t) =
{

1 if 1.0 year ≤ t < 1.5 years
0 if otherwise

g4(t) =
{

1 if t ≥ 1.5 years
0 if otherwise

Then, an appropriate extended Cox model con-
taining the four heaviside functions g1(t), g2(t),
g3(t), and g4(t) is shown here. This model assumes
that there are four different hazard ratios identi-
fied by three cutpoints at half a year, one year, and
one and a half years. The formulae for the four
hazard ratios are given by separately exponenti-
ating each of the four estimated coefficients, as
shown below:

4 ĤR’s

⎧⎪⎪⎨⎪⎪⎩
0 ≤ t < 0.5: ĤR = exp(δ̂1)
0.5 ≤ t < 1.0: ĤR = exp(δ̂2)
1.0 ≤ t < 1.5: ĤR = exp(δ̂3)
t ≥ 1.5: ĤR = exp(δ̂4)
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VII. An Application of the
Extended Cox Model to
An Epidemiologic Study
on the Treatment of
Heroin Addiction

A 1991 Australian study by Caplehorn et al., com-
pared retention in two methadone treatment clin-
ics for heroin addicts. A patient’s survival time
(T) was determined as the time in days until the
patient dropped out of the clinic or was cen-
sored at the end of the study clinic. The two clin-
ics differed according to their overall treatment
policies.

A listing of some of the variables in the dataset
for this study is shown here. The dataset name is
called “ADDICTS,” and survival analysis programs
in the Stata package are used in the analysis. Note
that the survival time variable is listed in column
4 and the survival status variable, which indicates
whether a patient departed from the clinic or was
censored, is listed in column 3. The primary ex-
posure variable of interest is the clinic variable,
which is coded as 1 or 2. Two other variables of in-
terest are prison record status, listed in column 5
and coded as 0 if none and 1 if any, and maximum
methadone dose, in milligrams per day, which is
listed in column 6. These latter two variables are
considered as covariates.

One of the first models considered in the analysis
of the addicts dataset was a Cox PH model con-
taining the three variables, clinic, prison record,
and dose. An edited printout of the results for this
model is shown here. What stands out from this
printout is that the P(PH) value for the clinic vari-
able is zero to three significant places, which in-
dicates that the clinic variable does not satisfy the
proportional hazard assumption.

Since the P(PH) values for the other two variables
in the model are highly nonsignificant, this sug-
gests that these two variables, namely, prison and
dose, can remain in the model.

EXAMPLE

Dataset name: ADDICTS
Column 1: Subject ID
Column 2: Clinic (1 or 2)
Column 3: Survival status (0 = cen-

sored, 1 = departed clinic)
Column 4: Survival time in days
Column 5: Prison Record

(0 = none, 1 = any)
Column 6: Maximum Methadone Dose

(mg/day)

E

covariates

h(t,X) = h0(t) exp[β1(clinic)
+ β2(prison) + β3(dose)]

Coef. Std. Err. p> |z| Haz. Ratio P(PH)

Clinic
Prison
Dose

−1.009
  0.327
−0.035

0.215
0.167
0.006

0.000
0.051
0.000

0.365
1.386
0.965

0.001
0.332
0.347

P(PH) for the variables prison and dose are
nonsignificant ⇒ remain in model

1991 Australian study (Caplehorn
et al.) of heroin addicts

• two methadone treatment clinics

• T = days remaining in treatment
(= days until drop out of clinic)

• clinics differ in treatment policies
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EXAMPLE (continued)

Results:

Stratifying by clinic: cannot obtain hazard
ratio for clinic

Hazard ratio for clinic requires clinic in the
model.

Adjusted Survival Curves
Stratified by Clinic

(prison and dose in the model)

Clinic 2

Clinic 1

1

.8

.6

.4

.2

0
0 200 400 600 800 1000 1200

Days

Ŝ

h(t,X(t)) = h0(t) exp[β1(clinic)
+ β2(prison) + β3(dose)
+ δ(clinic)g(t)]

Extended Cox model:

t ≥ 365 days: HR = exp(β̂1 + δ̂)

t < 365 days: HR = exp(β̂1)

where

g(t) = 1  if t ≥ 365 days
0  if t < 365 days{

clinic = { 1  if clinic 1
0  if clinic 2

and

Note:
Previously

clinic = 2 for
clinic 2

• Curve for clinic 2 consistently lies above
   curve for clinic 1.

• Curves diverge, with clinic 2 being vastly
   superior after one year.

Further evidence of the PH assumption not be-
ing satisfied for the clinic variable can be seen
from a graph of adjusted survival curves strati-
fied by clinic, where the prison and dose variables
have been kept in the model. Notice that the two
curves are much closer together at earlier times,
roughly less than one year (i.e., 365 days), but the
two curves diverge greatly after one year. This in-
dicates that the hazard ratio for the clinic variable
will be much closer to one at early times but quite
different from one later on.

The above graph, nevertheless, provides impor-
tant results regarding the comparison of the two
clinics. The curve for clinic 2 consistently lies
above the curve for clinic 1, indicating that clinic
2 does better than clinic 1 in retaining its patients
in methadone treatment. Further, because the two
curves diverge after about a year, it appears that
clinic 2 is vastly superior to clinic 1 after one year
but only slightly better than clinic 1 prior to one
year.

Unfortunately, because the clinic variable has been
stratified in the analysis, we cannot use this anal-
ysis to obtain a hazard ratio expression for the
effect of clinic, adjusted for the effects of prison
and dose. We can only obtain such an expression
for the hazard ratio if the clinic variable is in the
model.

Nevertheless, we can obtain a hazard ratio us-
ing an alternative analysis with an extended Cox
model that contains a heaviside function, g (t), to-
gether with the clinic variable, as shown here.
Based on the graphical results shown earlier, a log-
ical choice for the cutpoint of the heaviside func-
tion is one year (i.e., 365 days). The corresponding
model then provides two hazard ratios: one that is
constant above 365 days and the other that is con-
stant below 365 days.

Note that in the extended Cox model here, we have
coded the clinic variable as 1 if clinic 1 and 0 if
clinic 2, whereas previously we had coded clinic
2 as 2. The reason for this change in coding, as
illustrated by computer output below, is to obtain
hazard ratio estimates that are greater than unity.
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EXAMPLE (continued) 

h(t,X(t)) = h0(t) exp[β2(prison)
+ β3(dose) + δ1(clinic)g1(t)
+ δ2(clinic)g2(t)]

t < 365 days: HR = exp(δ̂1)

t ≥ 365 days: HR = exp(δ̂2)

where

g1(t) = { 1  if t < 365 days
0  if t ≥ 365 days

g2(t) = { 1  if t ≥ 365 days
0  if t < 365 days

and

ˆ
ˆ

t < 365 days: HR = e0.460 = 1.583 

t ≥ 365 days: HR = e1.828  = 6.223
ˆ
ˆ

Coef.

0.378

–0.036

0.460

1.828

Std.
Err.

0.168

0.006

0.255

0.386

p>|z|

0.025

0.000

0.072

0.000

Haz.
Ratio

1.459

0.965

1.583

6.223

[95% Conf. Interval]

1.049

0.953

0.960

2.921

2.029

0.977

2.611

13.259

Prison

Dose

Clinic × g1
Clinic × g2

95% confidence intervals for clinic effect:
t < 365 days: (0.960, 2.611)
t ≥ 365 days: (2.921, 13.259)

(......   ) ( )

0 1 5 10 15

1 year

HR

1.0
.8
.6
.4
.2
0

0 200 400 600 800 1000 1200
Days

Adjusted Survival Curves

Clinic 2
Clinic 1

Ŝ

An equivalent way to write the model is to use two
heaviside functions, g1(t) and g2(t), as shown here.
This latter model contains product terms involv-
ing clinic with each heaviside function, and there
is no main effect of clinic.

Corresponding to the above model, the effect of
clinic is described by two hazard ratios, one for
time less than 365 days and the other for greater
than 365 days. These hazard ratios are obtained by
separately exponentiating the coefficients of each
product term, yielding e to the δ1 “hat” and e to
the δ2 “hat,” respectively.

A printout of results using the above model with
two heaviside functions is provided here. The re-
sults show a borderline nonsignificant hazard ra-
tio (P = 0.072) of 1.6 for the effect of clinic when
time is less than 365 days in contrast to a highly
significant (P = 0.000 to three decimal places) haz-
ard ratio of 6.2 when time exceeds 365 days.

Note that the estimated hazard ratio of 1.583 from
the printout is computed by exponentiating the
estimated coefficient 0.460 of the product term
“clinic × g1” and that the estimated hazard ra-
tio of 6.223 is computed by exponentiating the
estimated coefficient 1.828 of the product term
“clinic × g2”.

Note also that the 95% confidence interval for the
clinic effect prior to 365 days—that is, for the prod-
uct term “clinic × g1(t)”—is given by the limits
0.960 and 2.611, whereas the corresponding confi-
dence interval after 365 days—that is, for the prod-
uct term “clinic × g2”—is given by the limits 2.921
and 13.259. The latter interval is quite wide, show-
ing a lack of precision when t exceeds 365 days;
however, when t precedes 365 days, the interval
includes the null hazard ratio of 1, suggesting a
chance effect for this time period.

The results we have just shown support the obser-
vations obtained from the graph of adjusted sur-
vival curves. That is, these results suggest a large
difference in clinic survival times after one year
in contrast to a small difference in clinic survival
times prior to one year, with clinic 2 always doing
better than clinic 1 at any time.
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EXAMPLE (continued)
One other analysis:
Use an extended Cox model that
provides for diverging survival curves

h(t,X(t)) = h0(t)exp[β1(clinic)
 +β2(prison)+β3(dose)

+ δ(clinic × t)]

HR = exp(β̂1 + δ̂t)

So

t = 91 days

 HR = exp(β̂1 + 91δ̂)ˆ
t = 274:

 HR = exp(β̂1 + 274δ̂)ˆ

h(t,X(t)) = h0(t)exp[β1(clinic)

+ β2(prison) + β3(dose)

+ δ(clinic)(91)]

h(t,X(t)) = h0(t)exp[β1(clinic)

+ β2(prison) + β3(dose)

+ δ(clinic)(274)]

t = 458.5:

 HR = exp(β̂1 + 458.5δ̂)ˆ
t = 639:

 HR = exp(β̂1 + 639δ̂)ˆ
t = 821.5:

 HR = exp(β̂1 + 821.5δ̂)ˆ

δ̂ > 0 ⇒ HR as  time ˆ

HR changes over time.

There is, nevertheless, at least one other approach
to the analysis using time-dependent variables
that we now describe. This approach considers
our earlier graphical observation that the survival
curves for each clinic continue to diverge from
one another even after one year. In other words, it
is reasonable to consider an extended Cox model
that allows for such a divergence, rather than a
model that assumes the hazard ratios are constant
before and after one year.

One way to define an extended Cox model that pro-
vides for diverging survival curves is shown here.
This model includes, in addition to the clinic vari-
able by itself, a time-dependent variable defined
as the product of the clinic variable with time (i.e.
clinic × t). By including this product term, we
are able to estimate the effect of clinic on survival
time, and thus the hazard ratio, for any specified
time t.

To demonstrate how the hazard ratio changes over
time for this model, we consider what the model
and corresponding estimated hazard ratio expres-
sion are for different specified values of t.

For example, if we are interested in the effect of
clinic on survival on day 91, so that t = 91, the
exponential part of the model simplifies to terms
for the prison and dose variables plus β1 times
the clinic variable plus δ times the clinic variable
times 91: the corresponding estimated hazard ra-
tio for the clinic effect is then e to the power β1
“hat” plus δ “hat” times t = 91.

At 274 days, the exponential part of the model con-
tains the prison, dose, and clinic main effect terms
as before, plus δ times the clinic variable times
274: the corresponding hazard ratio for the clinic
effect is then e to β1 “hat” plus 274 δ “hat”.

The formulae for the estimated hazard ratio for
other specified days are shown here. Notice that
the estimated hazard ratio appears to be increase
over the length of the follow-up period. Thus, if
δ “hat” is a positive number, then the estimated
hazard ratios will increase over time.
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EXAMPLE (continued) 

Coef.

0.390

–0.035

–0.0183

0.003

Std.
Err.

0.169

0.006

0.347

0.001

P>|z|

0.021

0.000

0.958

0.001

Haz.
Ratio

1.476

0.965

0.982

1.003

[95% Conf. Interval]

1.060

0.953

0.497

1.001

2.056

0.978

1.939

1.005

prison

dose

clinic

clinic × t

 HR depends on β̂1 and δ̂.ˆ

Computer results for extended Cox
model involving T(t):

cov (β̂1, δ̂) = –.000259 Log likelihood = –667.642 ˆ
β̂1 = –0.0183 δ̂ = 0.003

t = 91.5:  HR = exp(β̂1 + δ̂t) = 1.292ˆ
t = 274:  HR = exp(β̂1 + δ̂t) = 2.233ˆ
t = 458.5:  HR = exp(β̂1 + δ̂t) = 3.862ˆ
t = 639:  HR = exp(β̂1 + δ̂t) = 6.677ˆ
t = 821.5:  HR = exp(β̂1 + δ̂t) = 11.544ˆ

exp β̂1 + δ̂t ± 1.96     Var(β̂1 + δ̂t)

Var(β̂1 + δ̂t) = sβ̂1
+ t2 sδ̂ + 2t cov(β̂1, δ̂)

↑ ↑ ↑
(0.347)2 (0.001)2 (–.000259)

ˆ

ˆ

Time (days)

91.5
274
458.5
639    
821.5

ĤR

1.292
2.233
3.862
6.677

11.544

95% CI

(0.741, 2.250)
(1.470, 3.391)
(2.298, 6.491)

2 2

(3.102, 14.372)
(3.976, 33.513)

We now show edited results obtained from fitting
the extended Cox model we have just been de-
scribing, which contains the product of clinic with
time. The covariance estimate shown at the bot-
tom of the table will be used below to compute
confidence intervals.

From these results, the estimated coefficient of the
clinic variable is β1 “hat” equals −0.0183, and the
estimated coefficient δ “hat” obtained for the prod-
uct term equals 0.003. For the model being fit,
the hazard ratio depends on the values of both β1
“hat” and δ “hat.”

On the left, the effect of the variable clinic is de-
scribed by five increasing hazard ratio estimates
corresponding to each of five different values of t.
These values, which range between 1.292 at
91.5 days to 11.544 at 821.5 days, indicate how
the effect of clinic diverges over time for the fitted
model.

We can also obtain 95% confidence intervals for
each of these hazard ratios using the large sam-
ple formula shown here. The variance expression
in the formula is computed using the variances
and covariances which can be obtained from the
computer results given above. In particular, the
variances are (0.347)2 and (0.001)2 for β1 “hat”
and δ “hat,” respectively; the covariance value is
−0.000259.

A table showing the estimated hazard ratios and
their corresponding 95% confidence intervals for
the clinic effect is given here. Note that all confi-
dence intervals are quite wide.
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VIII. An Application of the
Extended Cox Model to
the Analysis of the
Stanford Heart
Transplant Data

EXAMPLE
Patients identified as eligible for heart
transplant:
T = time until death or censorship
65 patients receive transplants
38 patients do not receive transplants
n = 103 patients

Goal: Do patients receiving transplants
survive longer than patients not receiv-
ing transplants?

One approach:
Compare two separate groups: 65 trans-
plants vs. 38 nontransplants

Problem:

Wait-time

Eligibility

Censored
or death

↑
Received

transplant
← Total survival time →

×
Time→

Note: Wait-time contributes to survival
time for nontransplants.

Covariates:
Tissue mismatch score prognostic only
Age at transplant for transplants

Age at eligibility: not considered prog-
nostic for nontransplants

}

We now consider another application of the ex-
tended Cox model which involves the use of an
internally defined time-dependent variable. In a
1977 report (Crowley and Hu, J. Amer. Statist.
Assoc.) on the Stanford Heart Transplant Study,
patients identified as being eligible for a heart
transplant were followed until death or censor-
ship. Sixty-five of these patients received trans-
plants at some point during follow-up, whereas
thirty-eight patients did not receive a transplant.
There were, thus, a total of n = 103 patients. The
goal of the study was to assess whether patients re-
ceiving transplants survived longer than patients
not receiving transplants.

One approach to the analysis of this data was
to separate the dataset into two separate groups,
namely, the 65 heart transplant patients and the
38 patients not receiving transplants, and then to
compare survival times for these groups.

A problem with this approach, however, is that
those patients who received transplants had to
wait from the time they were identified as eligible
for a transplant until a suitable transplant donor
was found. During this “wait-time” period, they
were at risk for dying, yet they did not have the
transplant. Thus, the wait-time accrued by trans-
plant patients contributes information about the
survival of nontransplant patients. Yet, this wait-
time information would be ignored if the total
survival time for each patient were used in the
analysis.

Another problem with this approach is that two
covariates of interest, namely, tissue mismatch
score and age at transplant, were considered as
prognostic indicators of survival only for patients
who received transplants. Note that age at eligi-
bility was not considered an important prognostic
factor for the nontransplant group.
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EXAMPLE (continued) 

HT(t) =

Problems:
• wait-time of transplant recipients
• prognostic factors for transplants

only

Alternative approach:
Uses an extended Cox model

Exposure variable:
Heart transplant status at time t,
defined as

0  if did not receive transplant
 by time t, i.e., if t < wait-
 time

1  if received transplant prior
 to time t, i.e., if t ≥ wait-
 time

T

T

Wait-time for transplants contributes to survival
for nontransplants.

In addition to HT(t), two time-dependent
covariates included in model.

No transplant

Transplant

Time of transplant

HT(t)
0000...00000

t

t

HT(t)
0000...0111111111

Because of the problems just described, which
concern the wait-time of transplants and the ef-
fects of prognostic factors attributable to trans-
plants only, an alternative approach to the analysis
is recommended. This alternative involves the use
of time-dependent variables in an extended Cox
model.

The exposure variable of interest in this extended
Cox model is heart transplant status at time t, de-
noted by HT(t). This variable is defined to take
on the value 0 at time t if the patient has not
received a transplant at this time, that is, if t is
less than the wait-time for receiving a transplant.
The value of this variable is 1 at time t if the
patient has received a transplant prior to or at
time t, that is, if t is equal to or greater than the
wait-time.

Thus, for a patient who did not receive a transplant
during the study, the value of HT(t) is 0 at all times.
For a patient receiving a transplant, the value of
HT(t) is 0 at the start of eligibility and continues
to be 0 until the time at which the patient receives
the transplant; then, the value of HT(t) changes
to 1 and remains 1 throughout the remainder of
follow-up.

Note that the variable HT(t) has the property that
the wait-time for transplant patients contributes
to the survival experience of nontransplant pa-
tients. In other words, this variable treats a trans-
plant patient as a nontransplant patient prior to
receiving the transplant.

In addition to the exposure variable HT(t), two
other time-dependent variables are included in
our extended Cox model for the transplant data.
These variables are covariates to be adjusted for
in the assessment of the effect of the HT(t) vari-
able.
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EXAMPLE (continued)

Note: HT(t) does not satisfy PH
assumption.

Focus:
Assessing the effect of HT(t) adjusted
for TMS(t) and AGE(t).

h(t,X(t)) = h0(t) exp[δ1HT(t)
+ δ2TMS(t) + δ3AGE(t)]

Variable
HT(t)
TMS(t)
AGE(t)

Coef.
−3.1718
0.4442
0.0552

P>|z|
0.008
0.112
0.014

Haz.
Ratio
0.0417
1.5593
1.0567

Std.
Err.

1.1861
0.2802
0.0226

HR =ˆ

HR = e−3.1718 = 0.0417 =ˆ 1
23.98

1
24

ĥ(transplants)

ĥ(nontransplants)
≈ ?

Not appropriate!

Covariates:

TMS(t) = 0  if t < wait-time
                  TMS if t ≥ wait-time

AGE(t) = 0  if t < wait-time
                  AGE if t ≥ wait-time

These covariates are denoted as TMS(t) and
AGE(t) and they are defined as follows: TMS(t)
equals 0 if t is less than the wait-time for a trans-
plant but changes to the “tissue mismatch score”
(TMS) at the time of the transplant if t is equal
to or greater than the wait-time. Similarly, AGE(t)
equals 0 if t is less than the wait-time but changes
to AGE at time of transplant if t is equal to or
greater than the wait-time.

The extended Cox model for the transplant data is
shown here. The model contains the three time-
dependent variables HT(t), TMS(t) and AGE(t) as
described above.

For this model, since HT(t) is the exposure vari-
able of interest, the focus of the analysis concerns
assessing the effect of this variable adjusted for
the two covariates. Note, however, that because
the HT(t) variable is time-dependent by definition,
this variable does not satisfy the PH assumption,
so that any hazard ratio estimate obtained for this
variable is technically time-dependent.

A summary of computer results for the fit of the
above extended Cox model is shown here. These
results indicate that the exposure variable HT(t) is
significant below the one percent significance level
(i.e., the two-sided p-value is 0.008). Thus, trans-
plant status appears to be significantly associated
with survival.

To evaluate the strength of the association, note
that e to the coefficient of HT(t) equals 0.0417.
Since 1 over 0.0417 is 23.98, it appears that there is
a 24-fold increase in the hazard of nontransplant
patients to transplant patients. The preceding in-
terpretation of the value 0.0417 as a hazard ratio
estimate is not appropriate, however, as we shall
now discuss further.
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EXAMPLE (continued) 

ˆ23.98 is inappropriate as a HR:

Alternative interpretation:
At time t,
ĥ (“not yet received transplant’’)
≈ 24 ĥ(“already received transplant’’)

More appropriate:

Hazard ratio formula should account
for TMS and AGE.

Transplant? TMS(t)HT(t) AGE(t)

Yes
No

1
0 0 0

TMS AGE

i denotes ith transplant patient

X*(t) = (HT(t) = 1, TMS(t) = TMSi, AGE(t) = AGEi)
X(t) = (HT(t) = 0, TMS(t) = 0, AGE(t) = 0)

ĤR(t) = exp[δ̂1(1 − 0) + δ̂2(TMSi – 0)
+ δ̂3(AGEi − 0)]
= exp[δ̂1 + δ̂2TMSi + δ̂3AGEi]

= exp[−3.1718 + 0.4442 TMSi

+ 0.0552 AGEi]

• does not compare two separate
groups

• exposure variable is not time-
independent

• wait-time on transplants contributes
to survival on nontransplants 

First, note that the value of 23.98 inappropri-
ately suggests that the hazard ratio is compar-
ing two separate groups of patients. However, the
exposure variable in this analysis is not a time-
independent variable that distinguishes between
two separate groups. In contrast, the exposure
variable is time-dependent, and uses the wait-time
information on transplants as contributing to the
survival experience of non-transplants.

Since the exposure variable is time-dependent, an
alternative interpretation of the hazard ratio esti-
mate is that, at any given time t, the hazard for a
person who has not yet received a transplant (but
may receive one later) is approximately 24 times
the hazard for a person who already has received a
transplant by that time.

Actually, we suggest that a more appropriate haz-
ard ratio expression is required to account for
a transplant’s TMS and AGE score. Such an ex-
pression would compare, at time t, the values of
each of the three time-dependent variables in the
model. For a person who received a transplant,
these values are 1 for HT(t) and TMS and AGE for
the two covariates. For a person who has not re-
ceived a transplant, the values of all three variables
are 0.

Using this approach to compute the hazard ratio,
the X∗(t) vector, which specifies the predictors for
a patient i who received a transplant at time t, has
the values 1, TMSi and AGEi for patient i; the X(t)
vector, which specifies the predictors at time t for
a patient who has not received a transplant at time
t, has values of 0 for all three predictors.

The hazard ratio formula then reduces to e to the
sum of δ1 “hat” plus δ2 “hat” times TMSi plus δ3
“hat” times AGEi , where the δ “hat’s” are the es-
timated coefficients of the three time-dependent
variables. Substituting the numerical values for
these coefficients in the formula gives the expo-
nential expression circled here.
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EXAMPLE (continued)

HR(t) is time-dependent, i.e., its value at 
time t depends on TMSi and AGEi at 
time t

ˆ

TMS range: (0−3.05)
AGE range: (12−64)

The resulting formula for the hazard ratio is time-
dependent in that its value depends on the TMS
and AGE values of the ith patient at the time of
transplant. That is, different patients can have dif-
ferent values for TMS and AGE at time of trans-
plant. Note that in the dataset, TMS ranged be-
tween 0 and 3.05 and AGE ranged between 12 and
64.

We end our discussion of the Stanford Heart
Transplant Study at this point. For further insight
into the analysis of this dataset, we refer the reader
to the 1977 paper by Crowley and Hu (J. Amer.
Statist. Assoc.).

IX. The Extended Cox
Likelihood

At the end of the presentation from Chapter 3 (Sec-
tion VIII), we illustrated the Cox likelihood using
the dataset shown on the left. In this section we
extend that discussion to illustrate the Cox likeli-
hood with a time-dependent variable.

To review: The data indicate that Barry got the
event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years, and Larry
got the event at 8 years. Furthermore, Barry and
Larry were smokers whereas Gary and Harry were
nonsmokers.

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT = Survival time (in years)
STATUS = 1 for event, 0 for
censorship
SMOKE = 1 for a smoker, 0 for a
nonsmoker

Cox PH model: h(t) = h0(t)eβ1SMOKE In Chapter 3 we constructed the Cox likelihood
with one predictor SMOKE in the model. The
model and the likelihood are shown on the left.
The likelihood is a product of three terms, one
term for each event time tj (TIME = 2, 3, and 8).
The denominator of each term is the sum of the
hazards from the subjects still in the risk set at
time tj, including the censored subject Harry. The
numerator of each term is the hazard of the sub-
ject who got the event at tj. The reader may wish
to reread Section VIII of Chapter 3.

Cox PH Likelihood

L =[
h0(t)eβ1

h0(t)eβ1 + h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)eβ1

h0(t)eβ1

]
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Cox extended model

h(t) = h0(t)eβ1SMOKE + β2SMOKE × TIME↗
Time-dependent covariate
(its value changes over time)

Now consider an extended Cox model, which con-
tains the predictor SMOKE, and a time-dependent
variable SMOKE × TIME. For this model it is not
only the baseline hazard that may change over
time but also the value of the predictor variables.
This can be illustrated by examining Larry’s haz-
ard at each event time.

Larry got the event at TIME = 8

Larry’s hazard at each event time

TIME Larry’s Hazard

2 h0(t)eβ1+2β2

3 h0(t)eβ1+3β2

8 h0(t)eβ1+8β2

Larry, a smoker, got the event at TIME = 8.
However at TIME = 2, 3, and 8, the covariate
SMOKE × TIME changes values, thus affecting
Larry’s hazard at each event time (see left). Un-
derstanding how the expression for an individual’s
hazard changes over time is the key addition to-
ward understanding how the Cox extended likeli-
hood differs from the Cox PH likelihood.

Cox extended model

L =[
h0(t)eβ1+2β2

h0(t)eβ1+2β2 + h0(t)e0 + h0(t)e0 + h0(t)eβ1+2β2

]

×
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1+3β2

]

×
[

h0(t)eβ1+8β2

h0(t)eβ1+8β2

]

Likelihood is product of 3 terms:
L = L1 × L2 × L3↗ ↑ ↖

Barry Gary Larry
(t = 2) (t = 3) (t = 8)

The likelihood for the extended Cox model is con-
structed in a similar manner to that of the likeli-
hood for the Cox PH model. The difference is that
the expression for the subject’s hazard is allowed
to vary over time. The extended Cox likelihood for
these data is shown on the left.

Just as with the Cox PH likelihood shown previ-
ously, the extended Cox likelihood is also a product
of three terms, corresponding to the three event
times (L = L1 × L2 × L3). Barry got the event
first at t = 2, then Gary at t = 3, and finally Larry
at t = 8. Harry, who was censored at t = 5, was
still at risk when Barry and Gary got the event.
Therefore, Harry’s hazard is still in the denomina-
tor of L1 and L2.

SMOKE × TIME = 0 for nonsmok-
ers

SMOKE × TIME changes over time
for smokers

Larry’s hazard changes over L1, L2,
L3.

The inclusion of the time-varying covariate
SMOKE × TIME does not change the expres-
sion for the hazard for the nonsmokers (Gary and
Harry) because SMOKE is coded 0 for nonsmok-
ers. However, for smokers (Barry and Larry), the
expression for the hazard changes with time. No-
tice how Larry’s hazard changes in the denomina-
tor of L1, L2 and L3 (see dashed arrows above).
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h0(t) cancels in L

L =
[

eβ1+2β2

eβ1+2β2 + e0 + e0 + eβ1+2β2

]
×

[
e0

e0 + e0 + eβ1+3β2

]
×

[
eβ1+8β2

eβ1+8β2

]

The baseline hazard cancels in the extended Cox
likelihood as it does with the Cox PH likelihood.
Thus, the form of the baseline hazard need not be
specified, as it plays no role in the estimation of
the regression parameters.

Incorrent coding of SMOKE × TIME

SMOKE
ID TIME STATUS SMOKE × TIME

Barry 2 1 1 2
Gary 3 1 0 0
Harry 5 0 0 0
Larry 8 1 1 8↗

Coded as time-independent,
not time-dependent

A word of caution for those planning to run a
model with a time-varying covariate: it is incor-
rect to create a product term with TIME in the
data step by multiplying each individual’s value
for SMOKE with his survival time. In other words,
SMOKE × TIME should not be coded like the typ-
ical interaction term. In fact, if SMOKE × TIME
were coded as it is on the left, then SMOKE ×
TIME would be a time-independent variable.
Larry’s value for SMOKE × TIME is incorrectly
coded at a constant value of 8 even though Larry’s
value for SMOKE × TIME changes in the likeli-
hood over L1, L2, and L3.

Incorrectly coded SMOKE × TIME

� Time independent� Probably highly significant� Survival time should predict
survival time� But not meaningful

If the incorrectly coded time-independent
SMOKE × TIME were included in a Cox model it
would not be surprising if the coefficient estimate
were highly significant even if the PH assumption
were not violated. It would be expected that a
product term with each individual’s survival time
would predict the outcome (his survival time),
but it would not be meaningful. Nevertheless, this
is a common mistake.

Correctly coding SMOKE × TIME

� Time dependent� Computer packages allow
definition in the analytic
procedure� See Computer Appendix for
details

To obtain a correctly defined SMOKE × TIME
time-dependent variable, computer packages typ-
ically allow the variable to be defined within the
analytic procedure. See Computer Appendix to
see how time-dependent variables are defined in
Stata, SAS, and SPSS.
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Coding SMOKE × TIME as time-
dependent

Multiple Observations per Subject

SMOKE
ID TIME STATUS SMOKE × TIME

Barry 2 1 1 2
Gary 2 0 0 0
Gary 3 1 0 0
Harry 2 0 0 0
Harry 3 0 0 0
Harry 5 0 0 0
Larry 2 0 1 2
Larry 3 0 1 3
Larry 5 0 1 5
Larry 8 1 1 8↑

Coded as time-dependent

When a time-dependent variable is defined within
the Cox analytic procedure, the variable is defined
internally such that the user may not see the time-
dependent variable in the dataset. However, the
dataset on the left will provide a clearer idea of the
correct definition of SMOKE × TIME. The dataset
contains multiple observations per subject. Barry
was at risk at t = 2 and got the event at that time.
Gary was at risk at t = 2 and t = 3. Gary didn’t get
the event at t = 2 but did get the event at t = 3.
Harry was at risk at t = 2, t = 3, t = 5 and didn’t
get the event. Larry was at risk at t = 2, t = 3,
t = 5, t = 8 and got the event at t = 8. Notice how
the SMOKE × TIME variable changes values for
Larry over time.

Multiple observations per subject:
revisited in Chapter 8 (recurrent
events)

Survival analysis datasets containing multiple ob-
servations per subject are further discussed in
Chapter 8 on recurrent events. With recurrent
event data, subjects may remain at risk for sub-
sequent events after getting an event.

X. Summary A summary of this presentation on time-
dependent variables is now provided. We began by
reviewing the main features of the Cox PH model.
We then defined a time-dependent variable and il-
lustrated three types of these variables—defined,
internal, and ancillary.

Review Cox PH model.

Define time-dependent variable:
defined, internal, ancillary.

Extended Cox model:

h(t,X(t)) = h0(t) exp
[ p1∑

i=1
βi Xi

+
p2∑

j=1
δ j X j (t)

]
Next, we gave the form of the “extended Cox
model,” shown here again, which allows for time-
dependent as well as time-independent variables.

ĤR(t) = exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ̂ j
[�
�

�
�X ∗

j (t) − X j (t)
]]

↗
Function of time

We then described various characteristics of this
extended Cox model, including the formula for the
hazard ratio. The latter formula is time-dependent
so that the PH assumption is not satisfied.
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Model for assessing PH
assumption:

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi

+
p∑

i=1
δi Xi gi (t)

]

We also showed how to use time-dependent vari-
ables to assess the PH assumption for time-
independent variables. A general formula for an
extended Cox model that simultaneously consid-
ers all time-independent variables of interest is
shown here.

Examples of gi (t):
t, log t, heaviside function

The functions gi (t) denote functions of time for
the ith variable that are to be determined by the in-
vestigator. Examples of such functions are gi (t) =
t, log t, or a heaviside function.

Heaviside functions:

HR̂

t

The use of heaviside functions were described and
illustrated. Such functions allow for the hazard
ratio to be constant within different time intervals.

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

where

g (t) =
{

1 if t ≥ t0
0 if t < t0

h(t,X(t))
= h0(t) exp[β1 Eg1(t) + β2 Eg2(t)]

where

g1(t) =
{

1 if t ≥ t0
0 if t < t0

g2(t) =
{

1 if t < t0
0 if t ≥ t0

For two time intervals, the model can take either
one of two equivalent forms as shown here. The
first model contains a main effect of exposure and
only one heaviside function. The second model
contains two heaviside functions without a main
effect of exposure. Both models yield two distinct
and equivalent values for the hazard ratio.

EXAMPLE 1

1991 Australian study of heroin addicts 

• two methadone maintenance clinics 
• addicts dataset file 
• clnic variable did not satisfy PH 

assumption

We illustrated the use of time-dependent variables
through two examples. The first example consid-
ered the comparison of two methadone mainte-
nance clinics for heroin addicts. The dataset file
was called addicts. In this example, the clinic vari-
able, which was a dichotomous exposure variable,
did not satisfy the PH assumption.
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EXAMPLE (continued) 

h(t,X(t)) = h0(t)exp[β2(prison)
+ β3(dose) + β1(clinic)
+ δ(clinic × t)] 

Adjusted Survival Curves 
Stratified by Clinic

Clinic 1
Clinic 2

0
0

0.2
0.4
0.6
0.8
1.0

200 400 600 800 1000 1200
Days

Ŝ

Heaviside functions

where
T(t)   1, 3, 5, 7, 9 in half-year intervals

h(t,X(t)) = h0(t) exp[β2(prison)
+ β3(dose) + δ1(clinic)g1(t)
+ δ2(clinic)g2(t)]

Adjusted survival curves stratified by clinic
showed clinic 2 to have consistently higher sur-
vival probabilities than clinic 1, with a more pro-
nounced difference in clinics after one year of
follow-up. However, this stratification did not al-
low us to obtain a hazard ratio estimate for clinic.
Such an estimate was possible using an extended
Cox model containing interaction terms involving
clinic with time.

Two extended Cox models were considered. The
first used heaviside functions to obtain two dis-
tinct hazard ratios, one for the first year of follow-
up and the other for greater than one year of
follow-up. The model is shown here.

The second extended Cox model used a time-
dependent variable that allowed for the two sur-
vival curves to diverge over time. This model is
shown here.

Both models yielded hazard ratio estimates that
agreed reasonably well with the graph of adjusted
survival curves stratified by clinic.

EXAMPLE 2: Stanford Heart 
Transplant Study 

h(t,X(t)) = h0(t) exp[δ1HT(t) + δ2TMS(t)
+ δ3AGE(t)]

Goals: Do patients receiving transplants 
survive longer than patients not receiv- 
ing transplants?

Exposure variable

The second example considered results obtained
in the Stanford Heart Transplant Study. The goal
of the study was to assess whether patients receiv-
ing transplants survived longer than patients not
receiving transplants.

The analysis of these data involved an extended
Cox model containing three time-dependent vari-
ables. One of these, the exposure variable, and
called HT(t), was an indicator of transplant sta-
tus at time t. The other two variables, TMS(t) and
AGE(t), gave tissue mismatch scores and age for
transplant patients when time t occurred after re-
ceiving a transplant. The value of each of these
variables was 0 at times prior to receiving a trans-
plant.
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EXAMPLE (continued)

HR = exp[ −3.1718 + 0.4442 TMSi
+ 0.0552 AGEi]

ˆ

ˆ

Results: HT(t) highly significant, i.e., 
transplants have better prognosis than 
nontransplants.
Hazard ratio estimate problematic: 

HR = eδ̂1 = 1
23.98

More appropriate formula:

The results from fitting the above extended Cox
model yielded a highly significant effect of the ex-
posure variable, thus indicating that survival prog-
nosis was better for transplants than for nontrans-
plants.

From these data, we first presented an inappropri-
ate formula for the estimated hazard ratio. This
formula used the exponential of the coefficient of
the exposure variable, which gave an estimate of
1 over 23.98. A more appropriate formula con-
sidered the values of the covariates TMS(t) and
AGE(t) at time t. Using the latter, the hazard ratio
estimate varied with the tissue mismatch scores
and age of each transplant patient.

Chapters This presentation is now complete. We suggest
that the reader review the detailed outline that fol-
lows and then answer the practice exercises and
test that follow the outline.

A key property of Cox models is that the distri-
bution of the outcome, survival time, is unspec-
ified. In the next chapter, parametric models are
presented in which the underlying distribution of
the outcome is specified. The exponential, Weibull,
and log-logistic models are examples of paramet-
ric models.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Curves and the
Log–Rank Test

3. The Cox Proportional Hazards
Model

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
✓ 6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent Variables




�

�


Next:

7. Parametric models
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Detailed
Outline

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214–216)

A. The formula for the Cox PH model:

h(t,X) = h0(t) exp
[ p∑

i=1
βi Xi

]
B. Formula for hazard ratio comparing two

individuals:

X∗ = (X ∗
1, X ∗

2, . . . , X ∗
p) and X = (X1, X2, . . . , X p) :

h(t,X∗)
h(t,X)

= exp

[
p∑

i=1

βi (X ∗
i − Xi )

]

C. The meaning of the PH assumption:� Hazard ratio formula shows that the hazard
ratio is independent of time:

h(t,X∗)
h(t,X)

= θ

� Hazard ratio for two X ’s are proportional:

h(t,X∗) = θh(t,X)

D. Three methods for checking the PH assumption:
i. Graphical: Compare ln–ln survival curves or

observed versus predicted curves
ii. Time-dependent covariates: Use product (i.e.,

interaction) terms of the form X × g (t).
iii. Goodness-of-fit test: Use a large sample Z

statistic.
E. Options when the PH assumption is not met:

i. Use a stratified Cox procedure.
ii. Use an extended Cox model containing a

time-dependent variable of the form X × g (t).
III. Definition and Examples of Time-Dependent

Variables (pages 216–219)
A. Definition: any variable whose values differ over

time
B. Examples of defined, internal, and ancillary

time-dependent variables
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IV. The Extended Cox Model for Time-Dependent
Varibles (pages 219–221)

A. h(t,X(t)) = h0(t) exp

[
p1∑

i=1
βi Xi +

p2∑
j=1

δ j X j (t)

]

where X(t) = (X1, X2, . . . , X p1, X1(t), X2(t), . . . ,
X p2 (t)) denotes the entire collection of predictors
at time t, Xi denotes the ith time-independent
variable, and X j (t) denotes the jth time-dependent
variable.

B. ML procedure used to estimate regression
coefficients.

C. List of computer programs for the extended Cox
model.

D. Model assumes that the hazard at time t depends
on the value of X j (t) at the same time.

E. Can modify model for lag-time effect.
V. The Hazard Ratio Formula for the Extended Cox

Model (pages 221–223)

A.

HR(t) = exp
[ p1∑

i=1
β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1
δ̂ j

[
X ∗

j (t) − X j (t)
]]

B. Because HR(t) is a function of time, the PH
assumption is not satisfied.

C. The estimated coefficient of X j (t) is
time-independent, and represents an “overall”
effect of X j (t).

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224–229)
A. General formula for assessing PH assumption:

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi +

p∑
i=1

δi Xi gi (t)
]

B. gi (t) is a function of time corresponding to Xi

C. Test H0: δ1 = δ2 = . . . = δp = 0
D. Heaviside function:

g (t) =
{

1 if t ≥ t0
0 if t < t0
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E. The model with a single heaviside function:

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

F. The model with two heaviside functions:

h(t,X(t)) = h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)]

where

g1(t) =
{

1 if t ≥ t0
0 if t < t0

and g2(t) =
{

1 if t < t0
0 if t ≥ t0

G. The hazard ratios:

t ≥ t0 : ĤR = exp(β̂ + δ̂) = exp(δ̂1)

t < t0 : ĤR = exp(β̂) = exp(δ̂2)

H. Several heaviside functions: examples given with
four time-intervals:� Extended Cox model contains either

{E, E × g1(t), E × g2(t), E × g3(t)} or
{E × g1(t), E × g2(t), E × g3(t), E × g4(t)}� The model using four product terms and no
main effect of E:

h(t,X(t)) = h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)
+ δ3 Eg3(t) + δ4 Eg4(t)]

where

gi (t) =
{

1 if t is within interval i
0 if otherwise

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230–234)
A. 1991 Australian study of heroin addicts� two methadone maintenance clinics� addicts dataset file� clinic variable did not satisfy PH assumption
B. Clinic 2 has consistently higher retention

probabilities than clinic 1, with a more
pronounced difference in clinics after one year of
treatment.

C. Two extended Cox models were considered:� Use heaviside functions to obtain two distinct
hazard ratios, one for less than one year and the
other for greater than one year.� Use a time-dependent variable that allows for
the two survival curves to diverge over time.
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VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235–239)
A. The goal of the study was to assess whether

patients receiving transplants survived longer than
patients not receiving transplants.

B. We described an extended Cox model containing
three time-dependent variables:

h(t,X(t)) = h0(t) exp[δ1HT(t) + δ2TMS(t) + δ3AGE(t)]

C. The exposure variable, called HT(t), was an
indicator of transplant status at time t. The other
two variables, TMS(t) and AGE(t), gave tissue
mismatch scores and age for transplant patients
when time t occurred after receiving a transplant.

D. The results yielded a highly significant effect of the
exposure variable.

E. The use of a hazard ratio estimate for this data was
problematical.� An inappropriate formula is the exponential of

the coefficient of HT(t), which yields 1/23.98.� An alternative formula considers the values of
the covariates TMS(t) and AGE(t) at time t.

IX. Extended Cox Likelihood (pages 239–242)
A. Review of PH likelihood (Chapter 3).
B. Barry, Gary, Larry, example of Cox likelihood.

X. Summary (pages 242–245)

Practice
Exercises

The following dataset called “anderson.dat” consists of remis-
sion survival times on 42 leukemia patients, half of whom
receive a new therapy and the other half of whom get a stan-
dard therapy (Freireich et al., Blood, 1963). The exposure vari-
able of interest is treatment status (Rx = 0 if new treatment,
Rx = 1 if standard treatment). Two other variables for con-
trol are log white blood cell count (i.e., log WBC) and sex.
Failure status is defined by the relapse variable (0 if censored,
1 if failure). The dataset is listed as follows:

Subj Surv Relapse Sex log WBC Rx

1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.2 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0

(Continued on next page)
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Subj Surv Relapse Sex log WBC Rx

7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0
11 16 1 1 3.6 0
12 13 1 0 2.88 0
13 11 0 0 2.6 0
14 10 0 0 2.7 0
15 10 1 0 2.96 0
16 9 0 0 2.8 0
17 7 1 0 4.43 0
18 6 0 0 3.2 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.3 1
26 12 1 0 1.5 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 4.91 1
40 2 1 1 4.48 1
41 1 1 1 2.8 1
42 1 1 1 5 1

The following edited printout gives computer results for fit-
ting a Cox PH model containing the three predictives Rx, log
WBC, and Sex.

Cox regression [95% Conf.
Analysis time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Sex 0.263 0.449 0.558 1.301 0.539 3.139 0.042
log WBC 1.594 0.330 0.000 4.922 2.578 9.397 0.714
Rx 1.391 0.457 0.002 4.018 1.642 9.834 0.500

No. of subjecs = 42 Log likelihood = −72.109
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1. Which of the variables in the model fitted above are time-
independent and which are time-dependent?

2. Based on this printout, is the PH assumption satisfied for the
model being fit? Explain briefly.

3. Suppose you want to use an extended Cox model to assess
the PH assumption for all three variables in the above model.
State the general form of an extended Cox model that will
allow for this assessment.

4. Suppose you wish to assess the PH assumption for the Sex
variable using a heaviside function approach designed to
yield a constant hazard ratio for less than 15 weeks of follow-
up and a constant hazard ratio for 15 weeks or more of follow-
up. State two equivalent alternative extended Cox models that
will carry out this approach, one model containing one heav-
iside function and the other model containing two heaviside
functions.

5. The following is an edited printout of the results obtained
by fitting an extended Cox model containing two heaviside
functions:

Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

log WBC 1.567 0.333 0.000 4.794 2.498 9.202
Rx 1.341 0.466 0.004 3.822 1.533 9.526
0–15 wks 0.358 0.483 0.459 1.430 0.555 3.682
15+ wks −0.182 0.992 0.855 0.834 0.119 5.831

No. of subjects = 42 Log likelihood = −71.980

Using the above computer results, carry out a test of hypoth-
esis, estimate the hazard ratio, and obtain 95% confidence
interval for the treatment effect adjusted for log WBC and
the time-dependent Sex variables. What conclusions do you
draw about the treatment effect?

6. We now consider an alternative approach to controlling for
Sex using an extended Cox model. We define an interaction
term between sex and time that allows for diverging survival
curves over time.

For the situation just described, write down the extended Cox
model, which contains Rx, log WBC, and Sex as main effects
plus the product term sex × time.
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7. Using the model described in question 6, express the hazard
ratio for the effect of Sex adjusted for Rx and log WBC at 8
and 16 weeks.

8. The following is an edited printout of computer results
obtained by fitting the model described in question 6.

Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

Sex 1.820 1.012 0.072 6.174 0.849 44.896
log WBC 1.464 0.336 0.000 4.322 2.236 8.351
Rx 1.093 0.479 0.022 2.984 1.167 7.626
Sex × Time −0.345 0.199 0.083 0.708 0.479 1.046

No. of subjects = 42 Log likelihood = −70.416

Based on the above results, describe the hazard ratio estimate
for the treatment effect adjusted for the other variables in the
model, and summarize the results of the significance test and
interval estimate for this hazard ratio. How do these results
compare with the results previously obtained when a heavi-
side function approach was used? What does this comparison
suggest about the drawbacks of using an extended Cox model
to adjust for variables not satisfying the PH assumption?

9. The following gives an edited printout of computer results
using a stratified Cox procedure that stratifies on the Sex
variable but keeps Rx and log WBC in the model.

Stratified Cox regression

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783
Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Compare the results of the above printout with previously
provided results regarding the hazard ratio for the effect of
Rx. Is there any way to determine which set of results is more
appropriate? Explain.
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Test The following questions consider the analysis of data from a
clinical trial concerning gastric carcinoma, in which 90 pa-
tients were randomized to either chemotherapy (coded as 2)
alone or to a combination of chemotherapy and radiation
(coded as 1). See Stablein et al., “Analysis of Survival Data
with Nonproportional Hazard Functions,” Controlled Clini-
cal Trials, vol. 2, pp. 149–159 (1981). A listing of the dataset
(called chemo) is given at the end of the presentation.

1. A plot of the log–log Kaplan–Meier curves for each
treatment group is shown below. Based on this plot, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

2
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2. The following is an edited printout of computer results
obtained when fitting the PH model containing only the
treatment group variable. Based on these results, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

Cox regression
Analysis time t: [95% Conf.
survt Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Tx −0.267 0.233 0.253 0.766 0.485 1.21 0

No. of subjects = 90 Log likelihood = −282.744

3. The following printout shows the results from using a
heaviside function approach with an extended Cox model
to fit these data. The model used product terms of the
treatment variable (Tx) with each of three heaviside func-
tions. The first product term (called Time1) involves a
heaviside function for the period from 0 to 250 days,
the second product term (i.e., Time2) involves the period
from 250 to 500 days, and the third product term (i.e.,
Time3) involves the open-ended period from 500 days and
beyond.
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Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

Time1 −1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.488 0.450 0.278 1.629 0.675 3.934
Time3 0.365 0.444 0.411 1.441 0.604 3.440

No. of subjects = 90 Log likelihood = −275.745

Write down the hazard function formula for the extended
Cox model being used, making sure to explicitly define the
heaviside functions involved.

4. Based on the printout, describe the hazard ratios in each
of the three time intervals, evaluate each hazard ratio for
significance, and draw conclusions about the extent of the
treatment effect in each of the three time intervals consid-
ered.

5. Inspection of the printout provided in question 3 indicates
that the treatment effect in the second and third intervals
appears quite similar. Consequently, another analysis was
considered that uses only two intervals, from 0 to 250 days
versus 250 days and beyond. Write down the hazard func-
tion formula for the extended Cox model that considers
this situation (i.e., containing two heaviside functions).
Also, write down an equivalent alternative hazard func-
tion formula which contains the main effect of treatment
group plus one heaviside function variable.

6. For the situation described in question 5, the computer
results are provided below. Based on these results,
describe the hazard ratios for the treatment effect below
and above 250 days, summarize the inference results
for each hazard ratio, and draw conclusions about the
treatment effect within each time interval.

Time-Dependent Cox Regression Analysis

Analysis time t: survt
Column
name Coeff StErr p-value HR 0.95 CI

Time1 −1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.427 0.315 0.176 1.532 0.826 2.842

No. of subjects = 90 Log likelihood = −275.764
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Answers to
Practice
Exercises

1. All three variables in the model are time-independent vari-
bles.

2. The computer results indicate that the Sex variables do not
satisfy the PH assumption because the P(PH) value is 0.042,
which is significant at the 0.05 level.

3. h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)
+ δ1(sex)g1(t) + δ2(log WBC)g2(t)
+δ3(Rx)g3(t)]

where the gi (t) are functions of time.

4. Model 1 (one heaviside function)

h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)

+ δ1(sex)g1(t)]

where

g1(t) =
{

1 if 0 ≤ t < 15 weeks
0 if t ≥ 15 weeks

Model 2 (two heaviside functions):

h(t,X(t)) = h0(t) exp[β2(log WBC) + β3(Rx) + δ1(sex)g1(t)

+ δ2(sex)g2(t)]

where

g1(t) =
{

1 if 0 ≤ t < 15 weeks
0 if t ≥ 15 weeks

and

g2(t) =
{

0 if t ≥ 15 weeks
1 if 0 ≤ t < 15 weeks

5. The estimated hazard ratio for the effect of Rx is 3.822; this
estimate is adjusted for log WBC and for the Sex variable
considered as two time-dependent variables involving heav-
iside functions. The Wald test for significance of Rx has a
p-value of 0.004, which is highly significant. The 95% confi-
dence interval for the treatment effect ranges between 1.533
and 9.526, which is quite wide, indicating considerable un-
reliability of the 3.822 point estimate. Nevertheless, the re-
sults estimate a statistically significant treatment effect of
around 3.8.

6. h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)
+ δ1(sex × t)]
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7. The hazard ratio for the effect of Sex in each time interval,
controlling for Rx and log WBC is given as follows:

t = 8 weeks ĤR = exp[β̂1 + 8δ̂1]
t = 16 weeks ĤR = exp[β̂1 + 16δ̂1]

8. Using the model containing Sex, log WBC, Rx, and Sex ×
Time, the estimated hazard ratio for the treatment effect is
given by 2.984, with a p-value of 0.022 and a 95% confi-
dence interval ranging between 1.167 and 7.626. The point
estimate of 2.984 is quite different from the point estimate
of 3.822 for the heaviside function model, although the con-
fidence intervals for both models are wide enough to in-
clude both estimates. The discrepancy between point esti-
mates demonstrates that when a time-dependent variable
approach is to be used to account for a variable not satis-
fying the PH assumption, different results may be obtained
from different choices of time-dependent variables.

9. The stratified Cox analysis yields a hazard ratio of 2.537 with
a p-value of 0.048 and a 95% CI ranging between 1.006 and
6.396. The point estimate is much closer to the 2.984 for
the model containing the Sex × Time product term than to
the 3.822 for the model containing two heaviside functions.
One way to choose between models would be to compare
goodness-of-fit test statistics for each model; another way is
to compare graphs of the adjusted survival curves for each
model and determine by eye which set of survival curves fits
the data better.
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Introduction The Cox model is the most widely used survival model in the
health sciences, but it is not the only model available. In this
chapter we present a class of survival models, called paramet-
ric models, in which the distribution of the outcome (i.e., the
time to event) is specified in terms of unknown parameters.
Many parametric models are acceleration failure time models
in which survival time is modeled as a function of predictor
variables. We examine the assumptions that underlie acceler-
ated failure time models and compare the acceleration factor
as an alternative measure of association to the hazard ratio.
We present examples of the exponential, Weibull, and log-
logistic models and give a brief description of other paramet-
ric approaches. The parametric likelihood is constructed and
described in relation to left, right, and interval-censored data.
Binary regression is presented as an alternative approach for
modeling interval-censored outcomes. The chapter concludes
with a discussion of frailty models.

Abbreviated
Outline

The outline below gives the user a preview of the material
covered by the presentation. A detailed outline for review pur-
poses follows the presentation.

I. Overview (pages 260–262)
II. Probability Density Function in Relation to the

Hazard and Survival Function (pages 262–263)
III. Exponential Example (pages 263–265)
IV. Accelerated Failure Time Assumption

(pages 266–268)
V. Exponential Example Revisited (pages 268–272)

VI. Weibull Example (pages 272–277)
VII. Log-Logistic Example (pages 277–282)

VIII. A More General Form of the AFT Model
(pages 282–284)

IX. Other Parametric Models (pages 284–286)
X. The Parametric Likelihood (pages 286–289)

XI. Interval-Censored Data (pages 289–294)
XII. Frailty Models (pages 294–308)

XIII. Summary (pages 309–312)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize the form of a parametric survival
model and contrast it with a Cox model.

2. State common distributions used for parametric survival
models.

3. Contrast an AFT model with a PH model.
4. Interpret output from an exponential survival model.
5. Interpret output from a Weibull survival model.
6. Interpret output from a log-logistic survival model.
7. State or recognize the formulation of a parametric like-

lihood.
8. State or recognize right-censored, left-censored, and

interval-censored data.
9. State or recognize the form of a frailty model and the

purpose of including a frailty component.
10. Interpret the output obtained from a frailty model.
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Presentation

I. Overview In this chapter we present parametric survival
models and the assumptions that underlie these
models. Specifically we examine the accelerated
failure time (AFT) assumption and contrast it
to the proportional hazards (PH) assumption.
We present examples of several parametric mod-
els, including the exponential model, the Weibull
model, and the log-logistic model. The paramet-
ric likelihood is discussed and how it accommo-
dates left-, right-, and interval-censored data. We
also consider models that include a frailty com-
ponent to account for unobserved heterogeneity.

parametric models
exponential example
AFT vs. PH
Weibull example
log-logistic example
other approaches
parametric likelihood
interval-censoring
frailty models

Focus

Parametric Modeling

� Outcome assumed to follow
some family of distributions� Exact distribution is unknown
if parameters are unknown� Data used to estimate
parameters� Examples of parametric models:
◦ Linear regression
◦ Logistic regression
◦ Poisson regression

Linear regression, logistic regression, and Poisson
regression are examples of parametric models that
are commonly used in the health sciences. With
these models, the outcome is assumed to follow
some distribution such as the normal, binomial,
or Poisson distribution. Typically, what is actually
meant is that the outcome follows some family of
distributions of similar form with unknown pa-
rameters. It is only when the value of the parame-
ter(s) is known that the exact distribution is fully
specified. For example, if one distribution is nor-
mal with a mean of three and another distribution
is normal with a mean of seven, the distributions
are of the same family (i.e., normal) but they are
not exactly the same distribution. For parametric
regression models, the data are typically used to
estimate the values of the parameters that fully
specify that distribution.

Distributions commonly used for
parametric survival models:

� Weibull� Exponential� Log-logistic� Lognormal� Generalized gamma

A parametric survival model is one in which
survival time (the outcome) is assumed to fol-
low a known distribution. Examples of distribu-
tions that are commonly used for survival time
are: the Weibull, the exponential (a special case
of the Weibull), the log-logistic, the lognormal,
and the generalized gamma, all of which are sup-
ported by SAS or Stata software.
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Parametric survival models↘
Distribution specified for time

Cox model is semiparametric:↘
Baseline survival not specified

The Cox proportional hazards model, by contrast,
is not a fully parametric model. Rather it is a semi-
parametric model because even if the regression
parameters (the betas) are known, the distribution
of the outcome remains unknown. The baseline
survival (or hazard) function is not specified in a
Cox model.

Cox model widely popular:

� No reliance on assumed
distribution� Computer packages can output
Cox-adjusted survival estimates
using algorithm that generalizes
KM� Baseline not necessary for
estimation of hazard ratio

A key reason why the Cox model is widely pop-
ular is that it does not rely on distributional as-
sumptions for the outcome. Although the base-
line survival function is not estimated with a Cox
model, computer packages such as SAS, Stata, and
SPSS can output Cox-adjusted survival estimates
(see Computer Appendix) by using a compli-
cated algorithm that generalizes the Kaplan–
Meier (KM) approach while making use of esti-
mated regression coefficients obtained from a Cox
model (Kalbfleisch and Prentice,1980). Also, an es-
timation of the baseline hazard is not necessary
for the estimation of a hazard ratio because the
baseline hazard cancels in the calculation.

1.0

0 t

Theoretical S(t)

0 3 7

Ŝ(t)
1.0

t

Step function (nondistributional
estimates)

In theory, as time ranges from 0 to infin-
ity, the survival function can be graphed as a
smooth curve from S(0) = 1 to S(∞) = 0 (see
Chapter 1). Kaplan–Meier and Cox-adjusted sur-
vival estimates use empirical nondistributional
methods that typically graph as step functions,
particularly if the sample size is small. If in the
data, for example, an event occurred at 3 weeks
and the next event occurred at 7 weeks, then the es-
timated survival curve would be flat between 3 and
7 weeks using these nondistributional approaches.
Moreover, if the study ends with subjects still re-
maining at risk, then the estimated survival func-
tion would not go all the way down to zero.
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Appeal of Parametric Survival
Models

� More consistent with theoretical
S(t) than nondistributional
approaches� Simplicity� Completeness—h(t) and S(t)
specified

Survival estimates obtained from parametric sur-
vival models typically yield plots more consistent
with a theoretical survival curve. If the investi-
gator is comfortable with the underlying distri-
butional assumption, then parameters can be es-
timated that completely specify the survival and
hazard functions. This simplicity and complete-
ness are the main appeals of using a parametric
approach.

II. Probability Density
Function in Relation
to the Hazard and
Survival Function

Probability function known
then

Survival and hazard can be found

S(t) = P(T > t) =
∞∫

t

f (u)du

h(t) = −d [S(t)]/dt
S(t)

For parametric survival models, time is assumed
to follow some distribution whose probability den-
sity function f(t) can be expressed in terms of
unknown parameters. Once a probability density
function is specified for survival time, the corre-
sponding survival and hazard functions can be de-
termined. The survival function S(t) = P(T > t)
can be ascertained from the probability density
function by integrating over the probability den-
sity function from time t to infinity. The hazard can
then be found by dividing the negative derivative
of the survival function by the survival function
(see left).

Survival in terms of hazard

S(t) = exp

⎛⎝−
t∫

0

h(u)du

⎞⎠
Cumulative hazard:

t∫
0

h(u)du

The survival function can also be expressed in
terms of the hazard function (see Chapter 1) by ex-
ponentiating the negative of the cumulative haz-
ard function. The cumulative hazard function is
the integral of the hazard function between inte-
gration limits of 0 and t.

f (t) = h(t)S(t) Finally, the probability function can be expressed
as the product of the hazard and the survival func-
tions, f (t) = h(t)S(t).

Key Point

Specifying one of f(t), S(t), or h(t)
specifies all three functions

The key point is that specifying any one of the
probability density function, survival function,
or hazard function allows the other two func-
tions to be ascertained by using the formulas
shown on the left.
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Survival and Hazard Functions
for Selected Distributions

Distribution S(t) h(t)

Exponential exp(−λt) λ

Weibull exp(−λt p) λpt p−1

Log-logistic
1

1 + λt p

λpt p−1

1 + λt p

On the left is a table containing the survival and
hazard functions for three of the more commonly
used distributions for survival models: the expo-
nential, Weibull, and log-logistic distributions.

The exponential is a one-parameter distribution
with a constant hazard λ. The Weibull and log-
logistic distributions have two parameters λ and p.
Notice that the Weibull distribution reduces to the
exponential if p = 1. The probability density func-
tion for these distributions can be found by mul-
tiplying h(t) and S(t). As an example, the Weibull
probability density function is shown on the left.

f(t) = h(t)S(t)

For example, Weibull:
f (t) = λpt p−1 exp(−λt p)
because h(t) = λpt p−1 and
S(t) = exp(−λt p)

Typically in parametric models:

� λ reparameterized for
regression� p held fixed

Typically for parametric survival models, the pa-
rameter λ is reparameterized in terms of predic-
tor variables and regression parameters and the
parameter p (sometimes called the shape parame-
ter) is held fixed. This is illustrated in the examples
to come.

III. Exponential Example

Simplest parametric survival model:
Hazard function: h(t) = λ

(where λ is a constant)

EXAMPLE
Remission data (n = 42)

21 patients given treatment (TRT = 1)
21 patients given placebo (TRT = 0)

The first example we consider is the exponential
model, which is the simplest parametric survival
model in that the hazard is constant over time (i.e.,
h(t) = λ). The model is applied to the remission
data (Freireich et al., 1963), in which 42 leukemia
patients were followed until remission or censor-
ship. Twenty-one patients received an experimen-
tal treatment (coded TRT = 1) and the other 21
received a placebo (coded TRT = 0). The data
are listed in Chapter 1. The variable TRT is just
a reverse coding of the variable RX presented in
Chapter 3.
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h(t) = λ = exp(β0 + β1TRT)

TRT = 1: h(t) = exp(β0 + β1)
TRT = 0: h(t) = exp(β0)

HR(TRT = 1 vs. TRT = 0)

= exp(β0 + β1)
exp(β0)

= exp(β1)

For simplicity, we demonstrate an exponential
model that has TRT as the only predictor. We
state the model in terms of the hazard by repa-
rameterizing λ as exp(β0 + β1TRT). With this
model, the hazard for subjects in the treated group
is exp(β0 + β1) and the hazard for the placebo
group is exp(β0). The hazard ratio comparing the
treatment and placebo (see left side) is the ratio of
the hazards exp(β1). The exponential model is a
proportional hazards model.

Constant Hazards
⇒ Proportional Hazards

Proportional Hazards
⇒\ Constant Hazards

Exponential Model—Hazards are
constant

Cox PH Model—Hazards are pro-
portional not necessarily constant

The assumption that the hazard is constant for
each pattern of covariates is a much stronger as-
sumption than the PH assumption. If the hazards
are constant, then of course the ratio of the haz-
ards is constant. However, the hazard ratio being
constant does not necessarily mean that each
hazard is constant. In a Cox PH model the base-
line hazard is not assumed constant. In fact, the
form of the baseline hazard is not even specified.

Remission Data

Exponential regression
log relative-hazard form

t Coef. Std. Err. z p >|z|
trt −1.527 .398 −3.83 0.00
cons −2.159 .218 −9.90 0.00

Output from running the exponential model is
shown on the left. The model was run using Stata
software (version 7.0). The parameter estimates
are listed under the column called Coef. The pa-
rameter estimate for the coefficient of TRT (β1) is
−1.527. The estimate of the intercept (called cons
in the output) is −2.159. The standard errors (Std.
Err.), Wald test statistics (z), and p-values for the
Wald test are also provided. The output indicates
that the z test statistic for TRT is statistically sig-
nificant with a p-value <0.005 (rounds to 0.00 in
the output).

Coefficient estimates obtained by MLE↘
asymptotically normal

The regression coefficients are estimated using
maximum likelihood estimation (MLE), and
are asymptotically normally distributed.
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TRT = 1: ĥ (t) = exp(−2.159
+ (−1.527)) = 0.025

TRT = 0: ĥ (t) = exp(−2.159)
= 0.115

ĤR (TRT = 1 vs. 0) = exp(−1.527)
= 0.22

95% CI =exp[−1.527 ± 1.96(0.398)]
= (0.10, 0.47)

Results: suggest treatment lowers
hazard

The estimated hazards for TRT = 1 and TRT =
0 are shown on the left. The estimated hazard
ratio of 0.22 is obtained by exponentiating the
estimated coefficient (−1.527) of the TRT vari-
able. A 95% confidence interval can be calculated
exp[−1.527 ± 1.96(0.398)] yielding a CI of (0.10,
0.47). These results suggest that the experimental
treatment delays remission.

Parametric models

� Need not be PH models� Many are AFT models

Exponential and Weibull

� Accommodate PH and AFT
assumptions

Up to this point in the book, the key assump-
tion for survival models has been the proportional
hazard assumption. However, parametric survival
models need not be PH models. Many paramet-
ric models are acceleration failure time mod-
els rather than PH models. The exponential and
Weibull distributions can accommodate both the
PH and AFT assumptions.

Remission Data

Exponential regression
accelerated failure-time form

t Coef. Std. Err. z p >|z|
trt 1.527 .398 3.83 0.00
cons 2.159 .218 9.90 0.00

On the left is Stata output from the AFT form of
the exponential model with TRT as the only pre-
dictor. Stata can output both the PH or AFT form
of an exponential or Weibull model (see Computer
Appendix). SAS (version 8.2) only runs the AFT
form of parametric models and SPSS (version
11.5) does not yet provide commands to run para-
metric models.

AFT vs. PH

� Different interpretation of
parameters� AFT applies to comparison of
survival times� PH applies to comparison of
hazards

The interpretation of parameters differs for AFT
and PH models. The AFT assumption is applicable
for a comparison of survival times whereas the
PH assumption is applicable for a comparison of
hazards. In the following sections we discuss the
AFT assumption and then revisit this example and
discuss the AFT form of this model.
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IV. Accelerated Failure Time
Assumption

The underlying assumption for AFT models is that
the effect of covariates is multiplicative (propor-
tional) with respect to survival time, whereas
for PH models the underlying assumption is that
the effect of covariates is multiplicative with re-
spect to the hazard.

AFT—Multiplicative effect with
survival time
PH—Multiplicative effect with
hazard

SD(t) SH(7t)=

Survival Function
For Dogs

Survival Function
For Humans

AFT models:
Describe “stretching out” or
contraction of survival time

To illustrate the idea underlying the AFT assump-
tion, consider the lifespan of dogs. It is often said
that dogs grow older seven times faster than hu-
mans. So a 10-year-old dog is in some way equiv-
alent to a 70-year-old human. In AFT terminology
we might say the probability of a dog surviving
past 10 years equals the probability of a human
surviving past 70 years. Similarly, we might say the
probability of a dog surviving past 6 years equals
the probability of a human surviving past 42 years
because 42 equals 6 times 7. More generally we can
say SD(t) = SH(7t), where SD(t) and SH(t) are the
survival functions for dogs and humans, respec-
tively. In this framework dogs can be viewed, on
average, as accelerating through life 7 times faster
than humans. Or from the other perspective, the
lifespan of humans, on average, is stretched out 7
times longer than the lifespan of dogs. AFT mod-
els describe this “stretching out” or contrac-
tion of survival time as a function of predictor
variables.

Second Illustration

S1 (t)—Survival function for smokers
S2 (t)—Survival function for

nonsmokers

AFT assumption:
S2(t) = S1(γt) for t ≥ 0
γ is the acceleration factor

If γ = exp(β)
S2(t) = S1([exp(α)]t)

or
S2([exp(−α)]t) = S1(t)

For a second illustration of the accelerated fail-
ure time assumption consider a comparison of
survival functions among smokers S1(t) and non-
smokers S2(t). The AFT assumption can be ex-
pressed as S2(t) = S1(γt) for t ≥ 0, where γ is a
constant called the acceleration factor compar-
ing smokers to nonsmokers. In a regression frame-
work the acceleration factor γ could be parame-
terized as exp(α) where α is a parameter to be
estimated from the data. With this param-
eterization, the AFT assumption can be ex-
pressed as S2(t) = S1(exp(α)t) or equivalently:
S2(exp(−α)t) = S1(t) for t ≥ 0.
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Suppose exp(α) = 0.75
then
S2(80) = S1(60)
S2(40) = S1(30)

More generally
S2(t) = S1(0.75t)

Suppose exp(α) = 0.75; then the probability of a
nonsmoker surviving 80 years equals the proba-
bility of a smoker surviving 80(0.75) or 60 years.
Similarly, the probability of a nonsmoker surviv-
ing 40 years equals the probability of a smoker
surviving 30 years. More generally, the probability
of a nonsmoker surviving t years equals the proba-
bility of a smoker surviving 0.75 times t years (i.e.,
S2(t) = S1(0.75t)).

T1—Survival time for smokers
T2—Survival time for nonsmokers

AFT assumption in terms of random
variables:

T1 = γT2

The AFT assumption can also be expressed in
terms of random variables for survival time rather
than the survival function. If T2 is a random vari-
able (following some distribution) representing
the survival time for nonsmokers and T1 is a ran-
dom variable representing the survival time for
smokers, then the AFT assumption can be ex-
pressed as T1 = γ T2.

Acceleration factor
Measure of association
on survival time

Hazard ratio
Measure of association on the
hazard

The acceleration factor is the key measure of as-
sociation obtained in an AFT model. It allows the
investigator to evaluate the effect of predictor vari-
ables on survival time just as the hazard ratio al-
lows the evaluation of predictor variables on the
hazard.

Acceleration factor (γ)� Describes stretching or
contraction of S(t)� Ratio of times to any fixed
value of S(t)

Suppose γ = 2.0
(Group 2 vs. Group 1)� Time to S(t) = 0.50 (median) is

double for Group 2� Time to S(t) = 0.20 is double for
Group 2� Time to S(t) = 0.83 is double for
Group 2� Time to S(t) = 0.98 is double for
Group 2� Time to S(t) = q is double for
Group 2 (generalization)

The acceleration factor describes the “stretching
out” or contraction of survival functions when
comparing one group to another. More precisely,
the acceleration factor is a ratio of survival
times corresponding to any fixed value of S(t).
For example, if the acceleration factor comparing
subjects in Group 2 vs. Group 1 is γ = 2.0, then
the median survival time (value of t when S(t) =
0.5) for Group 2 is double the median survival time
for Group 1. Moreover, the time it takes for S(t) to
equal 0.2 or 0.83 or 0.98 is double for Group 2
compared to Group 1 for the same value of S(t).
In general, the acceleration factor is a ratio of sur-
vival times corresponding to any quantile of sur-
vival time (S(t) = q).
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1.00

0.75

0.50

0.25

S(t)

G = 1 G = 2
t

γ = 2

distance to G = 1

distance to G = 2

Survival curves for Group 1 (G = 1)
and Group 2 (G = 2)

Horizontal lines are twice as long to
G = 2 compared to G = 1 because
γ = 2

This idea is graphically illustrated by examining
the survival curves for Group 1 (G = 1) and Group
2 (G = 2) shown on the left. For any fixed value of
S(t), the distance of the horizontal line from the
S(t) axis to the survival curve for G = 2 is double
the distance to the survival curve for G = 1. No-
tice the median survival time (as well as the 25th
and 75th percentiles) is double for G = 2. For AFT
models, this ratio of survival times is assumed con-
stant for all fixed values of S(t).

V. Exponential Example
Revisited

Remission data (n = 42)

21 patients given treatment (TRT = 1)
21 patients given placebo (TRT = 0)

Previously discussed PH form of
model
Now discuss AFT form of model

We return to the exponential example applied to
the remission data with treatment status (TRT) as
the only predictor. In Section III, results from the
PH form of the exponential model were discussed.
In this section we discuss the AFT form of the
model.

Exponential survival and hazard
functions:

S(t) = exp(−λt)
h(t) = λ

Recall for PH model:

h(t) = λ = exp(β0 + β1 TRT)

The exponential survival and hazard functions are
shown on the left. Recall that the exponential haz-
ard is constant and can be reparameterized as a
PH model, h(t) = λ = exp(β0 + β1TRT). In this
section we show how S(t) can be reparameterized
as an AFT model.
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AFT assumption
(comparing 2 levels)

� Ratio of times is constant to all
fixed S(t)

Strategy for developing the model:

� Solve for t in terms of S(t)� Scale t in terms of the predictors

The underlying AFT assumption, for comparing
two levels of covariates, is that the ratio of times
to any fixed value of S(t) = q is constant for any
probability q. We develop the model with the sur-
vival function and solve for t in terms of S(t). We
then scale t in terms of the predictors.

S(t) = exp(−λt)

t = [−ln(S(t)] × 1
λ

let
1
λ

= exp(α0 + α1TRT)

t = [−ln(S(t)] × exp(α0 + α1TRT)

↗
Scaling of t

Median survival time, S(t) = 0.5:

tm = [−ln(0.5)] × exp(α0 +α1TRT)

The exponential survival function is S(t) =
exp(−λt). By solving for t, we can obtain a for-
mula for t in terms of S(t). Taking the natural
log, multiplying by negative 1, and then multi-
plying by the reciprocal of λ, yields the expres-
sion for t shown on the left. By reparameteriz-
ing 1/λ = exp(α0 + α1TRT), or equivalently λ =
exp[−(α0 + α1TRT)], it can be seen how the pre-
dictor variable TRT is used to scale the time to
any fixed value of S(t) (see left). For example, to
find an expression for the median survival time tm,
substitute S(t) = 0.5 (see left).

Let S(t) = q
t = [−ln(q)] × exp(α0 + α1TRT)

Acceleration Factor:
γ (TRT = 1 vs. TRT = 0)

γ = [−ln(q)] exp(α0 + α1)
[−ln(q)] exp(α0)

= exp(α1)

The expression for t is restated on the left in terms
of any fixed probability S(t) = q. The acceleration
factor γ is found by taking the ratio of the times to
S(t) = q for TRT = 1 and TRT = 0. After canceling,
γ reduces to exp(α1).
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Remission Data

Exponential regression accelerated
failure-time form

t Coef. Std. Err. z p >|z|
trt 1.527 .398 3.83 0.00
cons 2.159 .218 9.90 0.00

γ̂ = exp(1.527) = 4.60
95% CI: exp[1.527 ± 1.96(0.398)]

= (2.11, 10.05)

On the left is Stata output from the AFT form
of the exponential model with TRT as the only
predictor. The estimate of the coefficient for TRT
is 1.527 with a standard error of 0.398. An esti-
mate of the acceleration factor for treatment is
γ̂ = exp(1.527) = 4.60. A 95% confidence inter-
val for γ is calculated as exp[1.527 ± 1.96(0.398)]
yielding a CI of (2.11, 10.05).

t = [−ln(q)] × exp(α0 + α1TRT)
t̂ = [−ln(q)]

× exp(2.159 + 1.527(TRT))

Estimated Survival Times by S(t)
Quartiles for TRT = 1 and
TRT = 0 (Exponential Model)

S(t) = q t̂TRT=0 t̂TRT=1

0.25 12.0 55.3
0.50 6.0 27.6
0.75 2.5 11.5

The parameter estimates can be used to estimate
the time t̂ to any value of S(t) = q. The table
on the left lists the estimated time (in weeks) for
the first, second (median), and third quartiles of
S(t) using the expression for t̂ shown above for
both the treated and placebo groups. In this ex-
ample survival time is the time to remission for
leukemia patients.

γ̂= 4.60 (for TRT = 1 vs. TRT = 0)

Ratio of survival times:

55.3
12.0

= 27.6
6.0

= 11.5
2.5

= 4.60

Effect of treatment:

� Stretches survival by a factor of
4.6� Interpretation of γ has intuitive
appeal

The ratio of survival times for each row in the ta-
ble comparing TRT = 1 vs. TRT = 0 is 4.60, which
not coincidently is the estimate of the acceleration
factor (see left). The estimated acceleration factor
suggests that the experimental treatment is effec-
tive for delaying remission by stretching survival
time by a factor of 4.60. Although the hazard ra-
tio is a more familiar measure of association for
health scientists, the acceleration factor has an in-
tuitive appeal, particularly for describing the effi-
cacy of a treatment on survival.
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HR and γ are reciprocals in expo-
nential models:

ĤR(TRT = 1 vs. 0) = exp(−1.527)
= 0.22

γ̂(TRT = 1 vs. 0) = exp(1.527)
= 4.60

In general
γ > 1 ⇒ exposure benefits
survival
HR > 1 ⇒ exposure harmful to
survival

γ < 1 ⇒ exposure harmful to
survival
HR < 1 ⇒ exposure benefits
survival

γ = HR = 1 ⇒ no effect from
exposure

Recall from Section III that the hazard ratio
for the effect of treatment was estimated at
exp(−1.527) = 0.22 using the PH form of the ex-
ponential model. This result illustrates a key prop-
erty of the exponential model: the corresponding
acceleration factor and hazards ratio (e.g., TRT =
1 vs. TRT = 0) are reciprocals of each other. This
property is unique to the exponential model. What
can be generalized, however, is that an accelera-
tion factor greater than one for the effect of an
exposure implies that the exposure is benefi-
cial to survival whereas a hazard ratio greater
than one implies the exposure is harmful to
survival (and vice versa).

Exponential PH and AFT models:

� Same model� Different parameterization� Same estimates for
◦ Survival function
◦ Hazard function
◦ Median survival

Although the exponential PH and AFT models fo-
cus on different underlying assumptions, they are
in fact the same model. The only difference is
in their parameterization. The resulting estimates
for the survival function, hazard function, and me-
dian survival do not differ between these models
(see Practice Exercises 6 and 7).
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For those experienced with Poisson
regression:

Exponential and Poisson models

� Assume a constant rate� Different data structure
◦ Poisson—aggregate counts
◦ Exponential—individual

level� Use different outcomes
◦ Poisson—number of cases
◦ Exponential—time to

event� Yield equivalent parameter
estimates
◦ With same data and same

covariates in the model

For those who have experience with Poisson re-
gression, there is a close connection between the
exponential and Poisson models. Both distribu-
tions assume an underlying constant rate. In fact,
if the data are structured such that all the cases
and the total time at risk are aggregated for each
pattern of covariates (e.g., TRT = 1 and TRT = 0)
and the log of the corresponding person-time at
risk is used as an offset, then a Poisson model will
yield equivalent parameter estimates as the expo-
nential PH model. The difference is that the ran-
dom outcome for the Poisson model is the count
of events over a fixed amount of time at risk and
the random outcome for the exponential model is
the time (at risk) to event.

Exponential model is special case
of Weibull model

We continue with the remission data example and
present the more general Weibull model, which
includes the exponential model as a special case.
In the next section we also show a graphical ap-
proach for evaluating the appropriateness of the
Weibull (and thus also the exponential) model.

VI. Weibull Example

Weibull Model:

Hazard function: h(t) = λpt p−1

(where p > 0 and λ > 0)

p is a shape parameter

� p > 1 hazard increases over
time� p = 1 constant hazard
(exponential model)� p < 1 hazard decreases over
time

Additional shape parameter offers
greater flexibility

The Weibull model is the most widely used
parametric survival model. Its hazard function is
h(t) = λpt p−1, where p and λ > 0. As with the ex-
ponential model, λ will be reparameterized with
regression coefficients. The additional parameter
p is called a shape parameter and determines the
shape of the hazard function. If p > 1 then the
hazard increases as time increases. If p = 1 then
the hazard is constant and the Weibull model re-
duces to the exponential model (h(t) = λ). If p < 1
then the hazard decreases over time. The addition
of this shape parameter gives the Weibull model
greater flexibility than the exponential model yet
the hazard function remains relatively simple (ba-
sically a scaling of t raised to some fixed power).
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Unique property for Weibull model
AFT ⇒ PH and PH ⇒ AFT

Holds if p is fixed

HR vs. AFT

Hazard ratio ⇒ Comparison of rates

Acceleration factor ⇒ Effect on
survival

The Weibull model has the property that if the
AFT assumption holds then the PH assump-
tion also holds (and vice versa). This property
is unique to the Weibull model (Cox and Oakes,
1984) and holds if p does not vary over different
levels of covariates. The PH assumption allows for
the estimation of a hazard ratio enabling a com-
parison of rates among different populations. The
AFT assumption allows for the estimation of an
acceleration factor, which can describe the direct
effect of an exposure on survival time.

Useful Weibull property:

� ln[−ln S(t)] is linear with ln(t)� Enables graphical evaluation
using KM survival estimates

The Weibull model also has another key property:
the log(−log) of S(t) is linear with the log of
time. This allows a graphical evaluation of the ap-
propriateness of a Weibull model by plotting the
log negative log of the Kaplan–Meier survival
estimates against the log of time.

Linearity of ln(t)

S(t) = exp(−λt p)
⇒ ln[−ln S(t)] = ln(λ) + p ln(t)

↗ ↑
Intercept = ln(λ), Slope = p

To see this linear relationship: start with the
Weibull survival function S(t) = exp(−λt p), take
the log of S(t), multiply by negative one, and take
the log again (see left). For the Weibull distribu-
tion, the ln[−ln(S(t))] is a linear function of ln(t)
with slope p and intercept p ln(λ). If the slope
equals one then t follows an exponential distribu-
tion.

Remission data: evaluate Weibull as-
sumption for TRT = 1 and TRT = 0

ln[−ln Ŝ(t)] plotted against ln(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−3

−2

−1

0

1

2
TRT = 0 TRT = 1

Log of time

We again return to the remission data and evalu-
ate the appropriateness of the Weibull assumption
for the treated (TRT = 1) and placebo (TRT = 0)
groups. On the left is the plot of the log nega-
tive log Kaplan–Meier survival estimates against
the log of time for TRT = 1 and TRT = 0. Both
plots look reasonably straight suggesting that the
Weibull assumption is reasonable. Furthermore,
the lines appear to have the same slope (i.e., are
parallel, same p) suggesting that the PH (and
thus the AFT) assumptions hold. If this common
slope equals one (i.e., p = 1), then survival time
follows an exponential distribution. The Weibull
model output containing the parameter estimates
includes a statistical test for the hypothesis p = 1
or equivalently for ln(p) = 0 (for testing the expo-
nential assumption). This is examined later in this
section.



274 7. Parametric Survival Models

Summary of possible results for plot
of ln[−ln Ŝ(t)] against ln(t)

1. Parallel straight lines ⇒ Weibull,
PH, and AFT assumptions hold

2. Parallel straight lines with slope
of 1 ⇒ Exponential. PH and AFT

3. Parallel but not straight lines ⇒
PH but not Weibull, not AFT (can
use Cox model)

4. Not parallel and not straight ⇒
Not Weibull, PH violated

5. Not parallel but straight lines ⇒
Weibull holds, but PH and AFT
violated, different p

On the left is a summary of five possible re-
sults from an examination of the log negative log
Kaplan–Meier survival estimates plotted against
the log of time for two or more levels of covariates.
The key points are that straight lines support the
Weibull assumption and parallel curves sup-
port the PH assumption. If the plots are parallel
but not straight then the PH assumption holds but
not the Weibull. Assessing whether the curves are
parallel is a familiar approach for evaluating the
PH assumption in a Cox model (see Chapter 4 and
Computer Appendix). An interesting scenario oc-
curs if the lines are straight but not parallel. In this
situation the Weibull assumption is supported but
the PH and AFT assumptions are violated. If the
lines are not parallel, then p is not constant across
levels of covariates. In Section IX of this chapter,
we present a method for modeling the shape pa-
rameter p as a function of predictor variables, but
typically p is assumed fixed.

Previous plot suggests Weibull and
PH assumption reasonable for TRT

An examination of the plot on the previous page
suggests that the Weibull and PH assumptions are
reasonable for treatment (TRT). First the PH form
of the model is presented and then the AFT form.

Weibull PH model:

h(t) = λpt p−1

where λ = exp(β0 + β1TRT).

Hazard ratio (TRT = 1 vs. TRT = 0)

HR = exp(β0 + β1)pt p−1

exp(β0)pt p−1

= exp(β1)

The Weibull hazard function is h(t) = λpt p−1. A
Weibull PH model is defined by reparameterizing
lambda λ as exp(β0 + β1TRT). The hazard ratio
is obtained by substituting TRT = 1 and TRT = 0
into the hazard functions (see left). After canceling
we obtain the familiar result exp(β1). Note that
this result depends on p having the same value for
TRT = 1 and TRT = 0, otherwise time (t) would
not cancel in the expression for the HR (i.e., PH
assumption not satisfied).
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Remission Data

Weibull regression log relative-
hazard form

t Coef. Std. Err. z p >|z|
trt −1.731 .413 −4.19 0.000
cons −3.071 .558 −5.50 0.000

/ln p .312 .147 2.12 0.034

p 1.366 .201
1/p .732 .109

On the left is output (Stata version 7.0) from run-
ning the PH form of the Weibull model. There
are parameter estimates for the coefficient of TRT,
the intercept (called cons), and for three forms of
the shape parameter: p, 1/p, and log(p). The es-
timate for p is 1.366 suggesting an increase in the
hazard as survival time increases (because p̂ > 1).
A statistical test for H0: log(p) = 0 yields a p-value
of 0.034. At a significance level of 0.05 we would
reject the null and decide p is not equal to 1, sug-
gesting that the exponential model is not appro-
priate.

Weibull PH

ĤR (TRT = 1 vs. 0) = exp(−1.731)
= 0.18

95% CI = exp[−1.731 ± 1.96(0.413)]
= (0.08, 0.40)

Weibull: ĤR = 0.18
Exponential: ĤR = 0.22
Suggests preventive effect of TRT

An estimated hazard ratio of 0.18 is obtained by
exponentiating the estimated coefficient (−1.731)
of the TRT variable. The 95% confidence interval
for this HR is calculated to be (0.08, 0.40) indi-
cating a significant preventive effect of treatment.
These results are similar to those obtained from
the exponential model in which the estimated haz-
ard ratio was 0.22.

Comparing Cox and Weibull PH
models

Cox: estimate β1

h(t) = h0(t) exp(β1TRT)↗
baseline hazard unspecified

Weibull: estimate β0,β1,p
h(t) = λpt p−1 where

λ = exp(β0 + β1TRT).
h(t) = [exp(β0)pt p−1] exp(β1TRT).↗
baseline hazard specified paramet-
rically

It can be instructive to compare the Cox and
Weibull PH models. The Cox PH model with
treatment as the only predictor is stated as
h0(t)exp(β1TRT). There is one parameter to es-
timate (β1) and the distribution of the baseline
hazard (h0(t)) remains unspecified.

With some manipulation, the Weibull PH model
can also be expressed as a product of a baseline
hazard and exp(β1TRT) (see left). There are three
parameters to estimate β0,β1, and p that fully
specify the hazard.
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S(t) = exp(−λt p)

solve for t

t = [−ln S(t)]1/p × 1

λ1/p

let
1

λ1/p
= exp(α0 + α1RX)

t = [−ln S(t)]1/p× exp(α0 +α1TRT)↗
Scaling of t

An AFT model can also be formulated with the
Weibull distribution. We develop the AFT parame-
terization similarly to that done with the exponen-
tial model, by solving for t in terms of a fixed S(t).
The Weibull survival function is S(t) = exp(−λt p).
Taking the natural log, multiplying by negative
1, raising to the power 1/p, and then multiply-
ing by the reciprocal of λ1/p, yields the expres-
sion for t shown on the left. By reparameterizing
1/λ1/p = exp(α0 + α1TRT), it can be seen that the
predictor variable TRT is used to scale the time to
any fixed value of S(t) (see left).

Let S(t) = q

t = [−ln(q)]1/p × exp(α0 + α1TRT)

Median survival time (q = 0.5)

tm = [−ln(0.5)]1/p

× exp(α0 + α1TRT)

The expression for t is restated on the left in terms
of any fixed probability S(t) = q. For example, to
find an expression for the median survival time tm,
substitute q = 0.5 (see left).

Acceleration factor, γ (TRT = 1 vs.
TRT = 0)

γ = [−ln(q)]1/p exp(α0 + α1)
[−ln(q)]1/p exp(α0)

= exp(α1)

The acceleration factor γ is obtained as the ratio of
the times to S(t) = q for TRT = 1 and for TRT = 0.
After canceling, γ reduces to exp(α1). As with the
PH form of the model, this result depends on p not
varying by treatment status; otherwise γ would
depend on q.

Remission Data

Weibull regression accelerated
failure-time form

t Coef. Std. Err. z P >|z|
trt 1.267 .311 4.08 0.000
cons 2.248 .166 13.55 0.000

/ln p .312 .147 2.12 0.034

p 1.366 .201
1/p .732 .109

Output from running a Weibull AFT model is
shown on the left. The estimates for each form of
the shape parameter (p, 1/p, and ln(p)) are the
same as obtained from the previously shown PH
form of the model.

The estimated acceleration factor of 3.55 is
obtained by exponentiating the estimated co-
efficient (1.267) of the TRT variable. The 95%
confidence interval for γ is calculated to be (1.93,
6.53).
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Weibull AFT:

γ̂(TRT = 1 vs. 0) = exp(1.267)
= 3.55

95% CI = exp[1.267 ± 1.96(0.311)]
= (1.93, 6.53)

Weibull: γ̂ = 3.55
Exponential: γ̂ = 4.60 (assumes

h(t) = λ)

These results suggest that the median (or any other
quantile of) survival time is increased by a fac-
tor of 3.55 for those receiving the treatment com-
pared to the placebo. Recall that the acceleration
factor was estimated at 4.60 using the exponen-
tial model. However, the exponential model uses
a much stronger assumption: that the hazards are
constant.

Relating Weibull AFT and
PH coefficients

AFT: λ1/p = exp[−(α0 + α1TRT)]
(1/p)ln λ = −(α0 + α1TRT)

ln λ = −p (α0 + α1TRT)

PH: λ = exp(β0 + β1TRT)
ln λ = β0 + β1TRT

Corresponding coefficients obtained from the PH
and AFT forms of the Weibull models are related
as follows: βj = −αj p for the jth covariate. This
can most easily be seen by formulating the param-
eterization equivalently in terms of ln(λ) for both
the PH and AFT forms of the model as shown on
the left.

Relationship of coefficients:

βj = −αj p so that

β = −α for exponential (p = 1)

Relating estimates for TRT
(PH vs. AFT)

−1.731 = (−1.267)(1.366)

This relationship is illustrated utilizing the coef-
ficient estimates we obtained for TRT: −1.731 =
(−1.267)(1.366). Note for the exponential model
in which p = 1, the PH and AFT coefficients are
related, β = −α.

Next: log-logistic model

� Hazard may be nonmonotonic

Weibull model

� Hazard does not change
direction

In the next example the log-logistic model is pre-
sented. In contrast to the Weibull, the hazard
function for the log-logistic distribution allows for
some nonmonotonic behavior in the hazard func-
tion.

VII. Log-Logistic Example

Log-logistic hazard: h(t) = λpt p−1

1 + λt p

(where p > 0 and λ > 0)

The log-logistic distribution accommodates an
AFT model but not a PH model. Its hazard func-
tion is shown on the left. The shape parameter is
p(>0).
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Shape of hazard function:

p ≤ 1 hazard decreases over time
p > 1 hazard first increases and then

decreases over time (unimodal)

If p ≤ 1 then the hazard decreases over time. If
p > 1, however, the hazard increases to a maxi-
mum point and then decreases over time. In this
case (p > 1), the hazard function is said to be uni-
modal.

Log-logistic modeling assumptions:

AFT

AFT

PH

PO

PO: Odds ratio constant over time

Unlike the Weibull model, a log-logistic AFT model
is not a PH model. However, the log-logistic AFT
model is a proportional odds (PO) model. A pro-
portional odds survival model is a model in
which the odds ratio is assumed to remain con-
stant over time. This is analogous to a propor-
tional hazard model where the hazard ratio is as-
sumed constant over time.

Survival odds

S(t)
(1 − S(t))

= P (T > t)
P (T ≤ t)

The survival odds is the odds of surviving beyond
time t (i.e., S(t)/(1 − S(t)). This is the probability
of not getting the event by time t divided by the
probability of getting the event by time t.

Failure odds by time t

(1 − S(t))
S(t)

= P (T ≤ t)
P (T > t)

The failure odds is the odds of getting the event by
time t (i.e., (1 − S(t))/S(t)), which is the reciprocal
of the survival odds (see left).

Log-logistic survival and failure
functions

S(t) = 1
1 +λt p

1 − S(t) = λt p

1 +λt p

The log-logistic survival function (S(t)) and failure
function (1 − S(t)) are shown on the left.

Failure odds

1 − S(t)
S(t)

=
(

λt p

1 + λt p

)( 1
1 + λt p

) = λt p

The failure odds simplifies in a log-logistic model
to λt p (see left).

Log-logistic PO model:

� Reparameterize λ in terms of
Xs and βs

A log-logistic proportional odds model can be for-
mulated by reparameterizing λ in terms of predic-
tor variables and regression parameters. We come
back to this point later in this section.
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Log Odds Is Linear with ln(t)

log(failure odds) = ln(λt p)

= ln(λ) + p[ln(t)]↗ ↑
Intercept = ln(λ) slope = p

The log of the failure odds is ln(λt p), which can
be rewritten as ln(λ) + p[ln(t)]. In other words,
the log odds of failure is a linear function of
the log of time with slope p and intercept ln(λ).
This is a useful result enabling a graphical eval-
uation for the appropriateness of the log-logistic
distribution.

Evaluate log-logistic assumption
graphically

� Plot ln
[

(1−Ŝ(t))
Ŝ(t)

]
against ln(t)

� If log-logistic, then plot is linear
with slope = p

The log-logistic assumption can be graphically
evaluated by plotting ln(1 − Ŝ(t))/(Ŝ(t)) against
ln(t) where Ŝ(t) are the Kaplan–Meier survival
estimates. If survival time follows a log-logistic
distribution, then the resulting plots should be a
straight line of slope p.

Alternatively

� Plot ln
(

Ŝ(t)
(1−Ŝ(t))

)
against ln(t)

� If log-logistic, then plot is linear
with slope = −p

We could alternatively plot the log of the survival
odds, ln(Ŝ(t))/(1 − Ŝ(t)), against ln(t). If the log-
logistic assumption is correct the resulting plots
should be a straight line of slope −p.

Remission Data

WBCCAT: white blood cell count
variable medium =1 vs. high = 2

We next consider a different variable from the re-
mission data: a dichotomous variable for white
blood cell count (WBCCAT) coded medium = 1
and high = 2.

ln
[

Ŝ(t)
(1−Ŝ(t))

]
plotted against ln(t).
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On the left is the plot of the log odds of survival
(obtained from the Kaplan–Meier survival esti-
mates) against the log of time comparing medium
(WBCCAT = 1) and high (WBCCAT = 2) blood
cell counts. The points for WBCCAT = 1 lie above
the points for WBCCAT = 2 indicating that the
survival odds are higher for those with a medium
white blood cell count compared to high. The lines
look reasonably straight and parallel, at least until
the estimated odds of survival approaches zero.

If we accept the proposition that the lines look
straight, then the log-logistic assumption is rea-
sonable. Because the lines look parallel, the pro-
portional odds (PO) assumption is also reason-
able. If the PO assumption holds in a log-logistic
model then the AFT assumption also holds.
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Straight lines Log-logistic

Parallel plots PO

Log-logistic and PO AFT

The key points from above are:

a. straight lines support the log-logistic
assumption,

b. parallel curves support the PO
assumption, and

c. If the log-logistic and PO assumptions
hold, then the AFT assumption also
holds.

Log-logistic and Weibull graphical
approach analogous

� Check PH for Weibull� Check PO for log-logistic

The graphical evaluation for the log-logistic as-
sumption is analogous to the graphical analysis of
the Weibull assumption presented in the last sec-
tion, except here the PO assumption rather than
the PH assumption is evaluated by checking for
parallel lines.

AFT log-logistic model

S(t) = 1
1 + λt p

= 1

1 + (λ1/pt)p

solve for t to obtain

t =
[

1
S(t)

− 1
]1/p

× 1

λ1/p

let
1

λ1/p
= exp(α0 + α1WBCCAT)

t =
[

1
S(t)

− 1
]1/p

× exp(α0 + α1WBCCAT)↗
Scaling of t

Next we consider an AFT log-logistic model with
white blood cell count as the only predictor com-
paring WBCCAT = 2 (high count) and WBCCAT
= 1 (medium count).

We develop the AFT parameterization by
solving for t in terms of a fixed S(t). Starting
with the expression for S(t), taking reciprocals,
subtracting 1, raising to the power 1/p, and then
multiplying by the reciprocal of λ1/p, yields the
expression for t shown on the left. By reparameter-
izing 1/λ1/p = exp(α0 + α1WBCCAT), we allow
the predictor variable WBCCAT to be used for the
multiplicative scaling of time to any fixed value of
S(t) (see left).

Let S(t) = q

t = [q−1 − 1]1/p

× exp(α0 + α1WBCCAT)

Median survival time (q = 0.5):

tm = [2 − 1]1/p

× exp(α0 + α1WBCCAT)

The expression for t is restated on the left in terms
of any fixed probability S(t) = q. For example, to
find an expression for the median survival time tm,
substitute q = 0.5 (see left).
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Acceleration factor,
γ (WBCCAT = 2 vs. WBCCAT = 1)

= [q−1 − 1]1/p exp(α0 + 2α1)
[q−1 − 1]1/p exp(α0 + 1α1)

= exp(α1)

The acceleration factor γ is found by taking the
ratio of the times to S(t) = q for WBCCAT = 2
and for WBCCAT = 1. After canceling, γ reduces
to exp(α1).

Log-logistic regression accelerated
failure-time form

t Coef. Std. Err. z p>|z|
wbccat −.871 .296 −2.94 0.003
cons 3.495 .498 7.09 0.000

ln gam −.779 .164 −4.73 0.000

gamma .459 .0756

p = 1/(0.459) = 2.18

The output from running the AFT log-logistic
model is shown on the left. The coefficient esti-
mate for WBCCAT is −0.871, which is statistically
significant with a p-value of 0.003 (far right
column of output).

Stata provides estimates of the reciprocal of
p (gamma = 1/p) rather than for p. The estimate
for gamma is 0.459. Therefore, the estimate for p
is 1/(0.459) = 2.18.

WBCCAT = 2 vs. WBCCAT = 1
(log-logistic):

γ̂ = exp(−0.871) = 0.42
95% CI for γ = exp[−0.871

±1.96(0.296)]
= (0.23, 0.75)

An estimate of the acceleration factor γ̂ compar-
ing WBCCAT = 2 to WBCCAT = 1 is found by ex-
ponentiating the estimate −0.871 of α1 to obtain
0.42. The 95% confidence interval for γ is calcu-
lated to be (0.23, 0.75).

Comparing estimated survival

Ŝ1(t) = Ŝ2(0.42t)↗ ↖
Survival Survival
function for function for
WBCCAT = 1 WBCCAT = 2

These results suggest that the time for going out of
remission is “accelerated” for patients with a high
white blood cell count compared to those with a
medium count by an estimated factor of 0.42. In
terms of the survival functions estimated from this
model, Ŝ1(t) = Ŝ2(0.42t) where Ŝ1(t) and Ŝ2(t) are
the respective survival functions for patients with
medium and high blood cell counts.

Failure odds

1 − S(t)
S(t)

=
(

λt p

1 + λt p

)( 1
1 + λt p

) = λt p

The proportional odds form of the log-logistic
model can also be formulated by reparameteriz-
ing λ. Recall that the log-logistic failure odds is
λt p.

where λ = exp(β0 + β1WBCCAT)

OR (WBCCAT = 2 vs. WBCCAT = 1)

= t p exp(β0 + 2β1)
t p exp(β0 + 1β1)

= exp(β1)

By setting λ = exp(β0 + β1WBCCAT), an odds ra-
tio comparing WBCCAT = 2 to WBCCAT = 1 can
be calculated (see left). After canceling, the odds
ratio reduces to exp(β1).
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Comparing AFT and PO
(log-logistic)
Relationship of coefficients:

βj = −αj p

The corresponding coefficients for log-logistic PO
and AFT models are related by βj = −αj p for the
jth covariate. This result is obtained using a simi-
lar argument to that presented for the Weibull ex-
ample in the previous section.

Since α̂ = −0.871 and p̂ = 2.18
Then,

β̂1 = −(−0.871)(2.18) = 1.90

and

ÔR = exp(1.90) = 6.69

The estimate for α1 in the AFT model is −0.871
and the estimate for p is 2.18. Therefore, an
estimate for β1 can be found by multiplying
−(−0.871) times 2.18 yielding 1.90. An estimate of
the odds ratio is found by exponentiating this es-
timate, exp(1.90) = 6.69. (Unfortunately, neither
Stata nor SAS estimates the proportional odds
form of the model.)

VIII. A More General Form of
the AFT Model

Exponential: S(t) = exp(−λt)

� AFT Form:
1
λ= exp(α0 + α1TRT)� PH Form: λ

= exp(β0 + β1TRT)

Weibull: S(t) = exp(−λt p)

� AFT Form:
1

λ1/p

= exp(α0 + α1TRT)� PH Form: λ
= exp(β0 + β1TRT)

Log-logistic: S(t) = 1
1 + λt p

� AFT Form:
1

λ1/p

= exp(α0 + α1WBCCAT)� PO Form: λ
= exp(β0 + β1WBCCAT)

On the left is a summary of the models discussed
in the previous sections. These models were
formulated by reparameterizing the survival
(and hazard) functions in terms of regression
parameters and predictor variables.

An advantage for stating the models in this
form is that the interpretation and relationships
between parameters are specific to each distribu-
tion.

However, there are more general ways these
models could be stated. The Cox PH model is
a more general way of stating the proportional
hazards model. In this section we discuss a more
general formulation of the AFT model.
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General Form of AFT Model
(One Predictor)

ln(T) = α0 + α1TRT + ε↗
random error

Consider an AFT model with one predictor (TRT)
in which T represents a random variable for sur-
vival time. The model can be expressed on the log
scale as shown on the left, where ε is random error
following some distribution.

With additional parameter

ln(T) = α0 + α1TRT + σε↗
σ scales the error

Some distributions have an additional parameter
(σ ) scaling ε. The model including this additional
parameter can be expressed as shown on the left,
where the random error ε is multiplied by a scale
parameter σ .

If ε ∼ N(0, 1), then
ln(T) ∼ N(µ =α0 + α1TRT, sd = σ )

Similar to linear regression (except
for inclusion of censorships)

If ε follows a standard normal distribution and
ln(T) = α0 + α1TRT + σε, then ln(T) would fol-
low a normal distribution with mean µ = α0 +
α1TRT and standard deviation σ . For this situ-
ation, the model would look like a standard lin-
ear regression. The key difference between fitting
this survival model and a standard linear regres-
sion is the inclusion of censored observations
in the data.

In general,

µln(T) �= (α0 + α1TRT), sd �= σ

Interpretation of parameters de-
pends on distribution

In general, for other distributions, the mean of
ln(T) is not α0 + α1TRT and its standard deviation
is not σ . In other words, it should not be assumed
that the mean of ε is 0 and the standard deviation
is 1. The interpretation of the parameters depends
on the underlying distribution.

Let σ = 1
p

, then

ln(T) = α0 + α1TRT + 1
p
ε

Sometimes the model is parameterized using σ =
1/p. The model can then be restated by replacing
σε with (1/p)ε.

Additive model in terms of ln(T)
but

multiplicative model in terms of T

The AFT model is additive on the log scale but
a multiplicative model with respect to T.

T = exp
(
α0 + α1TRT + 1

p
ε

)
= exp[(α0 + α1TRT)] × exp

(
1
p
ε

)
In particular, the model can be expressed in terms
of T by exponentiating ln(T), as shown on the left.



284 7. Parametric Survival Models

Collapse α0 into baseline term

T0 = exp(α0) exp
(

1
p
ε

)
so that T = exp(α1TRT) × T0
where T0 is a random variable for
TRT = 0

The model may also be expressed by collapsing the
intercept into a baseline random term T0 (see left).
In this setting T0 is a random variable representing
the survival time of the placebo group (TRT = 0).

AFT model may be expressed in
terms of T or ln(T)

Comparing Distributions: T and
ln(T)

T ln(T)

Exponential Extreme minimum
value

Weibull Extreme minimum
value

Log-logistic Logistic
Lognormal Normal

In summary, an AFT model may be expressed by
reparameterizing a specific distribution, or may
be more generally expressed either in terms of a
random variable T (for survival time), or ln(T).
If T follows a Weibull distribution then ln(T) fol-
lows a distribution called the extreme minimum
value distribution (see table on left). Similarly, if
T follows a log-logistic or lognormal distribution
then ln(T) follows a logistic or normal distribu-
tion, respectively. The logistic and normal distri-
butions are similarly shaped, and are both sym-
metric about their mean.

IX. Other Parametric Models In the previous sections we presented examples of
the exponential, Weibull, and log-logistic models.
In this section we briefly discuss some other para-
metric survival models.

Generalized Gamma Model

� Supported by SAS and Stata� S(t), h(t) expressed in terms
of integrals� Contains three parameters� Weibull, lognormal are special
cases

The generalized gamma model is a parametric
survival model that is supported by both SAS and
Stata software. The hazard and survival function
for this model is complicated and can only be
expressed in terms of integrals. The generalized
gamma distribution has three parameters allow-
ing for great flexibility in its shape. The Weibull
and lognormal distributions are special cases of
the generalized gamma distribution (see Practice
Exercises 12 to 14).

Lognormal Model

Similar to log-logistic
Difference:

Log-logistic: AFT and PO
Lognormal: AFT but not PO

The lognormal model also has a relatively com-
plicated hazard and survival function that can only
be expressed in terms of integrals. The shape of
the lognormal distribution is very similar to the
log-logistic distribution and yields similar model
results. A difference is that although the lognor-
mal model accommodates an accelerated failure
time model, it is not a proportional odds model.
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Gompertz Model

� PH model but not AFT� One predictor (TRT) in model:

h(t) = [exp(γt)] × exp(β0 + β1TRT)

↗
h0(t) = exp(γt) (parametrically

specified)

γ > 0 hazard exponentially
increases with t

γ < 0 hazard exponentially
decreases with t

γ = 0 constant hazard
(exponential model)

Parametric models need not be AFT models. The
Gompertz model is a parametric proportional
hazards model but not an AFT model. The model
can be expressed in a form similar to that of a
Cox PH model except that the baseline hazard is
specified as the hazard of a Gompertz distribution
containing a shape parameter γ (see left).

If γ > 0 then the hazard exponentially increases
over time. If γ < 0 then the hazard exponentially
decreases over time. If γ = 0 then the hazard is
constant and reduces to the exponential model.

AFT model: multiplicative

T = exp(α0 + α1TRT + ε)
= exp(α0) × exp(α1) × exp(ε)

but
additive on log scale:
ln(T) = α0 + α1TRT + ε

Additive failure time model
T = α0 + α1TRT + ε↗

T rather than log(T) is linear with
TRT

The AFT model is a multiplicative model (i.e., a
multiplicative scaling of failure time). It becomes
an additive model on the log scale (see left side).

An alternative parametric model is to define an
additive failure time model in terms of T. Con-
sider the model: T = α0 + α1TRT + ε. Now T,
rather than ln(T), is expressed as a linear function
of the regression parameters. Stated in statistical
language: the log link function is omitted from this
failure time model. SAS supports such an additive
failure time model (see Computer Appendix).

Modeling the Shape Parameter
(e.g., Weibull and log-logistic)

Typical Weibull model

h(t) = λpt p−1

where λ = exp(β0 + β1TRT)
p unaffected by predictors

Many parametric models contain an extra shape
(or ancillary) parameter beyond the regression
parameters. For example, the Weibull and log-
logistic models contain a shape parameter p.
Typically, this parameter is considered fixed, un-
affected by changes in the values of predictor
variables.
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Alternative Weibull model
models the ancillary parameter p

h(t) = λpt p−1

where λ = exp(β0 + β1TRT)
p = exp(δ0 + δ1TRT)

Not a PH or AFT model if δ1 �= 0
but still a Weibull model

An alternative approach is to model the shape pa-
rameter in terms of predictor variables and regres-
sion coefficients. In the Weibull model shown on
the left, both λ and p are modeled as functions of
treatment status (TRT). If δ1 is not equal to zero,
then the value of p differs by TRT. For that sit-
uation, the PH (and thus the AFT) assumption is
violated because t p−1 will not cancel in the hazard
ratio for TRT (see Practice Exercises 15 to 17).

Choosing appropriate model

� Evaluate graphically
◦ Exponential
◦ Weibull
◦ Log-logistic� Akaike’s information criterion
◦ Compares model fit
◦ Uses −2 log likelihood

Choosing the most appropriate parametric model
can be difficult. We have provided graphical ap-
proaches for evaluating the appropriateness of
the exponential, Weibull, and log-logistic models.
Akaike’s information criterion (AIC) provides
an approach for comparing the fit of models with
different underlying distributions, making use of
the −2 log likelihood statistic (described in Prac-
tice Exercises 11 and 14).

X. The Parametric Likelihood

� Function of observed data and
unknown parameters� Based on outcome distribution
f(t)� Censoring complicates survival
data
◦ Right-censored
◦ Left-censored
◦ Interval-censored

The likelihood for any parametric model is a func-
tion of the observed data and the model’s un-
known parameters. The form of the likelihood
is based on the probability density function f(t)
of the outcome variable. A complication of sur-
vival data is the possible inclusion of censored
observations (i.e., observations in which the ex-
act time of the outcome is unobserved). We con-
sider three types of censored observations: right-
censored, left-censored, and interval-censored.

Examples of Censored Subjects

Right-censored:
10

10

108

Left-censored:  __________________   time

Interval-censored:  ______________   time

x

x

x

time

Right-censored. Suppose a subject is lost to
follow-up after 10 years of observation. The time
of event is not observed because it happened af-
ter the 10th year. This subject is right-censored at
10 years because the event happened to the right
of 10 on the time line (i.e., t > 10).

Left-censored. Suppose a subject had an event be-
fore the 10th year but the exact time of the event is
unknown. This subject is left-censored at 10 years
(i.e., t < 10).

Interval-censored. Suppose a subject had an
event between the 8th and 10th year (exact time
unknown). This subject is interval-censored (i.e.,
8 < t < 10).
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Formulating the Likelihood

Barry, Gary, Larry, . . . , Outcome
Distribution f (t)

Event Likelihood
Subject Time Contribution

Barry t = 2 f (2)

Gary t > 8
(right-censored)

∞∫
8

f (t)dt

Harry t = 6 f (6)

Carrie t < 2
(left-censored)

2∫
0

f (t)dt

Larry 4 < t < 8
(interval-censored)

8∫
4

f (t)dt

The table on the left illustrates how the likelihood
is formulated for data on five subjects. We assume
a probability density function f(t) for the outcome.
Barry gets the event at time t = 2. His contribu-
tion to the likelihood is f(2). Gary is right-censored
at t = 8. The probability that Gary gets the event
after t = 8 is found by integrating f(t) from 8 to in-
finity. This is Gary’s contribution to the likelihood.
Harry gets the event at time t = 6. His contribu-
tion to the likelihood is f(6). Carrie is left-censored
at t = 2. Her contribution to the likelihood is ob-
tained by integrating f(t) from zero to 2. Finally,
Larry is interval-censored between t = 4 and t =
8. His contribution to the likelihood is found by
integrating f(t) from 4 to 8.

Likelihood (L)

Product of individual contributions

L = f (2) ×
∞∫

8

f (t)dt × f (6)

×
∫ 2

0
f (t)dt ×

8∫
4

f (t)dt

(Barry × Gary × Harry
× Carrie× Larry)

The full likelihood (L) is found by taking the prod-
uct of each subject’s independent contribution to
the likelihood. The likelihood for this example is
shown on the left.

Assumptions for formulating L

� No competing risks
◦ Competing event does not

prohibit event of interest
◦ Death of all causes is

classic example of no
competing risk

The formulation of this likelihood uses the as-
sumption of no competing risks. In other words,
we assume that no competing event will prohibit
any subject from eventually getting the event of
interest (see Chapter 9). Death from all causes is
the classic example of an outcome that in reality
has no competing risk. For other outcomes, the no
competing risk assumption is more of a theoreti-
cal construct.

� Subjects independent
◦ Allows L to be formulated as

product of subjects’
contributions

Another assumption is that individual contri-
butions to the likelihood are independent. This
assumption allows the full likelihood to be formu-
lated as the product of each individual’s contribu-
tion.
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� Follow-up time continuous
◦ No gaps in follow-up

A third assumption is that each subject’s follow-up
time is continuous without gaps (i.e., once sub-
jects are out of the study, they do not return). If
gaps are allowed, the likelihood can be modified
to accommodate such a scenario.

Revisit example with Barry, Gary,
Larry, . . .
f(t) is Weibull
SMOKE is only predictor

1 = Smoker
0 = Nonsmoker

Weibull: h(t) = λpt p−1,
S(t) = exp(−λt p)

f (t) = h(t)S(t)
f (t) = λpt p−1 exp(−λt p)

where λ = exp(β0 + β1SMOKE)
(PH form of the model)

In the last example, we did not specify the prob-
ability density f(t), nor did we specify any co-
variates. We revisit this example, assuming f(t) is
Weibull with one predictor SMOKE in the model
(coded 1 for smokers and 0 for nonsmokers).

The Weibull hazard and survival functions are
shown on the left. The probability density func-
tion f(t) is the product of the hazard and survival
functions. The parameterization will use the pro-
portional hazards (PH) form of the Weibull model:
λ = β0 + β1SMOKE.

Data Layout for Right-, Left-, and
Interval-Censoring Using SAS

ID LOWER UPPER SMOKE

Barry 2 2 1
Gary 8 — 0
Harry 6 6 0
Carrie — 2 0
Larry 4 8 1

Right-censored: UPPER missing
Left-censored: LOWER missing
Interval-censored: LOWER <

UPPER
Not censored: LOWER = UPPER

On the left is the data layout for running paramet-
ric models containing right-, left-, and interval-
censored data in a form suitable for using the
SAS procedure PROC LIFETEST (version 8.2).
There are two time variables LOWER and UPPER.
Barry got the event at t = 2, so both LOWER and
UPPER get the value 2. Gary was right-censored
at 8 (t >8) so LOWER gets the value 8 and UP-
PER is set to missing. Carrie is left-censored at 2
(t < 2) so LOWER is set to missing and UPPER
gets the value 2. Larry was interval-censored with
LOWER = 4 and UPPER = 8. Barry and Larry
are smokers whereas Gary, Harry, and Carrie are
nonsmokers.
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Weibull Likelihood (L)

Product of individual contributions

L = f (2) ×
∞∫

8

f (t)dt × f (6) ×
2∫

0

f (t)dt

×
8∫

4

f (t)dt

L = exp(β0 + β1)p(2)p−1exp(−exp(β0 + β1)2p)

×
∞∫

8

exp(β0)p(t)p−1 exp(− exp(β0)t p)dt

× exp(β0)p(6)p−1 exp(− exp(β0)6p)

×
2∫

0

exp(β0)p(t)p−1 exp(− exp(β0)t p)dt

×
8∫

4

exp(β0 + β1)p(t)p−1 exp(− exp(β0

+ β1)t p)dt

Obtaining maximum likelihood es-
timates

Solve system of equations:

∂Ln(L)
∂β j

= 0 j = 1, 2, . . . , N

where N = # of parameters

The full likelihood using the Weibull distribution
can now be formulated as a product of each indi-
vidual’s contribution (shown on the left). We have
used a small dataset (5 subjects) for ease of illus-
tration but the process can be generalized for any
number of subjects.

Once the likelihood is formulated, the question
becomes: which values of the regression parame-
ters would maximize L? The process of maximizing
the likelihood is typically carried out by setting the
partial derivative of the natural log of L to zero and
then solving the system of equations (called the
score equations). The parameter estimates (e.g.,
p̂, β̂0, β̂1) that maximize L are the maximum like-
lihood estimates.

XI. Interval-Censored Data

Parametric likelihood

� Handles right-, left-, or
interval-censored data

Cox likelihood

• Designed to handle
right-censored data.

One advantage of a parametric model compared
to a Cox model is that the parametric likeli-
hood easily accommodates right-, left-, or interval-
censored data. The Cox likelihood, by contrast,
easily handles right-censored data but does not
directly accommodate left- or interval-censored
data.
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Interval-censored study design

� Check for nonsymptomatic
outcome once a year� If outcome newly detected,
exact time occurred during
previous year� Left-censoring special case of
interval-censoring
◦ Zero the lower boundary of

the interval

Sometimes the design of a study is such that all
the data are interval-censored. For example, con-
sider a study in which healthcare workers exam-
ine subjects once a year, checking for a nonsymp-
tomatic outcome. If an event was first detected
in the beginning of the third year, then the ex-
act time of the outcome occurred sometime be-
tween the second and third years. In this frame-
work left-censoring can be considered a special
case of interval-censoring with zero as the lower
boundary of the interval.

Parametric model can be fitted

� f(t) specified� Contribution to likelihood for
each subject
◦ Integrate f(t) over event

interval

A parametric model can easily be fitted using the
methods described in the previous section. Once a
distribution for the outcome, f(t), is specified, each
subject’s contribution to the likelihood is obtained
by integrating f(t) over the interval in which he or
she had the event.

Binary regression

� Alternative approach
for interval-censored data� Outcome coded
◦ 0 if subject survives interval
◦ 1 if subject gets event during

interval� Useful approach if
◦ Ample number of events in

each interval
◦ Prefer not to specify f(t)

A binary regression (e.g., logistic regression) is
an alternative approach that may be considered
if all the data are interval-censored. With this
method the outcome variable can be coded zero
if the subject survives the interval and coded one
if the subject gets the event during the interval.
This approach is particularly useful if there are an
ample number of events in each interval and the
analyst prefers not to specify a distribution f(t) for
continuous survival time.

Information on Three Subjects

Subject 1: Gets event in first interval
Subject 2: Survives first interval

Survives second interval
Gets event in third
interval

Subject 3: Survives first interval
Gets event in second
interval

For illustration, consider a small dataset contain-
ing three subjects. Subject 1 gets the event in the
first interval of follow-up, subject 2 gets the event
in the third interval, and subject 3 gets the event
in the second interval of follow-up.
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Data Layout for Binary Regression

SUBJECT EVENT D1 D2 D3 TRT

1 1 1 0 0 1
2 0 1 0 0 0
2 0 0 1 0 0
2 1 0 0 1 0
3 0 1 0 0 1
3 1 0 1 0 1

EVENT: dichotomous outcome
coded 1 if event, 0 for no event
during the interval

D1, D2, D3: dummy variables for
intervals 1, 2, and 3 coded 1 if in the
corresponding interval, 0 otherwise

TRT: Treatment coded 1 for new
treatment, 0 for placebo

The data layout is shown on the left. Each
observation represents one interval of follow-up
time allowing multiple observations per subject.
EVENT is the dichotomous outcome variable.
Subject 1 had the event in the first interval
(EVENT = 1) and thus has one observation.
Subject 2 has three observations because she
survived the first two intervals (EVENT = 0) but
got the event in the third interval. D1 is a dummy
variable coded 1 if the observation represents
the first interval and 0 otherwise. Similarly, D2 is
coded 1 for the second interval and D3 is coded 1
for the third interval.

TRT is the predictor of interest, coded 1 for
the new treatment and 0 for the placebo. TRT
could be coded as a time-independent or time-
dependent variable. In this example, TRT is
time-independent because TRT does not change
values over different intervals corresponding to
the same subject.

Logistic Model

Logit P(Y = 1) = β1D1 + β2D2

+β3D3 + β4TRT

where P(Y = 1) is the probability
of event for a given interval condi-
tioned on survival of previous inter-
vals

A logistic model (shown at left) containing the
three dummy variables and TRT can be formu-
lated with the data in this form.

Interpretation of Parameters

β1: Log odds of event in 1st interval
among TRT = 0

β2: Log odds of event in 2nd inter-
val given survival of 1st interval
among TRT = 0

β3: Log odds of event in 3rd interval
given survival of first two inter-
vals among TRT = 0

β4: Log odds ratio for TRT

Care must be taken with the interpretation of the
parameters: β1 is the log odds of the event occur-
ring in the first interval among the placebo group;
β2 is the log odds of the event occurring in the sec-
ond interval conditioned on survival of the first in-
terval among the placebo group; β3 is the log odds
of the event occurring in the third interval condi-
tioned on survival of the first and second intervals
among the placebo group; and β4 is the log odds
ratio for TRT.
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D1, D2, D3 play similar role as inter-
cept

� Baseline measure when
covariates are zero� 3 parameters rather than 1
intercept
◦ Baseline measure may differ

for each interval

The dummy variables play a similar role to that
of the intercept in a conventional regression, pro-
viding a baseline outcome measure for the case in
which all predictors are zero (e.g., TRT = 0). In
general, the baseline measure may differ for each
interval, which is the reason that the model con-
tains 3 dummy variables rather than 1 intercept.

Odds Ratio (TRT = 1 vs. TRT = 0)
= exp(β4)

Model uses PO assumption

� OR constant over time� PO assumption can be tested
◦ Include interaction terms

with TRT and dummy
variables

◦ Significant interaction
suggests PO violation

◦ Need ample data to
practically carry out test

The odds ratio comparing TRT = 1 to TRT = 0 is
obtained by exponentiating β4. This model uses
the proportional odds (PO) assumption in that
the odds ratio is assumed constant over time (or
at least constant at the end of each interval). This
assumption can be tested by including interaction
(product) terms with TRT and two of the dummy
variables in the model. A statistically significant
product term would suggest a violation of the PO
assumption. However, if there are sparse data cor-
responding to particular intervals, it will not be
practical to carry out such a test on those inter-
vals.

Alternative Binary Model

log(− log(1 − P(Y = 1)))
= β1D1 + β2D2 + β3D3 + β4TRT

where 1 − P(Y = 1) is the probabil-
ity of surviving a given interval con-
ditioned on survival of previous in-
tervals

Logistic regression is not the only type of binary
regression that may be considered for interval-
censored data. An alternative binary model
(shown on the left) uses the complementary log–
log link function rather than the logit link func-
tion that is used for the more familiar logistic
regression.

Complementary log–log link� Log–log survival modeled as
linear function of regression
parameters

Logit link� Log odds of failure modeled
as linear function of regression
parameters

A model using a complementary log–log link func-
tion expresses the log negative log survival prob-
ability as a linear function of regression param-
eters. By contrast, a model using a logit link
function expresses the log odds of failure (i.e., get-
ting the event) as a linear function of regression
parameters.
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Complementary log–log model is
PH model

� HR (TRT = 1 vs. TRT = 0) =
exp(β4)� HR constant over time

The complementary log–log binary model is a
proportional hazards model. The hazard ratio
comparing TRT = 1 to TRT = 0 is obtained by
exponentiating β4.

Log–log survival curves:
parallel additive effects

PH

Complementary log–log link:
additive effects on log–log scale

PH

Recall we can use log–log survival curves to eval-
uate the PH assumption for a Cox model. If the
effects are additive (e.g., parallel for TRT = 1 and
TRT = 0) then the PH assumption is assumed to
hold. The underlying idea is similar for the com-
plementary log–log link function in that additive
effects are assumed on the log–log scale (e.g., com-
paring TRT = 1 to TRT = 0).

In theory� Survival time is continuous

In practice� Survival time measured in
intervals
◦ If event occured in month 7

then event occurred in an
interval of time

In theory, the time-to-event variable in survival
analyses is thought of as a continuous variable.
In practice, however, the time variable is typically
an interval of time. For example, if time is mea-
sured in months and an event occurs in month 7
then the event is recorded as having occurred in a
specific interval lasting a month.

Discrete survival analysis

� Discrete time� For example, number of
menstrual cycles to pregnancy
rather than time to pregnancy
◦ Fraction of cycle does not

make sense

Discrete survival analysis is a survival analysis
in which the outcome variable is discrete, both in
theory and in practice. For example, consider a
study in which women who stop using oral con-
traception are followed until pregnancy. The out-
come is defined as the number of menstrual cy-
cles until pregnancy. The number of cycles rather
than the time to pregnancy is used because the
cycle length varies among women and a woman
ovulates only once per menstrual cycle (i.e., one
opportunity per cycle to become pregnant). The
number of cycles is a discrete outcome. A fraction
of a cycle does not make sense.
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Analyzing discrete survival data

� Can use binary regression� Analogous to interval-censored
data
◦ Discrete outcome—subjects

survive discrete units of time
◦ Interval outcomes—

subjects survive intervals
of time

Binary regression, as described in this section,
can be applied for discrete survival outcomes in
a similar manner to that described for interval-
censored outcomes. With this method, subjects
can be conceptualized as surviving discrete units
of time analogously as subjects surviving continu-
ous intervals of time.

XII. Frailty Models

Frailty

� Random component� Accounts for extra variability
from unobserved factors

In this section we consider the inclusion of frailty
to a survival model. Frailty is a random compo-
nent designed to account for variability due to
unobserved individual-level factors that is other-
wise unaccounted for by the other predictors in
the model.

Conceptualize S(t) two ways:

� For an individual� Averaging over a theoretical
large population

Consider a survival model with a continuous age
variable and dichotomous smoking status variable
as the only predictors. Under this model the sur-
vival function for a 33-year-old smoker might be
conceptualized in different ways. One way is as
the survival function for an individual 33-year-old
smoker. The second way is as some kind of averag-
ing over a theoretical large population of 33-year-
old smokers.

With Frailty Component

Jake and Blake
1. May have different S(t) due to

unobserved factors
2. Extra source of variability in

outcome (e.g., more variation
than expected under Weibull)

Without Frailty Component

Jake and Blake
1. Have same S(t)
2. May have different event times

because event time is random,
following some distribution (e.g.,
Weibull)

Now suppose a “frailty” component is included in
the model. Under this model, we can conceptu-
alize survival functions specific to each individ-
ual. If Jake and Blake are both 33-year-old smok-
ers, not only might their observed failure times
be different, but under this model their individ-
ual survival functions could also be different.
Jake may be more “frail” than Blake due to un-
observed factors accounting for individual level
differences in his hazard and survival functions.
These unobserved factors may contribute an ex-
tra layer of heterogeneity, leading to greater vari-
ability in survival times than might be expected
under the model (e.g., Weibull) without the frailty
component.
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The frailty component α (α> 0)

� Unobserved multiplicative
effect on hazard� Follows distribution g(α) with
µ = 1� Var(g(α)) = θ , parameter to be
estimated

Hazard and survival conditioned on
frailty

h(t|α) =αh(t)
S(t|α) = S(t)α

The frailty α is an unobserved multiplicative ef-
fect on the hazard function assumed to follow
some distribution g(α) with α > 0 and the mean
of g(α) equal to 1. The variance of g(α) is a param-
eter θ (theta) that is typically estimated from the
data.

An individual’s hazard function conditional on the
frailty can be expressed as α multiplied by h(t).
Using the relationship between the survival and
hazard functions, the corresponding conditional
survival function can be expressed as S(t) raised
to the α power.

α > 1� Increased hazard: αh(t) > h(t)� Decreased survival: S(t)α < S(t)

α < 1� Decreased hazard: αh(t) < h(t)� Increases survival: S(t)α > S(t)

α = 1 (average frailty): αh(t) = h(t)

Individuals with α > 1 have an increased hazard
and decreased probability of survival compared to
those of average frailty (α = 1). Similarly, individ-
uals with α < 1 have a decreased hazard and in-
creased probability of survival compared to those
of average frailty.

Survival functions
(with frailty models)

1. Conditional, S(t|α), individual
level

2. Unconditional, S∪(t), population
level

Unconditional survival function
S∪(t)

S∪(t) =
∞∫

0

S(t |α)g (α)dα

hU (t) = −d[SU (t)]/dt
SU (t)

With frailty models, we distinguish the individ-
ual level or conditional survival function S(t|α)
discussed above, from the population level or un-
conditional survival function S∪(t), which repre-
sents a population average. Once the frailty distri-
bution g(α) is chosen, the unconditional survival
function is found by integrating over the condi-
tional survival function S(t|α) times g(α), with
respect to α. The corresponding unconditional
hazard h∪(t) can then be found using the relation-
ship between the survival and hazard functions
(see left).
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Frailty distribution g(α), α > 0,
E(α) = 1

Stata offers choices for g(α)
1. Gamma
2. Inverse-Gaussian
Both distributions parameterized in
terms of θ

Any distribution for α > 0 with a mean of 1
can theoretically be used for the distribution of
the frailty. Stata supports two distributions: the
gamma distribution and the inverse-Gaussian
distribution for the frailty. With the mean fixed
at 1, both these distributions are parameterized in
terms of the variance θ and typically yield similar
results.

EXAMPLE

Vet Lung Cancer Trial

Predictors:

TX (dichotomous: 1 = standard, 2 = test)

PERF (continuous: 0 = worst, 100 = best)

DD (disease duration in months)

AGE (in years)

PRIORTX (dichotomous: 0 = none,
10 = some)

To illustrate the use of a frailty model, we apply
the data from the Veteran’s Administration Lung
Cancer Trial described in Chapter 5. The exposure
of interest is treatment status TX (standard = 1,
test = 2). The control variables are performance
status (PERF), disease duration (DD), AGE, and
prior therapy (PRIORTX), whose coding is shown
on the left. The outcome is time to death (in days).

Model 1. No Frailty

Weibull regression (PH form)

Log likelihood = −206.20418

t Coef. Std. Err. z p >|z|
tx .137 .181 0.76 0.450
perf −.034 .005 −6.43 0.000
dd .003 .007 0.32 0.746
age −.001 .009 −0.09 0.927
priortx −.013 .022 −0.57 0.566
cons −2.758 .742 −3.72 0.000

/ln p −.018 .065 −0.27 0.786

p .982 .064
1/p 1.02 .066

Output from running a Weibull PH model with-
out frailty using Stata software is shown on the
left (Model 1). The model can be expressed: h(t) =
λpt p−1 where

λ = exp(β0 + β1TX + β2PERF + β3DD
+ β4AGE + β5PRIORTX).

The estimate of the hazard ratio comparing TX = 2
vs. TX = 1 is exp(0.137) = 1.15 controlling for per-
formance status, disease duration, age, and prior
therapy. The estimate for the shape parameter is
0.982 suggesting a slightly decreasing hazard over
time.
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EXAMPLE (continued) 

Model 2. With Frailty

Weibull regression (PH form)
Gamma frailty
Log likelihood = −200.11338

t Coef. Std. Err. z p >|z|
tx .105 .291 0.36 0.719
perf −.061 .012 −5.00 0.000
dd −.006 .017 −0.44 0.663
age −.013 .015 −0.87 0.385
priortx −.006 .035 −0.18 0.859
cons −2.256 1.100 −2.05 0.040

/ln p .435 .141 3.09 0.002
/ln the −.150 .382 −0.39 0.695

p 1.54 .217
1/p .647 .091
theta .861 .329

Likelihood ratio test of theta = 0:
chibar2(01) = 12.18
Prob>=chibar2 = 0.000

Model 2 (output on left) is the same Weibull model
as Model 1 except that a frailty component has
been included. The frailty in Model 2 is assumed
to follow a gamma distribution with mean 1 and
variance equal to theta (θ ). The estimate of theta
is 0.861 (bottom row of output). A variance of
zero (theta = 0) would indicate that the frailty
component does not contribute to the model. A
likelihood ratio test for the hypothesis theta = 0
is shown directly below the parameter estimates
and indicates a chi-square value of 12.18 with 1
degree of freedom yielding a highly significant
p-value of 0.000 (rounded to 3 decimals).

Notice how all the parameter estimates
are altered with the inclusion of the frailty.
The estimate for the shape parameter is now 1.54,
quite different from the estimate 0.982 obtained
from Model 1. The inclusion of frailty not only
has an impact on the parameter estimates but
also complicates their interpretation.

Comparing Model 2 with Model 1

� There is one additional
parameter to estimate in
Model 2� The actual values of
individuals’ frailty are not
estimated in Model 2� The coefficients for the
predictor variables in Models 1
and 2 have different estimates
and interpretation� The estimate of the shape
parameter is <1.0 for Model 1
and >1.0 for Model 2

Before discussing in detail how the inclusion
of frailty influences the interpretation of the
parameters, we overview some of the key points
(listed on the left) that differentiate Model 2
(containing the frailty) and Model 1.

Model 2 contains one additional parameter,
the variance of the frailty. However, the actual
values of each subject’s frailty are not estimated.
The regression coefficients and Weibull shape
parameter also differ in their interpretations for
Model 2 compared to Model 1. We now elaborate
on these points.
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Model 2

Hazard for jth individual:

hj(t|αj) = αjh(t) j = 1, 2, . . . , n

where h(t) = λpt p−1

with λ = exp(β0 + β1TX
+β2PERF + β3DD
+β4AGE + β5PRIORTX)

and where α ∼ gamma (µ = 1,
variance = θ )

For Model 2 we can express the Weibull model
with a gamma distributed frailty in terms of the
individual level hazard for the jth subject.

If αj denotes the frailty for the jth subject,
then that subject’s hazard hj(t|αj) can be ex-
pressed as αj multiplied by h(t), where h(t) is the
Weibull hazard function parameterized in terms
of the predictor variables and their regression
coefficients (see left).

αj not estimable� An αj associated with each
subject� Too many parameters

The values for each αj are not estimable because
there is a level of frailty associated with each data
point. If we tried to estimate each subject’s frailty,
then there would be more parameters to estimate
than observations in the dataset and the model
would be overparameterized.

Rather, var[g(α)] is estimated� Gamma is 2-parameter
distribution
◦ Mean set at 1.0
◦ θ = Var[g(α)] is estimated

Rather, the variance of the frailty is estimated. The
gamma distribution is a two-parameter distribu-
tion. Because the mean is set at 1, we need only
estimate its variance to fully specify the frailty dis-
tribution.

Interpreting coefficients in Model 2

Ĥ R = exp(β̂1) = 1.11

Estimates HR comparing two indi-
viduals� With same α� One with TX = 2, other with

TX = 1� With same levels of other
predictors

The estimated coefficient for TX using Model 2 is
0.105. By exponentiating, we obtain exp(0.105) =
1.11. This is the estimated hazard ratio for two
individuals having the same frailty in which one
takes the test treatment and the other takes the
standard treatment controlling for the other co-
variates in the model. Thus, for two individuals
with the same frailty, we can use the coefficient
estimates from Model 2 to estimate the ratio of
conditional hazards.
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Recall: h(t|α) = αh(t)

TX = 1: h1(t|α1) = α1h1(t)
TX = 2: h2(t|α2) = α2h1(t)

If
h2(t)
h1(t)

= exp(β1)

then
α1�h1(t)
α2� h2(t)

= exp(β1)

only if α1 = α2

To clarify, recall that the individual level or condi-
tional hazard function can be expressed as a mul-
tiplied by h(t). Suppose h1(t|α1) and h2(t|α2) are
the conditional hazard functions for individuals
who use the standard and test treatments, respec-
tively, at the mean levels of the other covariates. If
the ratio of h2(t) and h1(t) equals exp(β1), then the
ratio of h2(t|α2) and h1(t|α1) equals exp(β1) only
if the individuals have the same level of frailty (i.e.,
α1 = α2; see left).

Another interpretation for exp(β1)

� Ratio of conditional hazards
from the same individual� Effect for individual taking test
rather than standard treatment

Another way to interpret the exponentiated coeffi-
cient for TRT, exp(β1), is as a ratio of conditional
hazards from the same individual. This measure
can be used to estimate an effect for an individual
taking the test treatment instead of the standard
treatment.

Model 1 ( p̂ = 0.982)

Decreasing hazard for individual
and population because p̂ < 1

Model 2 ( p̂ = 1.54)

Complication:
Individual level hazard

vs
Population level hazard

A somewhat striking difference in the output from
Model 1 and Model 2 is the estimate of the shape
parameter. The hazard estimated from Model 1
(without the frailty) is estimated to decrease over
time because p̂ < 1. By contrast, the estimated in-
dividual level hazard from Model 2 is estimated to
increase over time because p̂ > 1. However, the
interpretation of the shape parameter in Model 2
has an additional complication that should be con-
sidered before making direct comparisons with
Model 1. For frailty models, we have to distin-
guish between the individual level and popula-
tion level hazards.

For Model 2
Conditional hazard increases

but
unconditional hazard unimodal

Although the estimated individual level or con-
ditional hazard is estimated to increase from
Model 2, the estimated population level or un-
conditional hazard does not strictly increase. The
unconditional hazard first increases but then de-
creases to zero, resulting in a unimodal shape due
to the effect of the frailty.
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Estimated unconditional hazard
Model 2 (TX = 1, mean level for
other covariates, p̂ = 1.54)

analysis time

Weibull regression

tx
 =
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On the left is a plot (from Model 2) of the
estimated unconditional hazard for those on stan-
dard treatment (TX = 1) with mean values for
the other covariates. The graph is unimodal, with
the hazard first increasing and then decreasing
over time. So each individual has an estimated
increasing hazard ( p̂ = 1.54), yet the hazard
averaged over the population is unimodal, rather
than increasing. How can this be?

The answer is that the population is com-
prised of individuals with different levels of
frailty. The more frail individuals (α > 1) have
a greater hazard and are more likely to get the
event earlier. Consequently, over time, the “at risk
group” has an increasing proportion of less frail
individuals (α < 1), decreasing the population
average, or unconditional, hazard.

Four increasing individual level
hazards, but average hazard de-
creases from t1 to t2

h(t)

h1

x

x

x

xh2

t1 t2

average hazard: h2 < h1

To clarify the above explanation, consider the
graph on the left in which the hazards for four
individuals increase linearly over time until their
event occurs. The two individuals with the high-
est hazards failed between times t1 and t2 and the
other two failed after t2. Consequently, the aver-
age hazard (h2) of the two individuals still at risk
at t2 is less than the average hazard (h1) of the four
individuals at risk at t1. Thus the average hazard
of the “at risk” population decreased from t1 to
t2 (i.e., h2 < h1) because the individuals surviving
past t2 were less frail than the two individuals who
failed earlier.

Frailty Effect

h∪(t) eventually decreases
because

“at risk group” becoming less frail
over time

This property, in which the unconditional hazard
eventually decreases over time because the “at risk
group” has an increasing proportion of less frail
individuals, is called the frailty effect.
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Unconditional hazard h∪(t) with
gamma frailty

h∪(t) = h(t)
1 − θ ln[S(t)]

If θ = 0 then h∪(t) = h(t)
(no frailty)

The unconditional hazard function h∪(t), with
gamma frailty is shown on the left.

If θ = 0, then h∪(t) reduces to h(t) indicating that
there is no frailty.

For Model 2:

� h(t) and S(t) are Weibull� At t = 0
◦ h∪(t) = h(t) (increasing)� As t gets large
◦ If θ > 0 then hu(t) → 0� So h∪(t) increases and then
decreases (unimodal)

An examination of the expression for h∪(t) gives
further insight into how we obtained an estimated
unconditional hazard of unimodal shape. S(t) and
h(t) represent the survival and hazard functions ig-
noring the frailty, which for Model 2 corresponds
to a Weibull distribution. If t = 0 then h∪(t) = h(t),
which for Model 2 yields an estimated increasing
hazard. As t gets larger, and if θ > 0, the denomi-
nator gets larger (because ln[S(t)] is negative) until
eventually h∪(t) approaches zero. So h∪(t) is in-
creasing at t = 0 but eventually decreases to zero,
which means at some point in time, h∪(t) changes
direction.

Population level hazards (with
gamma frailty)

h∪1(t) = h1(t)
1 − θ ln[S1(t)]

for TX = 1

h∪2(t) = h2(t)
1 − θ ln[S2(t)]

for TX = 2

Ratio of unconditional hazards (not
PH)

hU 2(t)
hU 1(t)

= h2(t)
h1(t)

× 1 − θ ln[S1(t)]
1 − θ ln[S2(t)]

A consequence of the frailty effect is the need to
distinguish between the ratio of individual level
hazards and the ratio of population level haz-
ards. For the population level hazards, the PH as-
sumption is violated when a gamma (or inverse-
Gaussian) distributed frailty is added to a PH
model. To see this for gamma frailty, let h∪1(t) and
h∪2(t) be the unconditional hazard functions rep-
resenting the standard and test treatments, respec-
tively, at the mean levels of the other covariates.
The ratio of these hazards is shown on the left.
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If

h2(t)
h1(t)

= exp(β1)

then

hU 2(t)
hU 1(t)

= exp(β1) × 1 − θ ln[S1(t)]
1 − θ ln[S2(t)]↗

not constant over time,
PH violated

If the ratio of h2(t) and h1(t) equals exp(β1),
then the ratio of the unconditional hazards equals
exp(β1) times the ratio of 1 − θ ln[S1(t)] and 1 −
θ ln[S2(t)]. This latter ratio is a function of time
and only cancels when t equals zero. Therefore the
ratio of the unconditional hazards is not constant
over time, thus violating the PH assumption.

Plots of Ŝ(t)

� Generally averaged over
population
◦ An important consideration

for frailty models

Generally, survival plots are estimated over a pop-
ulation average (e.g., Kaplan–Meier). When con-
sidering PH models without frailty, we do not need
to distinguish between the conditional and uncon-
ditional survival functions. However, this distinc-
tion needs to be considered with frailty models.

Suppose ln[−ln Ŝ(t)] curves for TX
start parallel but then converge over
time:

1. It may be effect of TX weakens
over time

PH model not appropriate
2. It may be effect of TX is constant

over time but unobserved
heterogeneity is in
population

PH model with frailty is
appropriate

Suppose we plot Kaplan–Meier log–log survival es-
timates evaluating the PH assumption for treat-
ment (TX = 2 vs. TX = 1), and the plots start out
parallel but then begin to converge over time. One
interpretation is that the effect of the treatment
weakens over time. For this interpretation, a PH
model is not appropriate. Another interpretation
is that the effect of the treatment remains con-
stant over time but the plots converge due to un-
observed heterogeneity in the population. For this
interpretation, a PH model with frailty would be
appropriate.

Model 2 (Weibull with frailty)

� Used PH parameterization� Can equivalently use AFT
parameterization

Recall, from Section VI of this chapter, that a
Weibull PH model is also an AFT model. The only
difference is in the way the model is parameter-
ized. We next present the AFT form of Model 2.
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Unconditional survival function
S∪(t) with gamma frailty g(α)

S∪(t) =
∞∫

0

S(t |α)g (α)dα

= [[1 − θ ln S(t)]−1/θ

Before stating the model, we show the uncondi-
tional survival function using gamma frailty. Re-
call that the unconditional survival function is ob-
tained by integrating over the frailty, as shown on
the left.

Model 3 (Weibull AFT with gamma
frailty)

S∪(t) = [[1 − θ ln S(t)]−1/θ

where S(t) = exp(−λt p) (Weibull)
and

1

λ1/p
= exp(α0 + α1TX.

+α2PERF + α3DD
+α4AGE + α5PRIORTX)

Model 3 (the AFT form of Model 2) is presented in
terms of the unconditional survival function S∪(t).
The unconditional survival function is a function
of S(t), which represents the Weibull survival func-
tion. The Weibull survival function, in turn, is pa-
rameterized in terms of the shape parameter p
and regression coefficients using AFT parameter-
ization (see left).

Model 3 Output

Weibull regression (AFT form)
Gamma frailty
Log likelihood = −200.11338

t Coef. Std. Err. z P >|z|
tx −.068 .190 −0.36 0.721
perf .040 .005 8.37 0.000
dd .004 .009 0.44 0.661
age .008 .009 0.89 0.376
priortx .004 .023 0.18 0.860
cons 1.460 .752 1.94 0.052

/ln p .435 .141 3.09 0.002
/ln the −.150 .382 −0.39 0.695

p 1.54 .217
1/p .647 .091
theta .861 .329

Likelihood ratio test of theta = 0:

chibar2(01) = 12.18

Prob>=chibar2 = 0.000

γ̂(TX = 2 vs. 1) = exp(−0.068)
= 0.93

Comparing individuals with same α

The output for Model 3, shown on the left, is
similar to that obtained from Model 2. The
estimates for theta and p are identical to those
obtained from Model 2. The difference is that
the regression coefficients obtained with Model 3
use AFT parameterization (multiply by −p to get
the PH coefficient estimates in Model 2).

An estimated acceleration factor of 0.93 com-
paring two individuals with the same level of
frailty, for the effect of treatment (TX = 2 vs.
TX = 1) and controlling for the other covariates,
is obtained by exponentiating the estimated
coefficient (−0.068) of the TX variable.
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Interpreting γ̂

� Taking test treatment reduces
individual’s median survival
time by factor of 0.93� Suggests slightly harmful effect� α̂1 is not significant (p = 0.721)

Another interpretation for this estimate is that an
individual taking the test treatment instead of the
standard treatment reduces her median survival
time (i.e., contracts her individual level survival
function) by an estimated factor of 0.93. This esti-
mate suggests a slight harmful effect from the test
treatment compared to the standard treatment.
However, the estimated coefficient for TX is not
significant, with a p-value of 0.721.

PH assumption
Individual level PH ⇒� Population
level PH

AFT assumption
Individual level AFT ⇒ Population
level AFT

A key difference between the PH and AFT formu-
lations of this model is that if the AFT assump-
tion holds at the individual level, then it will also
hold at the population level using the gamma (or
inverse-Gaussian) distributed frailty.

Population level survival (with
gamma frailty)

S∪1(t) = [[1 − θ ln S1(t)]−1/θ

S∪2(t) = [[1 − θ ln S2(t)]−1/θ

If S1(t) = S2(γt)
then

S∪1(t) = [[1 − θ ln S1(t)]−1/θ

= [[1 − θ ln S2(γt)]−1/θ

= S∪2(γt)

Thus,
Individual level AFT

⇒ Population level AFT

To see this for gamma frailty, let S∪1(t) and S∪2(t)
be the unconditional survival functions represent-
ing the standard and test treatments respectively,
at the mean levels of the other covariates.

Also let γ represent the individual level accelera-
tion factor for treatment; that is, S1(t) = S2(γt).
Then S∪1(t) = S∪2(γt) (see left).

Thus, for models with gamma frailty, if the AFT as-
sumption holds at the individual level then it also
holds at the population level.
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Coefficient estimates from Model 3

� Applies to individual or
population� Interpretation of exp(α̂1) =
0.93
◦ Median survival time for

individual reduced by factor
of 0.93

◦ Median survival time
reduced in population by
factor of 0.93

The coefficient estimates obtained from Model 3
can therefore be used at the population level as
well as the individual level. So another interpreta-
tion for the estimated acceleration factor for treat-
ment is that the test treatment reduces the median
survival time in the population by an estimated
factor of 0.93.

Models 2 and 3:
Same model, different
parameterization
Same estimates for
S(t), S∪(t), h(t), h∪(t)

Model 2 and Model 3 are the same model but
use different parameterizations. The models pro-
vide identical estimates for the hazard and survival
functions.

Models 2 and 3: Weibull with
gamma frailty� Unimodal unconditional hazard

Log-logistic model� Accommodates unimodal
hazard without a frailty
component

Recall that the estimated unconditional haz-
ard function obtained from this frailty model is
of unimodal shape. Alternatively, a log-logistic
(or lognormal) model, which accommodates a
unimodal-shaped hazard function, could have
been run without the frailty (see Practice Exercises
8 to 11 for comparison).

Parametric likelihood with frailty

� Uses f∪(t), where f∪(t) =
h∪(t)S∪(t)� Formulated similarly to that
described in Section X with f∪(t)
replacing f(t)� Additional parameter θ

The likelihood for Model 3 can be formulated us-
ing the unconditional probability density function
f∪(t) which is the product of the unconditional
hazard and survival functions. The likelihood is
constructed in a similar manner to that described
previously in this chapter except that f∪(t) is used
for the likelihood rather than f(t) (see Section X).
The main difference is that there is one additional
parameter to estimate, the variance of the frailty.
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Shared Frailty

� Clusters share same frailty� For example, subjects from
same family may share
unobserved factors
◦ Shared frailty designed to

account for such similarities

Another type of frailty model is the shared frailty
model. With this model, clusters of subjects are
assumed to share the same frailty. For example,
subjects from the same family may be similar with
respect to some unobserved genetic or environ-
mental factors. Allowing family members to share
the same frailty is designed to account for such
similarities.

Unshared Frailty

� The type of frailty we have
described previous to this point� Frailty distributed
independently among subjects

By contrast, the frailty described previous to this
point (unshared frailty) has been assumed to be
distributed independently among subjects.

Shared Frailty Models

� Similar to random effect
regression models� Accounts for within-cluster
correlation� θ is a measure of the degree of
correlation

Adding shared frailty to a survival model plays an
analogous role to that of adding a random effect to
a linear regression as a way to account for correla-
tion between clusters of observations (Kleinbaum
and Klein 2002). The estimate for the variance pa-
rameter θ in a shared frailty model can be thought
of as a measure of the degree of correlation, where
θ = 0 indicates no within-cluster correlation.

Hazard conditional on shared frailty
(for jth subject in kth cluster)

hjk(t|αk) = αkhjk(t)
where

hjk(t) = h(t|Xjk)
for j = 1, 2, . . . , nk

and total nk subjects in kth cluster

If family is the cluster variable,
then

subjects of same family have same
αk

For a shared frailty model, the conditional hazard
function for the jth subject from the kth cluster
can be expressed as αk multiplied by hjk(t) where
hjk(t) depends on the subject’s covariates Xjk. No-
tice that the frailty αk is subscripted by k, but not
by j. This indicates that subjects from the same
cluster share the same frailty. If, for example, sub-
jects are clustered by family, then subjects from
the same family are assumed to have the same
frailty.
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Shared and unshared frailty

� Fundamentally the same
◦ Accounts for variation due

to unobservable factors� Difference in data to which they
are applied
◦ Affects interpretation and

methods of estimation

The frailty in a shared frailty model or unshared
frailty model is fundamentally the same, a ran-
dom effect to account for a source of variation due
to unobservable, or latent, factors. However, the
data to which the shared and unshared frailty
is applied are different, affecting differences
in interpretation and methods of estimation.

Unshared frailty models

� Subjects assumed independent

Shared frailty models

� Accounts for dependence
among subjects who share
frailty

For unshared frailty models, a subject’s survival is
assumed to be independent of the survival of other
subjects in the study population. For shared frailty
models, however, the frailty accounts for depen-
dence among subjects who share the same frailty.
Shared frailty provides an approach to account for
correlation in the data due to unobservable factors
common within clusters of subjects.

S∪(t) and h∪(t)

� Population averages in
unshared frailty models� Population averages in shared
frailty models provided that
cluster size is uncorrelated with
frailty

Recall, with unshared frailty models, we inter-
preted the unconditional survival and hazard
functions as representing population averages.
With shared frailty models, however, these uncon-
ditional functions may not strictly represent pop-
ulation averages unless the number of subjects in
a cluster is uncorrelated with the level of frailty.

Likelihood for shared frailty models

� More complicated than for
unshared frailty models� Unconditional contribution of
each cluster formulated
separately by integrating out
g(α)� Full likelihood formed as
product of unconditional
contribution from each cluster

The formulation of the likelihood is more com-
plicated for shared frailty models than it is for
unshared frailty models. To construct the shared
frailty likelihood, the unconditional contribution
for each cluster of subjects is formulated sepa-
rately by integrating out the frailty from the prod-
uct of each subject’s conditional contribution. The
full likelihood is then formulated as the product of
the contributions from each cluster (see Gutierrez
2002 for details).
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Shared frailty in Cox model

� Provided by Stata
◦ Only gamma distributed

shared frailty available� Accounts for within-group
correlation

Cox shared frailty model

hjk(t|αj) = αkh0(t) exp(βXjk)
for j = 1, 2, . . . , nk

total of nk subjects in kth cluster

Up to this point we have discussed frailty in terms
of parametric models. Stata (version 8) allows
shared frailty to be included in a Cox model in or-
der to account for within-group correlation. The
conditional hazard function for the jth subject
from the kth cluster can be expressed as αk mul-
tiplied by the baseline hazard h0(t) multiplied by
exp(βXjk). The frailty component is assumed to
follow some distribution even though the distribu-
tion is unspecified for the rest of the model. Stata
only allows a gamma distribution for the frailty to
be included with a Cox model.

PH violation of h∪(t) in Cox model

� If gamma-distributed frailty
included� Interpreting coefficient
estimates
◦ Only used for HR estimates

among those who share
same α

If a gamma-distributed frailty component is added
to the Cox model, then the PH assumption is not
satisfied for the unconditional hazards. In this
framework, the frailty in a Cox model can be
thought of as a source of random error that causes
violation of the PH assumption at the population
level. Consequently, care must be taken in the in-
terpretation of the coefficient estimates. They can
only be used to obtain estimates for hazard ratios
conditioned on the same level of frailty.

Recurrent events

� Multiple events from same
subject� Events from same subject may
be correlated� Clusters are formed
representing each subject
◦ Different subjects do not

share frailty
◦ Observations from same

subject share frailty

Shared frailty models can also be applied to re-
current event data. It is reasonable to expect that
multiple events occurring over follow-up from the
same individual would be correlated. To handle
within-subject correlation, clusters are formed,
each containing observations from the same sub-
ject. In this setting, it is not the case that different
subjects share the same frailty. Rather, multiple
observations representing the same subject share
the same frailty.

Recurrent events:

� Topic of next chapter
(Chapter 8)

Survival analyses on recurrent events are the fo-
cus of the next chapter (Chapter 8) of this text.
An example of a Weibull model with shared frailty
applied to recurrent event data is presented in the
next chapter.
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XIII. Summary

Parametric Models
� Assume distribution for survival

time� Distribution specified in terms
of parameters� Parameters estimated from data

In this chapter we presented parametric survival
models as an alternative to the Cox model. They
are called parametric models because the distri-
bution of the time-to-event variable is specified
in terms of unknown parameters, which are esti-
mated from the data. Distributions that are com-
monly utilized are the exponential, the Weibull,
the log-logistic, the lognormal, and the general-
ized gamma.

f(t) specified ⇒ corresponding S(t),
h(t) also determined

Moreover,
Specifying one of f(t), S(t), or h(t)
determines all three functions

More precisely, for parametric survival models, it
is the probability density function f(t) of the dis-
tribution that is specified in terms of the parame-
ters. Once f(t) is specified, the corresponding sur-
vival and hazard functions S(t) and h(t) can also be
determined. Moreover, specifying any one of the
probability density function, survival function, or
hazard function allows the other two functions to
be determined.

Parametric models

� Need not be PH models� Many are AFT models

The proportional hazards (PH) assumption is the
underlying assumption for a Cox PH model. How-
ever, parametric survival models need not be pro-
portional hazards models. Many parametric mod-
els are acceleration failure time (AFT) models
rather than proportional hazards models.

Acceleration factor (γ)

� Key measure of association in
AFT models� Describes stretching or
contraction of S(t)

AFT assumption
S2(t) = S1(γt)↑ ↑

Group 2 Group 1

The acceleration factor (γ) is the key measure
of association obtained in an AFT model. It de-
scribes the “stretching out” or contraction of sur-
vival functions when comparing one group to an-
other. If S1(t) and S2(t) are the survival func-
tions for Group 1 and Group 2, respectively, then
the AFT assumption can be expressed as S2(t) =
S1(γt).

Detailed examples presented:

� Exponential model� Weibull model� Log-logistic model

We presented detailed examples of the exponen-
tial, Weibull, and log-logistic model using the re-
mission dataset.



310 7. Parametric Survival Models

Exponential Model

� h(t) = λ (constant hazard)� Special case of Weibull model

Weibull Model

� AFT PH

Log-logistic Model

� Not a PH model� AFT PO

The underlying assumption for an exponential
model, a special case of the Weibull model, is that
the hazard function is constant over time (i.e.,
h(t) =λ). The Weibull model is unique in that if the
PH assumption holds then the AFT assumption
also holds (and vice versa). The log-logistic model
does not accommodate the PH assumption. How-
ever, if the AFT assumption holds in a log-logistic
model, then the proportional odds (PO) assump-
tion also holds (and vice versa).

PO assumption

OR = S(t, x∗)/[1 − S(t, x∗)]
S(t, x)/[1 − S(t, x)]

OR is constant over time

The idea underlying the proportional odds as-
sumption is that the survival (or failure) odds ra-
tio comparing two specifications of covariates re-
mains constant over time.

Graphical Evaluation

Weibull and Exponential

� Plot ln[−ln Ŝ(t)] against ln(t)

Log-logistic:

� Plot ln
[

Ŝ(t)
(1−Ŝ(t))

]
against ln(t).

Check for linearity

We presented graphical approaches for evaluating
the appropriateness of the exponential, Weibull,
and log-logistic model by plotting a function of
the Kaplan–Meier survival estimates Ŝ(t) against
the log of time and then checking for linearity.

For evaluation of the exponential and Weibull
assumptions, the ln[− ln Ŝ(t)] is plotted against
ln(t) and for evaluation of the log-logistic as-
sumption the log odds of Ŝ(t) is plotted against
ln(t).

Presented other parametric models

� Generalized gamma model� Lognormal model� Gompertz model

We briefly discussed other parametric models
such as the generalized gamma, lognormal, and
Gompertz models and showed additional para-
metric approaches such as modeling ancillary
(shape) parameters as a function of predictor vari-
ables.
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Contributions to Likelihood

If event at t, contributes f(t)

If censored, integrate over f(t)
t1∫

0

f (t)dt: left-censored at t1

∞∫
t1

f (t)dt: right-censored at t1

t2∫
t1

f (t)dt: interval-censored
from t1 to t2

The parametric likelihood was developed and in-
cludes a discussion of left-, right-, and interval-
censored data. If a subject has an event at time t,
then that subject’s contribution to the likelihood
is f(t). On the other hand, if a subject is censored
(i.e., exact time of event unknown), then the sub-
ject’s contribution to the likelihood is found by in-
tegrating over f(t). The integration limits are de-
termined by the time and type of censorship (see
left).

Full likelihood (L)

L =
N∏

j=1

L j j = 1, 2, . . . , N

where L j is the contribution from
jth subject

Assuming independence among subjects, the full
likelihood can be formulated as a product of each
subject’s contribution.

Binary regression for interval-
censored data

� Follow-up divided into intervals
◦ Allows for multiple

observations per subject� Binary outcome variable
defined
◦ Indicates survival or failure

over each interval

We showed how binary regression could be ap-
plied to interval-censored data by defining a di-
chotomous outcome variable indicating subjects’
survival or failure over each interval of their
follow-up. The data layout for this type of anal-
ysis allows multiple observations per subject, rep-
resenting intervals of survival prior to failure (or
censorship).

Binary regression for discrete sur-
vival analysis

� Analogous to interval-censored
data
◦ Discrete outcome—subjects

survive discrete units of time
◦ Interval outcomes—

subjects survive intervals
of time

Binary regression can also be used for discrete sur-
vival analysis in which the “time-to-event” variable
is considered discrete rather than continuous. The
data layout is similar to that for interval-censored
data except subjects are conceptualized as surviv-
ing discrete units of time rather than continuous
intervals of time.
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Frailty, α

h(t|α) = αh(t)

↗
multiplicative effect on h(t)
mean = 1, variance = θ

θ estimated from data

We concluded with a discussion of frailty mod-
els. The frailty α is a multiplicative random effect
on the hazard designed to account for individual-
level unobserved factors that add an extra layer of
variability beyond what has already been specified
in the model. The frailty is generally assumed to
follow a distribution with mean equal to 1 and is
typically parameterized in terms of the variance θ

which is estimated from the data.

Chapters

1. Introduction to Survival
Analysis

2. Kaplan–Meier Curves and the
Log-Rank Test

3. The Cox Proportional Hazard
Model

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
6. Extension of the Cox

Proprtional Hazards Model for
Time-Dependent Covariates

✓7. Parametric Survival Models

The presentation is now complete. The reader
can review the detailed outline that follows and
then answer the practice exercises and test.

In the next chapter (8) entitled “Recurrent
Event Survival Analysis,” we consider approaches
for analyzing data in which individuals may have
more than one event over the course of their
follow-up.

Next:

8. Recurrent Event Survival
Analysis
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Detailed
Outline

I. Overview (pages 260–262)
A. Parametric Survival Models

i. Outcome assumed to follow specified
distribution

ii. Weibull, exponential (a special case of the
Weibull), log-logistic, lognormal, and
generalized gamma are supported with
popular software (SAS and Stata)

iii. Contrasts with Cox model in which baseline
hazard and survival functions are not specified

II. Probability Density Function in Relation to the
Hazard and Survival Function (pages 262–263)
A. If any one of the hazard h(t), survival s(t), or

probability density f(t) functions is known then
the other two functions can be determined.

B. If f(t) is specified, then S(t) =
∞∫

t

f (u)du

C. If S(t) is specified, then
h(t) = (−d[S(t)]/dt)/S(t) and
f (t) = (−d[S(t)])/dt

D. If h(t) is specified, then S(t) = exp(−
t∫

0

h(u)du)

and f (t) = h(t)S(t)
III. Exponential Example (pages 263–265)

A. Hazard is constant (i.e., not a function of time) in
an exponential model
i. Stronger assumption than the PH assumption

that the HR is constant
B. Exponential PH model (one predictor X1)

i. In terms of the hazard: h(t) = λ where
λ = exp(β0 + β1X1)

ii. Hazard ratio: HR (X1 = 1 vs. X1 = 0) = exp(β1)
IV. Acceleration Failure Time Assumption

(pages 266–268)
A. Underlying assumptions

i. AFT—effect of covariates is multiplicative with
respect to survival time

ii. PH—effect of covariates is multiplicative with
respect to the hazard
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B. The acceleration factor (γ) is the key measure
of association in an AFT
i. Acceleration factor is a ratio of survival times

corresponding to any fixed value of S(t), that
is, tA/tB where A and B denote two individuals
for which S(tA) = S(tB)

ii. S2(t) = S1(γt), survival function for Group 1,
S1(t) is stretched (or contracted) by a factor of
γ compared to survival function for Group 2,
S2(t)

C. AFT illustration
i. Dogs are said to grow older 7 times faster

than humans, SD(t) = SH(7t)
V. Exponential Example Revisited (pages 268–272)

A. Exponential AFT model (one predictor X1)
i. In terms of survival: S(t) = exp(−λt) where

λ = exp[−(α0 + α1 X1)]
ii. In terms of time:

t = [−ln(S(t)] × exp(α0 + α1X1)
iii. Acceleration factor (X1 = 1 vs.

X1 = 0),γ = exp(α1)
B. An exponential PH model is an exponential AFT

model (but uses different parameterization)
i. βj = −αj, where βj and αj are PH and AFT

parameterization for the jth covariate
ii. α > 1 for (X1 = 1 vs. X1 = 0) implies effect

of X1 = 1 is beneficial to survival
iii. HR > 1 for (X1 = 1 vs. X1 = 0) implies effect

of X1 = 1 is harmful to survival
C. Exponential model is a special case of a Weibull

model
i. Graphical approach for evaluating

appropriateness of exponential model is
described in the section on the Weibull
example

VI. Weibull Example (pages 272–277)
A. PH form of the Weibull model (one predictor X1)

i. In terms of the hazard: h(t) = λpt p−1 where
λ = exp(β0 + β1X1)

ii. Hazard ratio: HR (X1 = 1 vs.
X1 = 0) = exp(β1)
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iii. Weibull hazard is monotonic with its
direction determined by the value of the
shape parameter p
a. p > 1 hazard increases over time
b. p = 1 constant hazard (exponential model)
c. p < 1 hazard decreases over time

A. Graphical approach for evaluating appropriateness
of Weibull model
i. Plot the log negative log of the Kaplan–Meier

survival estimates against the log of time for
each pattern of covariates
a. If Weibull assumption is correct then plots

should be straight lines of slope p
b. If exponential assumption is correct then

plots should be straight lines with slope
equal to one (p = 1)

c. If plots are parallel straight lines then
Weibull PH and AFT assumptions are
reasonable

B. AFT form of the Weibull model (one predictor X1)
i. In terms of survival:

S(t) = exp(−λt p) = exp[−(λ1/pt)p] where
λ1/p = exp[−(α0 + α1X1)]

ii. In terms of time:
t = [−ln(S(t)]1/p × exp(α0 + α1X1)

iii. Acceleration factor (X1 = 1 vs. X1 = 0),
γ = exp(α1)

C. A Weibull PH model is a Weibull AFT model (but
uses different parameterization)
i. Unique property of Weibull model

(exponential is special case, p = 1)
ii. βj = −αj p where βj and αj are PH and AFT

parameterization, respectively, for the jth
covariate

VII. Log-Logistic Example (pages 277–282)
A. Log-logistic hazard function:

h(t) = λpt p−1/(1 + λt p).
i. p ≤ 1 hazard decreases over time

ii. p > 1 hazard first increases and then
decreases over time (unimodal)
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B. Graphical approach for evaluating
appropriateness of log-logistic model
i. Plot the log of the survival odds (using KM

estimates) against the log of time for each
pattern of covariates
a. If log-logistic assumption is correct then

plots should be straight line of slope −p
b. If plots are parallel straight lines then

log-logistic proportional odds (PO) and AFT
assumptions are reasonable

C. Log-logistic AFT model (one predictor X1):
i. In terms of survival:

S(t) = 1/(1 + λt p) = 1/(1 + (λ1/pt)p)
where λ1/p = exp(−(α0 + α1X1))

ii. In terms of time:

t =
[

1
S(t) − 1

]1/p
× exp(α0 + α1X1)

iii. Acceleration factor (X1 = 1 vs. X1 = 0),
γ = exp(α1)

D. Log-logistic proportional odds (PO) model
(one predictor X1)

i. In terms of survival: S(t) = 1/(1 + λt p) where
λ = exp(β0 + β1X1)

ii. Odds of an event (failure odds) by time t:
(1 − S(t))/S(t) = λt p

iii. Odds of surviving event (survival odds)
beyond t: S(t)/(1 − S(t)) = 1/λt p

iv. Failure odds ratio:
HR (X1 = 1 vs. X1 = 0) = exp(β1)
a. PO assumption is that the odds ratio is

constant over time
v. Survival odds ratio:

HR (X1 = 1 vs. X1 = 0) = exp(−β1)
a. Survival odds ratio is reciprocal of failure

odds ratio
E. A log-logistic AFT model is a log-logistic PO

model (but uses different parameterization)
i. Log-logistic model is not a proportional

hazards (PH) model
ii. βj = −αj p where βj and αj are PO and AFT

parameterization for the jth covariate
a. Shape parameter with Stata is

parameterized as gamma = 1/p
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VIII. A More General Form of the AFT Model
(pages 282–284)
A. General form with one predictor (X1): ln(T) =

α0 + α1X1 + ε

B. Include additional parameter, σ : ln(T) =
α0 + α1X1 + σε

C. Let σ = 1/p ln(T) = α0 + α1X1 + (1/p)ε
D. Additive in terms of ln(T) but multiplicative

in terms of T:

T = exp
(
α0 + α1X1 + 1

p
ε

)
= exp[α0 + α1 X1] × exp

(
1
p
ε

)
E. Collapse α0 into baseline term,

let T0 = exp(α0) exp
(

1
p
ε

)
:

so T = exp(α1 X1) × T0

IX. Other Parametric Models (pages 284–286)
A. Generalized gamma model

i. Additional shape parameters give flexibility
in distribution shape

ii. Weibull and lognormal are special cases
B. Lognormal model

i. ln(T) follows a normal distribution
ii. Accommodates AFT model

C. Gompertz model
i. PH model, not AFT model

D. Modeling failure time as an additive model
i. Additive model with one predictor: T =

α0 + α1TRT + ε (no log link)
D. Modeling ancillary parameters

i. Typically shape parameter p is considered a
fixed constant

ii. Can reparameterize shape parameter in
terms of predictor variables and regression
coefficients

X. The Parametric Likelihood (pages 286–289)
A. Product of each subject contribution

(assuming independence)
B. Subject’s contribution uses probability

density function f(t)
i. Subject contributes f(t) if event is observed at

time t
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ii. Integrate over f(t) if subject is censored
a. Integrate from 0 to t if subject is

left-censored at t
b. Integrate from t to infinity if subject is

right-censored at t
c. Integrate over interval of censorship if

subject is interval-censored
XI. Interval-Censored Data (pages 289–294)

A. Binary regression is alternative approach if
data are interval-censored

B. Binary outcome variable represents survival
or failure over each subinterval of subject’s
follow-up

C. Specify a link function when using binary
regression
i. Logit link for logistic regression

ii. Complementary log–log link is an alternative
to logistic regression

D. Discrete survival analysis
i. Time-to-event variable is discrete

ii. Binary regression can be applied in a similar
manner to that of interval-censored data

XII. Frailty Models (pages 294–308)
A. The frailty α is an unobserved multiplicative

effect on the hazard function
i. Hazard, conditioned on the frailty,

h(t|α) = αh(t)
ii. Survival, conditioned on the frailty,

S(t|α) = S(t)α

B. Frailty assumed to follow some distribution
g(α) of mean 1 and variance θ

i. The variance θ is a parameter estimated by
the data

ii. Gamma and inverse-Gaussian are
distributions offered by Stata software

C. Designed to account for unobserved
individual-level factors that influence survival
i. Distinction is made between the

individual-level and population-level hazards.
PH assumption may hold on individual level
but not on population level
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D. Shared frailty models allow individuals to
share the same frailty
i. Play similar role as adding a random effect to

a linear regression
ii. Can account for within-group correlation.

XIII. Summary (pages 309–312)

Practice
Exercises

Answer questions 1 to 5 as true or false (circle T or F)

T F 1. The acceleration factor comparing exposed and
unexposed subjects, (E = 1 vs. E = 0), is a ratio
of their median survival times (time to S(t) = 0.5),
or more generally the ratio of their times to any
fixed value of S(t) = q.

T F 2. Let S0(t) be the survival function for unexposed
subjects (E = 0) and let S1(t) be the survival func-
tion for exposed subjects (E = 1). If S0(t) = S1(3t)
then the median survival time for the unexposed
subjects is 3 times longer than the median survival
time for the exposed subjects.

T F 3. The Cox proportional hazards model is a paramet-
ric model.

T F 4. If the acceleration failure time (AFT) assumption
holds in a Weibull model then the proportional haz-
ards assumption also holds.

T F 5. The hazard is assumed constant in a log-logistic
model.

Questions 6 and 7 make use of the output (copied below) pre-
sented in Sections III and V containing an example of the ex-
ponential model. This example used the remission data with
treatment status (coded TRT = 1 for the experimental treat-
ment and TRT = 0 for the placebo). The exponential survival
and hazard functions are, respectively, S(t) = exp(−λt) and
h(t) = λ where λ = exp[−(α0 + α1TRT)] for the AFT param-
eterization and λ = exp(β0 + β1TRT) for the PH parameter-
ization. The output for both the AFT and PH forms of the
model are presented.

Exponential regression
accelerated failure-time form
λ = exp[−(α0 + α1TRT)]

t Coef. Std. Err. z p >|z|
trt 1.527 .398 3.83 0.00

cons 2.159 .218 9.90 0.00

Exponential regression log
relative-hazard form
λ = exp(β0 + β1TRT)

t Coef. Std. Err. z p >|z|
trt −1.527 .398 3.83 0.00

cons −2.159 .218 −9.90 0.00
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6. In this chapter it was shown in an exponential model
that the time to event is t = [− log(S(t)] × (1/λ) given
a fixed value of S(t). Use the output from the AFT form
of the model to estimate the median survival time (in
weeks) for the treated group (TRT = 1) and the placebo
group (TRT = 0).

7. Use the output from the PH form of the model to estimate
the median survival time for the treated group (TRT =
1) and the placebo group (TRT = 0). Notice the answers
from Questions 6 and 7 are the same, illustrating that
the AFT and PH forms of the exponential model are just
different parameterizations of the same model.

Questions 8 to 11 refer to a log-logistic AFT model using the
data from the Veteran’s Administration Lung Cancer Trial.
The exposure of interest is treatment status TX (standard =
1, test = 2). The control variables are performance status
(PERF), disease duration (DD), AGE, and prior therapy
(PRIORTX). These predictors are used in the section on
frailty models. The outcome is time to death (in days). The
output is shown below.

Log-logistic regression—accelerated failure-time form
LR chi2(5) = 61.31

Log likelihood = −200.196 Prob > chi2 = 0.0000

t Coef. Std. Err. z p >|z|
tx −.054087 .1863349 −0.29 0.772
perf .0401825 .0046188 8.70 0.000
dd .0042271 .0095831 0.44 0.659
age .0086776 .0092693 0.94 0.349
priortx .0032806 .0225789 0.15 0.884
cons 1.347464 .6964462 1.93 0.053

/ln gam −.4831864 .0743015 −6.50 0.000

gamma .6168149 .0458303

8. State the AFT log-logistic model in terms of S(t) (note
gamma = 1/p).

9. Estimate the acceleration factor γ with a 95% confidence
interval comparing the test and standard treatment
(TX = 2 vs. TX = 1). Interpret your answer.
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10. The AFT log-logistic model is also a proportional odds
model. Use the output to estimate the odds ratio (odds
of death) comparing the test and standard treatment.
Also estimate the survival odds ratio comparing the test
and standard treatment.

11. The Akaike Information Criterion (AIC) is a method de-
signed to compare the fit of different models. For this
question, three models are compared using the same 5
predictors:
1. A Weibull model without frailty (presented as Model

1 in the section on frailty models);
2. A Weibull model containing a frailty component (pre-

sented as Model 2 in the section on frailty models);
and

3. The log-logistic model presented above.

Below is a table containing the log likelihood statistic for
each model.

Number of
Model Frailty parameters Log likelihood

1. Weibull No 7 −206.204
2. Weibull Yes 8 −200.193
3. Log-logistic No 7 −200.196

The goal for this question is to calculate the AIC statistic
for each model and select the model based on this criterion.
The AIC statistic is calculated as: −2 log likelihood +
2p (where p is the number of parameters in the model). A
smaller AIC statistic suggests a better fit. The addition of
2 times p can be thought of as a penalty if nonpredictive
parameters are added to the model. Each model contains
the 5 predictors, an intercept, and a shape parameter.
Model 2 contains an additional variance parameter (theta)
because a frailty component is included in the model.
The log likelihood was unchanged when a frailty compo-
nent was added to the log-logistic model (not shown in table).

Note that if we are just comparing Models 1 and 2 we
could use the likelihood ratio test because Model 1 is nested
(contained) in Model 2. The likelihood ratio test is considered
a superior method to the AIC for comparing models but
cannot be used to compare the log-logistic model to the
other two, because that model uses a different distribution.

Which of the three models should be selected based on
the AIC?
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Questions 12 to 14 refer to a generalized gamma model us-
ing the Veterans’ data with the same five predictor variables
that were used in the model for Questions 8 to 10. The gen-
eralized gamma distribution contains two shape parameters
(kappa and sigma) that allow great flexibility in the shape of
the hazard. If kappa = 1, the model reduces to a Weibull dis-
tribution with p = 1/sigma. If kappa = 0 the model reduces
to a lognormal distribution. The output is shown below.

Gamma regression—accelerated failure-time form
LR chi2(5) = 52.86

Log likelihood = −200.626 Prob > chi2 = 0.0000

t Coef. Std. Err. z p >|z|
tx −.131 .1908 −0.69 0.491
perf .039 .0051 7.77 0.000
dd .0004 .0097 0.04 0.965
age .008 .0095 0.89 0.376
priortx .004 .0229 0.17 0.864
cons 1.665 .7725 2.16 0.031

/ln sig .0859 .0654 1.31 0.189
/kappa .2376 .2193 1.08 0.279

sigma 1.0898 .0714

12. Estimate the acceleration factor γ with a 95% confidence
interval comparing the test and standard treatment (TX
= 2 vs. TX = 1).

13. Use the output to test the null hypothesis that a lognor-
mal distribution is appropriate for this model.

14. A lognormal model was run with the same five predic-
tors (output not shown) and yielded very similar param-
eter estimates to those obtained from the generalized
gamma model shown above. The value of the log likeli-
hood for the lognormal model was −201.210. Compare
the AIC of the generalized gamma model, the lognormal
model, and the log-logistic model from Question 11 and
select a model based on that criterion. Note: each model
contains an intercept and five predictors. The general-
ized gamma distribution contains two additional shape
parameters and the log-logistic and lognormal distribu-
tions each contain one additional shape parameter (see
Question 11 for further details on the AIC).
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Questions 15 to 17 refer to a Weibull model using the
remission data with treatment as the only predictor (coded
TRT = 1 for the test treatment and TRT = 0 for the placebo).
In this model both λ and p are modeled as functions of
the predictor TRT. The model can be stated in terms of the
hazard function: h(t) = λpt p−1 where λ = exp(β0 + β1TRT)
and p = exp(δ0 + δ1TRT). Typically, the shape parameter in
a Weibull model is assumed constant (i.e., δ1 = 0) across
levels of covariates. This model is discussed in the section of
this chapter called “Other Parametric Models.” The output
obtained using Stata is shown below.

Weibull regression—log relative-hazard form
LR chi2(1) = 1.69

Log likelihood = −47.063396 Prob > chi2 = 0.1941

t Coef. Std. Err. z p >|z|
t

trt −1.682 1.374 −1.22 0.221
cons −3.083 .646 −4.77 0.000

ln p
trt −.012 .328 −0.04 0.970
cons .315 .174 1.82 0.069

15. Even though λ is parameterized similarly to that in a PH
Weibull model, this model is not a PH model because
the shape parameter p varies across treatment groups.
Show the PH assumption is violated in this model by
estimating the hazard ratios for TRT = 0 vs. TRT = 1
after 10 weeks and after 20 weeks of follow-up.

16. Perform a statistical test on the hypothesis δ1 = 0 (the
coefficient for the treatment term for ln(p)). Note: if we
assume δ1 = 0, then the model reduces to the example
of the Weibull PH model presented in Section VI of this
chapter.

17. Consider the plot of the log negative log of the Kaplan–
Meier survival estimates against the log of time for
TRT = 1 and TRT = 0. How should the graph look if
δ1 = 0?
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Test Answer the following true or false questions (circle T
or F).

T F 1. The accelerated failure time model and propor-
tional hazards model are both additive models.

T F 2. If the survival function is known then the hazard
function can be ascertained (and vice versa).

T F 3. If survival time follows a Weibull distribution
then a plot of the ln[−ln S(t)] against ln(t) should
be a straight line.

T F 4. If the acceleration failure time (AFT) assumption
holds in a log-logistic model then the proportional
hazards assumption also holds.

T F 5. If the acceleration factor for the effect of an expo-
sure (exposed vs. unexposed) is greater than one,
then the exposure is harmful to survival.

T F 6. Let S0(t) be the survival function for unexposed
subjects (E = 0) and let S1(t) be the survival func-
tion for exposed subjects (E = 1). If γ is the ac-
celeration factor comparing E = 1 vs. E = 0 then
S0(t) = S1(γt).

T F 7. Frailty models are designed to provide an ap-
proach to account for unobserved individual-level
characteristics.

T F 8. If you include a gamma distributed frailty compo-
nent to the model, then you will see an additional
parameter estimate for the variance of the frailty
in the model output.

T F 9. If survival time T follows a Weibull distribution,
then ln(T) also follows a Weibull distribution.

T F 10. If a subject is lost to follow-up after five years,
then the subject is left-censored.

Questions 11 to 17 refer to a Weibull model run with the “ad-
dicts” dataset. The predictor of interest is CLINIC (coded 1 or
2) for two methadone clinics for heroin addicts. Covariates
include DOSE (continuous) for methadone dose (mg/day),
PRISON (coded 1 if patient has a prison record and 0 if
not), and a prison–dose product term (called PRISDOSE).
The outcome is time (in days) until the person dropped out
of the clinic or was censored. The Weibull survival and haz-
ard functions are, respectively, S(t) = exp(−λt p) and h(t) =
λpt p−1 where λ1/p = exp[−(α0 + α1CLINIC +α2PRISON +
α3DOSE + α4PRISDOSE)] for the AFT parameterization
and λ = exp[β0 + β1CLINIC + β2 PRISON + β3DOSE +
β4PRISDOSE] for the PH parameterization. The Stata out-
put for both the AFT and PH forms of the model are presented
as follows:
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Weibull regression
accelerated failure-time form

Log likelihood = −260.74854

t Coef. Std. Err. z p >|z|
clinic .698 .158 4.42 0.000
prison .145 .558 0.26 0.795
dose .027 .006 4.60 0.000
prisdose −.006 .009 −0.69 0.492
cons 3.977 .376 10.58 0.000

/ln p .315 .068 4.67 0.000

p 1.370467
1/p .729678

Weibull regression
log relative-hazard form

Log likelihood = −260.74854

t Coef. Std. Err. z p >|z|
clinic −.957 .213 −4.49 0.000
prison −.198 .765 −0.26 0.795
dose −.037 .008 −4.63 0.000
prisdose .009 .013 0.69 0.491
cons −5.450 .702 −7.76 0.000

/ln p .315 .068 4.67 0.000

p 1.370467
1/p .729678

11. Estimate the acceleration factor with a 95% confidence
interval comparing CLINIC = 2 vs. CLINIC = 1. Interpret
this result.

12. Estimate the hazard ratio with a 95% confidence interval
comparing CLINIC = 2 vs. CLINIC = 1. Interpret this
result.

13. Estimate the coefficient for CLINIC in the PH Weibull
model using the results reported in the output from
the AFT form of the model. Hint: the coefficients for a
Weibull PH and AFT model are related β j = −α j p for
the jth covariate.

14. Is the product term PRISDOSE included in the model to
account for potential interaction or potential confound-
ing of the effect of CLINIC on survival?

15. Use the output to estimate the median survival time for
a patient from CLINIC = 2 who has a prison record and
receives a methadone dose of 50 mg/day. Hint: use the re-
lationship that t = [−ln S(t)]1/p × (1/λ1/p) for a Weibull
model.

16. Use the output to estimate the median survival time for
a patient from CLINIC = 1 who has a prison record and
receives a methadone dose of 50 mg/day.

17. What is the ratio of your answers from Questions 15
and 16 and how does this ratio relate to the acceleration
factor?
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Questions 18 and 19 refer to the Weibull model (in AFT form)
that was used for the previous set of questions (Questions
11 to 17). The only difference is that a frailty component is
now included in the model. A gamma distribution of mean
1 and variance theta is assumed for the frailty. The output
shown on in the following contains one additional parameter
estimate (for theta).

Weibull regression
accelerated failure-time form
Gamma frailty

Log likelihood = −260.74854
t Coef. Std. Err. z p >|z|

clinic .698 .158 4.42 0.000
prison .145 .558 0.26 0.795
dose .027 .006 4.60 0.000
prisdose −.006 .009 −0.69 0.492
cons 3.977 .376 10.58 0.000

/ln p .315 .068 4.67 0.000
p 1.370467
1/p .729678
theta .00000002 .0000262
Likelihood ratio test of theta=0:
chibar2(01) = 0.00
Prob>=chibar2 = 1.000

18. Did the addition of the frailty component change any
of the other parameter estimates (besides theta)? Did it
change the log likelihood?

19. A likelihood ratio test for the hypothesis H0: theta = 0
yields a p-value of 1.0 (bottom of the output). The pa-
rameter estimate for theta is essentially zero. What does
it mean if theta = 0?
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Answers to
Practice
Exercises

1. T

2. F: The median survival time for the unexposed is 1/3 of the
median survival time for the exposed.

3. F: The Cox model is a semiparametric model. The distri-
bution of survival time is unspecified in a Cox model.

4. T

5. F: The hazard is assumed constant in an exponential
model.

6. t = [−log(S(t)] × (1/λ), where S(t) = 0.5, and 1/λ =
exp(α0 + α1TRT).
For TRT = 0: estimated median survival

= [−ln(0.5)] exp(2.159) = 6.0 weeks.
For TRT = 1: estimated median survival

= [−ln(0.5)] exp(2.159 + 1.527) = 27.6 weeks.

7. t = [−log(S(t)] (1/λ), where S(t) = 0.5, and
λ = exp(β0 + β1TRT) ⇒ 1/λ = exp[−(β0 + β1TRT)].
For TRT = 0: estimated median survival

= [−ln(0.5)] exp[−(−2.159)] = 6.0 weeks.
For TRT = 1: estimated median survival

= [−ln(0.5)] exp[−(−2.159 − 1.527)] = 27.6 weeks.

8. S(t) = 1/(1 + λt p) where λ1/p = exp[−(α0 + α1TX
+ α2PERF + α3DD + α4AGE + α5PRIORTX)].

9. γ = exp[α0 + α1(2) + α2PERF + α3 D D + α4 AG E + α5PRIORTX]
exp[α0 + α1(1) + α2PERF + α3 D D + α4 AG E + α5PRIORTX]

= exp(α1)

γ̂ = exp(−0.054087) = 0.95

95% CI = exp[−0.054087 ± 1.96(0.1863349)] = (0.66, 1.36)

The point estimate along with the 95% CI suggests a null
result.

10. The coefficients for a log-logistic proportional odds (PO)
and AFT model are related β1 = −α1 p = −β1÷ gamma,
where β1 is the coefficient for TX in a PO model.
OR = exp(−α1÷ gamma)
estimated OR = exp(−0.054087 ÷ 0.6168149) = 0.92
estimated survival OR = 1/[exp(−0.054087 ÷ 0.6168149)]

= 1.09.
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11. The AIC statistic is calculated as −2 log likelihood +2p
(where p is the number of parameters in the model). A
smaller AIC statistic suggests a better fit. The AIC statistic
is shown below for each of the three models.

Number of Log
Model Frailty parameters likelihood AIC

1. Weibull No 7 −206.204 426.408
2. Weibull Yes 8 −200.193 416.386
3. Log-logistic No 7 −200.196 414.392

Based on the AIC, the log-logistic model is selected
yielding the smallest AIC statistic at 414.392.

12. γ = exp[α0 + α1(2) + α2PERF + α3 D D + α4 AG E + α5PRIORTX]
exp[α0 + α1(1) + α2PERF + α3 D D + α4 AG E + α5PRIORTX]

= exp(α1)

γ̂ = exp(−0.131) = 0.88

95% CI = exp[(−0.131 ± 1.96(0.1908)] = (0.60, 1.28)

13. The generalized gamma distribution reduces to a lognor-
mal distribution if kappa = 0.

H0: kappa = 0

Wald test statistic: z = 0.2376
0.2193

= 1.08 (from output)

p-value: 0.279 (from output)

Conclusion: p-value not significant at a significance level
of 0.05. Not enough evidence to reject H0. The lognormal
distribution may be appropriate.

14. The AIC statistic is shown below for the generalized
gamma, lognormal, and log-logistic models.

Number of Log
Model parameters likelihood AIC

Generalized Gamma 8 −200.626 417.252
Lognormal 7 −201.210 416.420
Log-logistic 7 200.196 414.392

As in Question 11, the log-logistic model is selected yielding
the smallest AIC at 414.392.
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15. h(t) = λpt p−1 where λ = exp(β0 + β1TRT) and
p = exp(δ0 + δ1TRT)
let λ0 = exp[β0 + β1(0)], λ1 = exp[β0 + β1(1)]

let p0 = exp[δ0 + δ1(0)], p1 = exp[δ0 + δ1(1)]

λ̂0 = 0.0458, λ̂1 = 0.0085, p̂0 = 1.3703,

p̂1 = 1.3539 (calculated using output)

HR (TRT = 0 vs. TRT = 1) = λ0 p0t p0−1

λ1 p1t p1−1

ĤR(as a function of t) = (0.0458)(1.3703)t0.3703

(0.0085)(1.3539)t0.3539

ĤR(t = 10) = (0.0458)(1.3703)(100.3703)
(0.0085)(1.3539)(100.3539)

= 5.66

ĤR(t = 20) = (0.0458)(1.3703)(200.3703)
(0.0085)(1.3539)(200.3539)

= 5.73

The estimated hazard ratios for RX at 10 weeks and at 20
weeks are different, demonstrating that the hazards are not
constrained to be proportional in this model. However, the
estimated hazard ratios are just slightly different, suggesting
that the PH assumption is probably reasonable.

16. H0: δ1 = 0

Wald test statistic: z = −0.0123083
0.328174

= −0.04 (from output)

p-value: 0.970 (from output)
Conclusion: p-value is not significant. No evidence to reject

H0. The PH assumption is reasonable.

17. If the Weibull assumption is met, then the plots should be
straight lines with slope p. If δ1 = 0, then the slope p is the
same for TRT = 1 and TRT = 0 and the lines are parallel.
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Introduction This chapter considers outcome events that may occur more
than once over the follow-up time for a given subject. Such
events are called “recurrent events.” Modeling this type of
data can be carried out using a Cox PH model with the data
layout constructed so that each subject has a line of data
corresponding to each recurrent event. A variation of this
approach uses a stratified Cox PH model, which stratifies
on the order in which recurrent events occur. Regardless of
which approach is used, the researcher should consider ad-
justing the variances of estimated model coefficients for the
likely correlation among recurrent events on the same sub-
ject. Such adjusted variance estimates are called “robust vari-
ance estimates.” A parametric approach for analyzing recur-
rent event data that includes a frailty component (introduced
in Chapter 7) is also described and illustrated.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Overview (page 334)
II. Examples of Recurrent Event Data

(pages 334–336)
III. Counting Process Example (pages 336–337)
IV. General Data Layout for Counting Process

Approach (pages 338–339)
V. The Counting Process Model and Method

(pages 340–344)
VI. Robust Estimation (pages 344–346)

VII. Results for CP Example (pages 346–347)
VIII. Other Approaches—Stratified Cox

(pages 347–353)
IX. Bladder Cancer Study Example (Continued)

(pages 353–357)
X. A Parametric Approach Using Shared Frailty

(pages 357–359)
XI. A Second Example (pages 359–364)

XII. Survival Curves with Recurrent Events
(pages 364–367)

XIII. Summary (pages 367–370)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize examples of recurrent event data.
2. State or recognize the form of the data layout used for the

counting process approach for analyzing correlated data.
3. Given recurrent event data, outline the steps needed to an-

alyze such data using the counting process approach.
4. State or recognize the form of the data layout used for the

marginal model approach for analyzing correlated data.
5. Given recurrent event data, outline the steps needed to an-

alyze such data using the marginal model approach.



334 8. Recurrent Event Survival Analysis

Presentation

I. Overview

Outcome occurs more
than once per subject:

RECURRENT
EVENTS

(Counting Process and
Other Approaches)

Focus

In this chapter we consider outcome events that
may occur more than once over the follow-up time
for a given subject. Such events are called “recur-
rent events.” We focus on the Counting Process
(CP) approach for analysis of such data that uses
the Cox PH model, but we also describe alterna-
tive approaches that use a Stratified Cox (SC) PH
model and a frailty model.

II. Examples of Recurrent
Event Data

Up to this point, we have assumed that the event
of interest can occur only once for a given subject.
However, in many research scenarios in which the
event of interest is not death, a subject may expe-
rience an event several times over follow-up. Ex-
amples of recurrent event data include:

1. Multiple episodes of relapses from remission
comparing different treatments for leukemia
patients.

2. Recurrent heart attacks of coronary patients be-
ing treated for heart disease.

3. Recurrence of bladder cancer tumors in a co-
hort of patients randomized to one of two treat-
ment groups.

4. Multiple events of deteriorating visual acuity
in patients with baseline macular degenera-
tion, where each recurrent event is considered
a more clinically advanced stage of a previous
event.

1. Multiple relapses from
remission—leukemia patients

2. Repeated heart attacks—
coronary patients

3. Recurrence of tumors—bladder
cancer patients

4. Deteriorating episodes of visual
acuity—macular degeneration
patients

Objective

Assess relationship of predictors to
rate of occurrence, allowing for mul-
tiple events per subject

For each of the above examples, the event of inter-
est differs, but nevertheless may occur more than
once per subject. A logical objective for such data
is to assess the relationship of relevant predictors
to the rate in which events are occurring, allowing
for multiple events per subject.
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LEUKEMIA EXAMPLE

Do treatment groups differ in rates of
relapse from remission?

In the leukemia example above, we might ask
whether persons in one treatment group are ex-
periencing relapse episodes at a higher rate than
persons in a different treatment group.

Do smokers have a higher heart attack rate
than nonsmokers?

HEART ATTACK EXAMPLE If the recurrent event is a heart attack, we might
ask, for example, whether smokers are experienc-
ing heart attack episodes at a higher rate than non-
smokers.

All events are of the same type

The order of events is not important

Heart attacks: Treat as identical events;
       Don't distinguish among
       1st, 2nd, 3rd, etc. attack

LEUKEMIA AND HEART ATTACK 
EXAMPLES

For either of the above two examples, we are treat-
ing all events as if they were the same type. That is,
the occurrence of an event on a given subject iden-
tifies the same disease without considering more
specific qualifiers such as severity or stage of dis-
ease. We also are not taking into account the order
in which the events occurred.

For example, we may wish to treat all heart at-
tacks, whether on the same or different subjects,
as identical types of events, and we don’t wish to
identify whether a given heart attack episode was
the first, or the second, or the third event that oc-
curred on a given subject.

BLADDER CANCER EXAMPLE

Compare overall tumor recurrence rate
without considering order or type of tumor

The third example, which considers recurrence of
bladder cancer tumors, can be considered simi-
larly. That is, we may be interested in assessing
the “overall” tumor recurrence rate without dis-
tinguishing either the order or type of tumor.

MACULAR DEGENERATION OF
VISUAL ACUITY EXAMPLE

A second or higher event is more severe
than its preceding event

Order of event is important

The fourth example, dealing with macular degen-
eration events, however, differs from the other ex-
amples. The recurrent events on the same subject
differ in that a second or higher event indicates a
more severe degenerative condition than its pre-
ceding event.

Consequently, the investigator in this scenario
may wish to do separate analyses for each ordered
event in addition to or instead of treating all recur-
rent events as identical.
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Use a different analysis depending
on whether

a. recurrent events are treated as
identical

b. recurrent events involve different
disease categories and/or the
order of events is important

We have thus made an important distinction to
be considered in the analysis of recurrent event
data. If all recurrent events on the same subject
are treated as identical, then the analysis required
of such data is different than what is required if
either recurrent events involve different disease
categories and/or the order that events reoccur is
considered important.

Recurrent events identical
⇓

Counting Process Approach
(Andersen et al., 1993)

Recurrent events: different disease
categories or event order important

⇓
Stratified Cox (SC) Model
Approaches

The approach to analysis typically used when re-
current events are treated as identical is called
the Counting Process Approach (Andersen et al.,
1993).

When recurrent events involve different disease
categories and/or the order of events is considered
important, a number of alternative approaches to
analysis have been proposed that involve using
stratified Cox (SC) models.

In this chapter, we focus on the Counting Process
(CP) approach, but also describe the other strati-
fied Cox approaches (in a later section).

III. Counting Process Example To illustrate the counting process approach,
we consider data on two hypothetical subjects
(Table 8.1), Al and Hal, from a randomized trial
that compares two treatments for bladder cancer
tumors.

Al gets recurrent bladder cancer tumors at months
3, 9, and 21, and is without a bladder cancer tumor
at month 23, after which he is no longer followed.
Al received the treatment coded as 1.

Hal gets recurrent bladder cancer tumors at
months 3, 15, and 25, after which he is no longer
followed. Hal received the treatment coded as 0.

Table 8.1. 2 Hypothetical Subjects
Bladder Cancer Tumor Events

Time Event Treatment
interval indicator group

Al 0 to 3 1 1
3 to 9 1 1
9 to 21 1 1

21 to 23 0 1

Hal 0 to 3 1 0
3 to 15 1 0

15 to 25 1 0
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Al Hal

No. recurrent 3 3
events

Follow-up 23 months 25 months
time

Event times 3, 9, 21 3, 15, 25
from start
of follow-up

Additional 2 months 0 months
months of
follow-up
after last
event

Al has experienced 3 events of the same type
(i.e., recurrent bladder tumors) over a follow-up
period of 23 months. Hal has also experienced
3 events of the same type over a follow-up period
of 25 months.

The 3 events experienced by Al occurred at differ-
ent survival times (from the start of initial follow-
up) from the 3 events experienced by Hal.

Also, Al had an additional 2 months of follow-up
after his last recurrent event during which time
no additional event occurred. In contrast, Hal had
no additional event-free follow-up time after his
last recurrent event.

Table 8.2. Example of Data Layout
for Counting Process Approach

Interval Time Time Event Treatment
Subj Number Start Stop Status Group

Al 1 0 3 1 1
Al 2 3 9 1 1
Al 3 9 21 1 1
Al 4 21 23 0 1
Hal 1 0 3 1 0
Hal 2 3 15 1 0
Hal 3 15 25 1 0

Counting process: Start and Stop
times

Standard layout: only Stop
(survival) times (no recurrent
events)

In Table 8.2, we show for these 2 subjects, how
the data would be set up for computer analyses
using the counting process approach. Each sub-
ject contributes a line of data for each time inter-
val corresponding to each recurrent event and any
additional event-free follow-up interval.

A distinguishing feature of the data layout for the
counting process approach is that each line of data
for a given subject lists the start time and stop
time for each interval of follow-up. This contrasts
with the standard layout for data with no recurrent
events, which lists only the stop (survival) time.

Interval Time Time Event Treatment
Subj Number Start Stop Status Group

Sal 1 0 17 1 0
Mal 1 0 12 0 1

Note that if a third subject, Sal, failed without fur-
ther events or follow-up occurring, then Sal con-
tributes only one line of data, as shown at the left.
Similarly, only one line of data is contributed by a
(fourth) subject, Mal, who was censored without
having failed at any time during follow-up.
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IV. General Data Layout:
Counting Process
Approach

The general data layout for the counting process
approach is presented in Table 8.3 for a dataset
involving N subjects.

The ith subject has ri recurrent events. δij denotes
the event status (1 = failure, 0 = censored) for the
ith subject in the jth time interval. tij0 and tij1
denote the start and stop times, respectively, for
the ith subject in the jth interval. Xijk denotes the
value of the kth predictor for the the ith subject in
the jth interval.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N subjects
ri time intervals for subject i
δij event status (0 or 1) for subject

i in interval j
tij0 start time for subject i in

interval j
tij1 stop time for subject i in

interval j
Xijk value of kth predictor for

subject i in interval j
i = 1, 2, . . . , N; j = 1, 2, . . . , ni;

k = 1, 2, . . . , p

Table 8.3. General Data Layout:
CP Approach

I
S n
u t S
b e t S
j r a t S Predictors
e v t a t
c a u r o ︷ ︸︸ ︷
t l s t p

i j δij tij0 tij1 Xij1 . . . Xijp

1 1 δ11 t110 t111 X111 . . . X11p

1 2 δ12 t120 t121 X121 . . . X12p

· · · · · · ·
· · · · · · ·
· · · · · · ·
1 r1 δ1r1 t1r10 t1r11 X1r11 . . . X1r1p

· · · · · · ·
i 1 δi1 ti10 ti11 Xi11 . . . Xi1p

i 2 δi2 ti20 ti21 Xi21 . . . Xi2p

· · · · · · ·
· · · · · · ·
· · · · · · ·
i ri δiri tiri0 tiri1 Xiri1 . . . Xirip

· · · · · · ·
N 1 δN1 tN10 tN11 XN11 . . . XN1p

N 2 δN2 tN20 tN21 XN21 . . . XN2p

· · · · · · ·
· · · · · · ·
· · · · · · ·
N rN δNrN tNrN0 tNrN1 XNrN1 . . .XNrNp

Subjects are not restricted to have the same num-
ber of time intervals (e.g., r1 does not have to equal
r2) or the same number of recurrent events. If the
last time interval for a given subject ends in censor-
ship (δij = 0), then the number of recurrent events
for this subject is ri − 1; previous time intervals,
however, usually end with a failure (δij = 1).

Also, start and stop times may be different for dif-
ferent subjects. (See the previous section’s exam-
ple involving two subjects.)

As with any survival data, the covariates (i.e., Xs)
may be time-independent or time-dependent for
a given subject. For example, if one of the Xs is
“gender” (1 = female, 0 = male), the values of this
variable will be all 1s or all 0s over all time in-
tervals observed for a given subject. If another X
variable is, say, a measure of daily stress level, the
values of this variable are likely to vary over the
time intervals for a given subject.

The second column (“Interval j”) in the data layout
is not needed for the CP analysis, but is required
for other approaches described later.
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Table 8.4. First 26 Subjects:
Bladder Cancer Study

id int event start stop tx num size

1 1 0 0 0 0 1 1
2 1 0 0 1 0 1 3
3 1 0 0 4 0 2 1
4 1 0 0 7 0 1 1
5 1 0 0 10 0 5 1
6 1 1 0 6 0 4 1
6 2 0 6 10 0 4 1
7 1 0 0 14 0 1 1
8 1 0 0 18 0 1 1
9 1 1 0 5 0 1 3
9 2 0 5 18 0 1 3

10 1 1 0 12 0 1 1
10 2 1 12 16 0 1 1
10 3 0 16 18 0 1 1
11 1 0 0 23 0 3 3
12 1 1 0 10 0 1 3
12 2 1 10 15 0 1 3
12 3 0 15 23 0 1 3
13 1 1 0 3 0 1 1
13 2 1 3 16 0 1 1
13 3 1 16 23 0 1 1
14 1 1 0 3 0 3 1
14 2 1 3 9 0 3 1
14 3 1 9 21 0 3 1
14 4 0 21 23 0 3 1
15 1 1 0 7 0 2 3
15 2 1 7 10 0 2 3
15 3 1 10 16 0 2 3
15 4 1 16 24 0 2 3
16 1 1 0 3 0 1 1
16 2 1 3 15 0 1 1
16 3 1 15 25 0 1 1
17 1 0 0 26 0 1 2
18 1 1 0 1 0 8 1
18 2 0 1 26 0 8 1
19 1 1 0 2 0 1 4
19 2 1 2 26 0 1 4
20 1 1 0 25 0 1 2
20 2 0 25 28 0 1 2
21 1 0 0 29 0 1 4
22 1 0 0 29 0 1 2
23 1 0 0 29 0 4 1
24 1 1 0 28 0 1 6
24 2 1 28 30 0 1 6
25 1 1 0 2 0 1 5
25 2 1 2 17 0 1 5
25 3 1 17 22 0 1 5
25 4 0 22 30 0 1 5
26 1 1 0 3 0 2 1
26 2 1 3 6 0 2 1
26 3 1 6 8 0 2 1
26 4 1 8 12 0 2 1
26 5 0 12 30 0 2 1

To illustrate the above general data layout, we
present in Table 8.4 the data for the first 26 sub-
jects from a study of recurrent bladder cancer
tumors (Byar, 1980 and Wei, Lin, and Weissfeld,
1989). The entire dataset contained 86 patients,
each followed for a variable amount of time up to
64 months.

The repeated event being analyzed is the recur-
rence of bladder cancer tumors after transurethral
surgical excision. Each recurrence of new tumors
was treated by removal at each examination.

About 25% of the 86 subjects experienced four
events.

The exposure variable of interest is drug treat-
ment status (tx, 0 = placebo, 1 = treatment with
thiotepa). The covariates listed here are initial
number of tumors (num) and initial size of tumors
(size) in centimeters. The paper by Wei, Lin, and
Weissfeld actually focuses on a different method
of analysis (called “marginal”), which requires a
different data layout than shown here. We later
describe the “marginal” approach and its corre-
sponding layout.

In these data, it can be seen that 16 of these sub-
jects (id #s 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 18, 20, 21,
22, 23) had no recurrent events, 4 subjects had 2
recurrent events (id #s 10, 12, 19, 24), 4 subjects
(id #s 13, 14, 16, 25) had 3 recurrent events, and 2
subjects (id #s 15, 26) had 4 recurrent events.

Moreover, 9 subjects (id #s 6, 9, 10, 12, 14, 18, 20,
25, 26) were observed for an additional event-free
time interval after their last event. Of these, 4 sub-
jects (id #s 6, 9, 18, 20) experienced only one event
(i.e., no recurrent events).
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V. The Counting Process
Model and Method

The model typically used to carry out the Count-
ing Process approach is the standard Cox PH
model, once again shown here at the left.

As usual, the PH assumption needs to be evalu-
ated for any time-independent variable. A strati-
fied Cox model or an extended Cox model would
need to be used if one or more time-independent
variables did not satisfy the PH assumption. Also,
an extended Cox model would be required if inher-
ently time-dependent variables were considered.

Cox PH Model

h(t, X) = h0(t) exp[�βiXi]

Need to

Assess PH assumption for Xi

Consider stratified Cox or extended
Cox if PH assumption not
satisfied

Use extended Cox for time-
dependent variables

The primary difference in the way the Cox model
is used for analyzing recurrent event data versus
nonrecurrent (one time interval per subject) data
is the way several time intervals on the same sub-
ject are treated in the formation of the likelihood
function maximized for the Cox model used.

To keep things simple, we assume that the data
involve only time-independent variables satisfying
the PH assumption. For recurrent survival data, a
subject with more than one time interval remains
in the risk set until his or her last interval, after
which the subject is removed from the risk set. In
contrast, for nonrecurrent event data, each subject
is removed from the risk set at the time of failure
or censorship.

Nevertheless, for subjects with two or more in-
tervals, the different lines of data contributed by
the same subject are treated in the analysis as if
they were independent contributions from differ-
ent subjects, even though there are several out-
comes on the same subject.

In contrast, for the standard Cox PH model ap-
proach for nonrecurrent survival data, different
lines of data are treated as independent because
they come from different subjects.

Recurrent event Nonrecurrent
data event data
(Likelihood function formed differently)

Subjects with >1
time interval
remain in the risk
set until last
interval is
completed

Subjects removed
from risk set at
time of failure
or censorship

Different lines of
data are treated
as independent
even though
several outcomes
on the same
subject

Different lines of
data are treated
as independent
because they
come from
different
subjects
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Cox PH Model for CP Approach:
Bladder Cancer Study

For the bladder cancer study described in
Table 8.4, the basic Cox PH model fit to these data
takes the form shown at the left.

h(t, X) = h0(t)exp[β tx + γ1 num
+γ2 size]

where

tx = 1 if thiotepa, 0 if placebo
num = initial # of tumors
size = initial size of tumors

The primary (exposure) variable of interest in this
model is the treatment variable tx. The variables
num and size are considered as potential con-
founders. All three variables are time-independent
variables.

No-interaction Model This is a no-interaction model because it does not
contain product terms of the form tx × num or
tx × size. An interaction model involving such
product terms could also be considered, but we
only present the no-interaction model for illustra-
tive purposes.

Interaction model would involve
product terms

tx × num and/or tx × size

Table 8.5. Ordered Failure Time
and Risk Set Information for First
26 Subjects in Bladder Cancer
Study

Subject
Ordered # in # ID #s for
failure risk # censored outcomes
times set failed in in
t(j) nj mj [t(j), t(j+1)) [t(j), t(j+1))

0 26 — 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14,

16, 26
5 23 1 0 9
6 23 2 0 6, 26
7 23 1 1 4, 15
8 22 1 0 26
9 22 1 0 14

10 22 2 2 5, 6, 12, 15
12 20 2 1 7, 10, 26
15 19 2 0 12, 16
16 19 3 0 10, 13, 15
17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13, 14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22,

23, 24
30 3 1 2 24, 25, 26

32 21

Table 8.5 at the left provides ordered failure times
and corresponding risk set information that would
result if the first 26 subjects that we described in
Table 8.4 comprised the entire dataset. (Recall that
there are 86 subjects in the complete dataset.)

Because we consider 26 subjects, the number in
the risk set at ordered failure time t(0) is n(0) = 26.
As these subjects fail (i.e., develop a bladder cancer
tumor) or are censored over follow-up, the num-
ber in the risk set will decrease from the jth to
the j + 1th ordered failure time provided that no
subject who fails at time t(j) either has a recurrent
event at a later time or has additional follow-up
time until later censorship. In other words, a sub-
ject who has additional follow-up time after having
failed at t( j ) does not drop out of the risk set after
t( j ).
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Table 8.6. Focus on Subject #s 19
and 25

t(j) nj mj q(j) Subject ID #s

0 26 — 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14, 16, 26

•
•
•

17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13, 14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22, 23, 24
30 3 1 2 24, 25, 26

For example, at month t(j) = 2, subject #s 19 and
25 fail, but the number in the risk set at that time
(nj = 24) does not decrease (by 2) going into the
next failure time because each of these subjects
has later recurrent events. In particular, subject
#19 has a recurrent event at month t(j) = 26 and
subject #25 has two recurrent events at months
t(j) = 17 and t(j) = 22 and has additional follow-
up time until censored month 30.

Table 8.7. Focus on Subject #s 3,
13, 14, 16, 26

t(j) nj mj q(j) Subject ID #s

0 26 — 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14, 16, 26
5 23 1 0 9
6 23 2 0 6, 26
7 23 1 1 4, 15
8 22 1 0 26
9 22 1 0 14

10 22 2 2 5, 6, 12, 15
12 20 2 1 7, 10, 26
15 19 2 0 12, 16
16 19 3 0 10, 13, 15
17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13, 14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22, 23, 24
30 3 1 2 24, 25, 26

As another example from Table 8.5, subject #s 3,
13, 14, 16, 26 contribute information at ordered
failure time t(j) = 3, but the number in the risk set
only drops from 24 to 23 even though the last four
of these subjects all fail at t(j) = 3. Subject #3 is
censored at month 4 (see Table 8.4), so this sub-
ject is removed from the risk set after failure time
t(j) = 3. However, subjects 13, 14, 16, and 26 all
have recurrent events after t(j) = 3, so they are not
removed from the risk set after t(j) = 3.

Subject #26 appears in the last column 5 times.
This subject contributes 5 (start, stop) time inter-
vals, fails at months 3, 6, 8, and 12, and is also
followed until month 30, when he is censored.
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“Gaps” in follow-up time:

0 10 25 50gap
lost re-enter

Another situation, which is not illustrated in these
data, involves “gaps” in a subject’s follow-up time.
A subject may leave the risk set (e.g., lost to follow-
up) at, say, time = 10 and then re-enter the risk
set again and be followed from, say, time = 25 to
time = 50. This subject has a follow-up gap during
the period from time = 10 to time = 25.No Interaction Cox PH Model

The (partial) likelihood function (L) used to fit the
no-interaction Cox PH model is expressed in typi-
cal fashion as the product of individual likelihoods
contributed by each ordered failure time and cor-
responding risk set information in Table 8.5. There
are 22 such terms in this product because there are
22 ordered failure times listed in Table 8.5.

h(t,X) = h0(t)exp[β tx + γ1 num
+γ2 size]

Partial likelihood function:

L = L1 × L2 × · · · × L22

Lj = individual likelihood at t(j)

= Pr[failing at t(j) | survival up to
t(j)]

j = 1, 2, . . . , 22

Lj = exp (βtx(j) + γ1num(j) + γ2size(j))∑
s in R(t(j) )

exp (βtxs(j) +γ1nums(j) +γ2sizes(j))

Each individual likelihood Lj essentially gives the
conditional probability of failing at time t(j), given
survival (i.e., remaining in the risk set) at t(j).

If there is only one failure at the jth ordered fail-
ure time, Lj is expressed as shown at the left for
the above no-interaction model. In this expression
tx(j), num(j), and size(j) denote the values of the
variables tx, num, and size for the subject failing
at month t(j).

tx(j), num(j), and size(j) values of tx,
num, and size at t(j)

txs(j), nums(j), and sizes(j) values of tx,
num, and size for subject s in R(t(j))

The terms txs(j), nums(j), and sizes(j) denote the val-
ues of the variables tx, num, and size for the sub-
ject s in the risk set R(t(j)). Recall that R(t(j)) con-
sists of all subjects remaining at risk at failure
time t(j).

Data for Subject #25

id int event start stop tx num size

25 1 1 0 2 0 1 5
25 2 1 2 17 0 1 5
25 3 1 17 22 0 1 5
25 4 0 22 30 0 1 5

j = 15th ordered failure time
n15 = 16 subjects in risk set at
t(15) = 22:

R(t(15) = 22) = {subject #s 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26}

For example, subject #25 from Table 8.4 failed for
the third time at month 22, which is the j = 15th
ordered failure time listed in Table 8.5. It can be
seen that nj = 16 of the initial 26 subjects are still
at risk at the beginning of month 22. The risk set
at this time includes subject #25 and several other
subjects (#s 12, 13, 14, 15, 16, 18, 19, 26) who al-
ready had at least one failure prior to month 22.
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L15 = exp(β(0) + γ1(1) + γ1(5))∑
s in R(t(15) )

exp(βtxs(15) + γ1nums(15) + γ1sizes(15))
The corresponding likelihood L15 at t(15) = 22 is
shown at the left. Subject #25’s values tx25(15) = 0,
num25(15) = 1, and size25(15) = 5, have been in-
serted into the numerator of the formula. The de-
nominator will contain a sum of 16 terms, one for
each subject in the risk set at t(15) = 22.

Computer program formulates
partial likelihood L
(See Computer Appendix)

The overall partial likelihood L will be formulated
internally by the computer program once the data
layout is in the correct form and the program code
used involves the (start, stop) formulation.

VI. Robust Estimation As illustrated for subject #14 at the left, each sub-
ject contributes a line of data for each time inter-
val corresponding to each recurrent event and any
additional event-free follow-up interval.

Data for Subject #14

id int event start stop tx num size

14 1 1 0 3 0 3 1
14 2 1 3 9 0 3 1
14 3 1 9 21 0 3 1
14 4 0 21 23 0 3 1

Up to this point:
the 4 lines of data for subject #14 are
treated as independent observations

We have also pointed out that the Cox model anal-
ysis described up to this point treats different
lines of data contributed by the same subject as
if they were independent contributions from dif-
ferent subjects.

Nevertheless,

� Observations of the same
subject are correlated� Makes sense to adjust for such
correlation in the analysis

Nevertheless, it makes sense to view the different
intervals contributed by a given subject as repre-
senting correlated observations on the same sub-
ject that must be accounted for in the analysis.

Robust (Empirical) Estimation A widely used technique for adjusting for the cor-
relation among outcomes on the same subject is
called robust estimation (also referred to as em-
pirical estimation). This technique essentially in-
volves adjusting the estimated variances of re-
gression coefficients obtained for a fitted model
to account for misspecification of the correlation
structure assumed (see Zeger and Liang, 1986 and
Kleinbaum and Klein, 2002).

� Adjusts

V̂ar (β̂k)

where

β̂k

is an estimated regression
coefficient� accounts for misspecification of
assumed correlation structure
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CP approach: assumes
independence

Goal of robust estimation: adjust for
correlation within subjects

In the CP approach, the assumed correlation
structure is independence; that is, the Cox PH
model that is fit assumes that different outcomes
on the same subject are independent. Therefore
the goal of robust estimation for the CP approach
is to obtain variance estimators that adjust for cor-
relation within subjects when previously no such
correlation was assumed.

Same goal for other approaches for
analyzing recurrent event data

This is the same goal for other approaches for an-
alyzing recurrent event data that we describe later
in this chapter.

Do not adjust

β̂k

Only adjust

V̂ar (β̂k)

Note that the estimated regression coefficients
themselves are not adjusted; only the estimated
variances of these coefficients are adjusted.

Robust (Empirical) Variance The robust (i.e., empirical) estimator of the vari-
ance of an estimated regression coefficient there-
fore allows tests of hypotheses and confidence in-
tervals about model parameters that account for
correlation within subjects.

allows
tests of hypotheses and
confidence intervals

that account for correlated data

Matrix formula:

derived from ML estimation

We briefly describe the formula for the robust vari-
ance estimator below. This formula is in matrix
form and involves terms that derive from the set
of “score” equations that are used to solve for ML
estimates of the regression coefficients. This in-
formation may be of interest to the more mathe-
matically inclined reader with some background
in methods for the analysis of correlated data
(Kleinbaum and Klein, 2002).

Formula not essential for using
computer packages

However, the information below is not essential
for an understanding of how to obtain robust esti-
mators using computer packages. (See Computer
Appendix for the code using SAS and Stata.)
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Extension (Lin and Wei, 1989) of
information sandwich estimator
(Zeger and Liang, 1986)

The robust estimator for recurrent event data was
derived by Lin and Wei (1989) as an extension sim-
ilar to the “information sandwich estimator” pro-
posed by Zeger and Liang (1986) for generalized
linear models. SAS and Stata use variations of this
estimator that give slightly different estimates.

Matrix formula

R̂(β̂) = V̂ar(β̂)[R′
SRS]V̂ar(β̂)

where

V̂ar (β̂)
is the information matrix, and

RS
is matrix of score residuals

The general form of this estimator can be most
conveniently written in matrix notation as shown
at the left. In this formula, the variance expres-
sion denotes the information matrix form of es-
timated variances and covariances obtained from
(partial) ML estimation of the Cox model being fit.
The RS expression in the middle of the formula de-
notes the matrix of score residuals obtained from
ML estimation.

Formula applies to other ap-
proaches for analyzing recurrent
event data

The robust estimation formula described above
applies to the CP approach as well as other ap-
proaches for analyzing recurrent event data de-
scribed later in this chapter.

VII. Results for CP Example We now describe the results from using the CP
approach on the Bladder Cancer Study data in-
volving all 85 subjects.

Table 8.8. Edited SAS Output
from CP Approach on Bladder
Cancer Data (N = 85 Subjects)
Without Robust Variances

Parmeter Std
Var DF Estimate Error Chisq P ĤR

tx 1 −0.4071 0.2001 4.140 0.042 0.667
num 1 0.1607 0.0480 11.198 0.001 1.174
size 1 −0.0401 0.0703 0.326 0.568 0.961

−2 LOG L = 920.159

Table 8.8 gives edited output from fitting the no-
interaction Cox PH model involving the three pre-
dictors tx, num, and size. A likelihood ratio chunk
test for interaction terms tx × num and tx ×
size was nonsignificant, thus supporting the no-
interaction model shown here. The PH assump-
tion was assumed satisfied for all three variables.

Table 8.9. Robust Covariance
Matrix, CP Approach on Bladder
Cancer Data

tx num size

tx 0.05848 −0.00270 −0.00051
num −0.00270 0.00324 0.00124
size −0.00051 0.00124 0.00522

Table 8.9 provides the covariance matrix obtained
from robust estimation of the variances of the es-
timated regression coefficients of tx, num, and
size. The values on the diagonal of this matrix
give robust estimates of these variances and the
off-diagonal values give covariances.
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Robust standard error for tx
= square-root (.05848) = 0.2418

Nonrobust standard error for tx
= 0.2001

Because the exposure variable of interest in this
study is tx, the most important value in this ma-
trix is 0.05848. The square root of this value is
0.2418, which gives the robust standard error of
the estimated coefficient of the tx variable. Notice
that this robust estimator is similar but somewhat
different from the nonrobust estimator of 0.2001
shown in Table 8.8.

Summary of Results from
CP Approach

We now summarize the CP results for the effect
of the exposure variable tx on recurrent event sur-
vival controlling for num and size. The hazard ra-
tio estimate of .667 indicates that the hazard for
the placebo is 1.5 times the hazard for the treat-
ment.

Hazard Ratio tx : exp(−0.407) = 0.667
(= 1/1.5)

Wald Chi-Square tx : robust nonrobust
2.83 4.14

P-value tx : .09 .04

(H0: no effect of tx, HA: two sided)

95% CI for HR tx (robust): (0.414,
1.069)

HA: one-sided, both p-values < .05

We return to the analysis of these
data when we discuss other ap-
proaches for analysis of recurrent
event data.

Using robust estimation, the Wald statistic for this
hazard ratio is borderline nonsignificant (P = .09).
Using the nonrobust estimator, the Wald statistic
is borderline significant (P = .04). Both these P-
values, however, are for a two-sided alternative.
For a one-sided alternative, both P-values would
be significant at the .05 level. The 95% confidence
interval using the robust variance estimator is
quite wide in any case.

VIII. Other Approaches—
Stratified Cox

We now describe three other approaches for ana-
lyzing recurrent event data, each of which uses a
Stratified Cox (SC) PH model. They are called con-
ditional 1, conditional 2, and marginal. These
approaches are often used to distinguish the or-
der in which recurrent events occur.

The “strata” variable for each approach treats the
time interval number as a categorical variable.

3 stratified Cox (SC) approaches:

Conditional 1 (Prentice,
Williams and

Conditional 2 Peterson,1981)
Marginal (Wei, Lin, and

Weissfeld,1989)

Goal: distinguish order of recurrent
events

Strata variable: time interval #
treated as
categorical
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Example:
maximum of 4 failures per subject

⇓
Strata = 1 for time interval #1
variable 2 for time interval #2

3 for time interval #3
4 for time interval #4

For example, if the maximum number of failures
that occur on any given subject in the dataset is,
say, 4, then time interval #1 is assigned to stratum
1, time interval #2 to stratum 2, and so on.

Conditional: time between two
events

Conditional 1 0 50 → 80
entry

Conditional 2 0 → 30
ev1 ev2

Both conditional approaches focus on survival
time between two events. However, conditional 1
uses the actual times of the two events from study
entry, whereas conditional 2 starts survival time
at 0 for the earlier event and stops at the later
event.

Marginal

� Total survival time from study
entry until kth event� Recurrent events of different
types

The marginal approach, in contrast to each con-
ditional approach, focuses on total survival time
from study entry until the occurrence of a spe-
cific (e.g., kth) event; this approach is suggested
when recurrent events are viewed to be of differ-
ent types.

Conditional 1 for Subject 10

id int event start stop tx num size

10 1 1 0 12 0 1 1
10 2 1 12 16 0 1 1
10 3 0 16 18 0 1 1

The conditional 1 approach uses the exact same
(start, stop) data layout format used for the CP
approach, except that for conditional 1, an SC
model is used rather than a standard (unstratified)
PH model. The strata variable here is int in this
listing.

Conditional 2 for Subject 10

(stop = Interval Length Since Previous
Event)

id int event start stop tx num size

10 1 1 0 12 0 1 1
10 2 1 0 4 0 1 1
10 3 0 0 2 0 1 1

The conditional 2 approach also uses a (start,
stop) data layout, but the start value is always 0
and the stop value is the time interval length since
the previous event. The model here is also a SC
model.

Marginal approach
Standard (nonrecurrent event)
layout (i.e., without (start, stop)
columns)

The marginal approach uses the standard (non-
recurrent event) data layout instead of the (start,
stop) layout, as illustrated below.



Presentation: VIII. Other Approaches—Stratified Cox 349

Marginal Approach for Subject 10

id int event stime tx num size

10 1 1 12 0 1 1
10 2 1 16 0 1 1
10 3 0 18 0 1 1
10 4 0 18 0 1 1

The marginal approach layout, shown at the left,
contains four lines of data in contrast to the three
lines of data that would appear for subject #10
using the CP, conditional 1, and conditional 2
approaches

Marginal approach
Each subject at risk for all failures
that might occur

# actual failures ≤ # possible failures

The reason why there are 4 lines of data here is
that, for the marginal approach, each subject is
considered to be at risk for all failures that might
occur, regardless of the number of events a subject
actually experienced.

Bladder cancer data:

Maximum # (possible) failures = 4

So, subject 10 (as well as all other
subjects) gets 4 lines of data

Because the maximum number of failures be-
ing considered in the bladder cancer data is 4
(e.g., for subject #s 15 and 26), subject #10, who
failed only twice, will have two additional lines
of data corresponding to the two additional fail-
ures that could have possibly occurred for this
subject.

Fundamental Difference Among
the 3 SC Approaches

The three alternative SC approaches (conditional
1, conditional 2, and marginal) fundamentally
differ in the way the risk set is determined for
strata corresponding to events after the first event.Risk set differs for strata after first

event

Conditional 2: time until 1st event
does not influence risk set for later
events (i.e., clock reset to 0 after
event occurs)

With conditional 2, the time until the first event
does not influence the composition of the risk set
for a second or later event. In other words, the
clock for determining who is at risk gets reset to 0
after each event occurs.

Conditional 1: time until 1st event
influences risk set for later events

In contrast, with conditional 1, the time until the
first event affects the composition of the risk set
for later events.

Marginal: risk set determined from
time since study entry

With the marginal approach, the risk set for the
kth event (k = 1, 2, . . .) identifies those at risk for
the kth event since entry into the study.
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EXAMPLE

Days

ID Status Stratum Start Stop tx

M 1 11
M 2 11

H 1 01

H 2 01

P 1 01

P 2 01
P 3

0
100

0

30

0

20
60

100
105

30

50

20

60
85 01

Suppose, for example, that Molly (M), Holly (H),
and Polly (P) are the only three subjects in the
dataset shown at the left. Molly receives the treat-
ment (tx = 1) whereas Holly and Polly receive the
placebo (tx = 0). All three have recurrent events
at different times. Also, Polly experiences three
events whereas Molly and Holly experience two.

Conditional 1

Stratum 1 Stratum 2

t(j) nj R(t(j)) t(j) nj R(t(j))

0 3 {M, H, P} 20 1 {P}
20 3 {M, H, P} 30 2 {H, P}
30 2 {M, H} 50 2 {H, P}

100 1 {M} 60 1 {P}
105 1 {M}

The table at the left shows how the risk set changes
over time for strata 1 and 2 if the conditional 1
approach is used. For stratum 2, there are no sub-
jects in the risk set until t = 20, when Polly gets
the earliest first event and so becomes at risk for a
second event. Holly enters the risk set at t = 30. So
at t = 50, when the earliest second event occurs,
the risk set contains Holly and Polly. Molly is not
at risk for getting her second event until t = 100.
The risk set at t = 60 contains only Polly because
Holly has already had her second event at t = 50.
And the risk set at t = 105 contains only Molly be-
cause both Holly and Polly have already had their
second event by t = 105.

Conditional 2

Stratum 1 Stratum 2

t(j) nj R(t(j)) t(j) nj R(t(j))

0 3 {M, H, P} 0 3 {M, H, P}
20 3 {M, H, P} 5 3 {M, H, P}
30 2 {M, H} 20 2 {H, P}

100 1 {M} 40 1 {P}

The next table shows how the risk set changes
over time if the conditional 2 approach is used.
Notice that the data for stratum 1 are identical to
those for conditional 1. For stratum 2, however,
all three subjects are at risk for the second event
at t = 0 and at t = 5, when Molly gets her sec-
ond event 5 days after the first occurs. The risk set
at t = 20 contains Holly and Polly because Molly
has already had her second event by t = 20. And
the risk set at t = 40 contains only Polly because
both Molly and Holly have already had their sec-
ond event by t = 40.
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Marginal

Stratum 1 Stratum 2

t(j) nj R(t(j)) t(j) nj R(t(j))

0 3 {M, H, P} 0 3 {M, H, P}
20 3 {M, H, P} 50 3 {M, H, P}
30 2 {M, H} 60 2 {M, P}

100 3 {M} 105 1 {M}

We next consider the marginal approach. For
stratum 1, the data are identical again to those for
conditional 1. For stratum 2, however, all three
subjects are at risk for the second event at t = 0
and at t = 50, when Holly gets her second event.
The risk set at t = 60 contains Molly and Polly be-
cause Holly has already had her second event at
t = 50. And the risk set at t = 105 contains only
Molly because both Holly and Polly have already
had their second event by t = 60.

Stratum 3 for Marginal approach
follows

Because Polly experienced three events, there is
also a third stratum for this example, which we
describe for the marginal approach only.

Marginal
Stratum 3

t(j) nj R(t(j))

0 3 {M, H, P}
85 2 {M, P}
Note: H censored by t = 85

Using the marginal approach, all three subjects are
considered at risk for the third event when they
enter the study (t = 0), even though Molly and
Holly actually experience only two events. At t =
85, when Polly has her third event, Holly, whose
follow-up ended at t = 50, is no longer in the
risk set; which still includes Molly because Molly’s
follow-up continues until t = 105.

Basic idea (marginal approach):

Each failure considered a
separate process

Allows stratifying on

� Failure order� Different failure type
(e.g., stage 1 vs. stage 2 cancer)

The basic idea behind the marginal approach is
that it allows each failure to be considered as a
separate process. Consequently, the marginal ap-
proach not only allows the investigator to consider
the ordering of failures as separate events (i.e.,
strata) of interest, but also allows the different fail-
ures to represent different types of events that may
occur on the same subject.

Stratified Cox PH (SC) Model for all
3 alternative approaches

Use standard computer program for
SC (e.g., SAS’s PHREG, Stata’s stcox,
SPSS’s coxreg)

All three alternative approaches, although differ-
ing in the form of data layout and the way the risk
set is determined, nevertheless use a stratified Cox
PH model to carry out the analysis. This allows a
standard program that fits a SC model (e.g., SAS’s
PHREG) to perform the analysis.

No-interaction SC model for blad-
der cancer data

hg(t,X) = h0g(t)exp[β tx + γ1 num
+γ2 size]

where g = 1, 2, 3, 4

The models used for the three alternative SC ap-
proaches are therefore of the same form. For ex-
ample, we show on the left the no-interaction SC
model appropriate for the bladder cancer data we
have been illustrating.
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Two types of SC models:

No-interaction versus interaction
model

Typically compared using LR test

As described previously in Chapter 5 on the strati-
fied Cox procedure, a no-interaction stratified Cox
model is not appropriate if there is interaction
between the stratified variables and the predictor
variables put into the model. Thus, it is necessary
to assess whether an interaction version of the SC
model is more appropriate, as typically carried out
using a likelihood ratio test.

Version 1: Interaction SC Model For the bladder cancer data, we show at the
left two equivalent versions of the SC interaction
model. The first version separates the data into 4
separate models, one for each stratum.

hg(t,X) = h0g(t)exp[βg tx

+γ1g num + γ2g size]

g = 1, 2, 3, 4

Version 2: Interaction SC Model The second version contains product terms involv-
ing the stratified variable with each of the 3 pre-
dictors in the model. Because there are 4 strata,
the stratified variable is defined using 3 dummy
variables Z∗

1, Z∗
2, and Z∗

3.

hg(t,X) = h0g(t)exp[β tx + γ1 num
+γ2 size + δ11(Z∗

1 × tx)
+ δ12(Z∗

2 × tx) + δ13(Z∗
3 × tx)

+ δ21(Z∗
1 × num) + δ22(Z∗

2 × num)
+ δ23(Z∗

3 × num) + δ31(Z∗
1 × size)

+ δ32(Z∗
2 × size) + δ33(Z∗

3 × size)]

where Z∗
1, Z∗

2, and Z∗
3 are 3 dummy

variables for the 4 strata.

H0(Version 1) The null hypotheses for the LR test that compares
the interaction with the no-interaction SC model
is shown at the left for each version. The df for the
LR test is 9.

β1 = β2 = β3 = β4 ≡ β,

γ11 = γ12 = γ13 = γ14 ≡ γ1,

γ21 = γ22 = γ23 = γ24 ≡ γ2

H0(Version 2)

δ11 = δ12 = δ13 = δ21 = δ22 = δ23

= δ31 = δ32 = δ33 = 0
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Interaction SC model may be used
regardless of LR test result

� Allows separate HRs for tx for
each stratum� If no-interaction SC, then only
an overall effect of tx can be
estimated

Even if the no-interaction SC model is found more
appropriate from the likelihood ratio test, the in-
vestigator may still wish to use the interaction SC
model in order to obtain and evaluate different
hazard ratios for each stratum. In other words, if
the no-interaction model is used, it is not possible
to separate out the effects of predictors (e.g., tx)
within each stratum, and only an overall effect of
a predictor on survival can be estimated.

Recommend using

robust estimation

R̂(β̂) = V̂ar(β̂)[R′
SRS]V̂ar(β̂)

to adjust for correlation of observa-
tions on the same subject

For each of the SC alternative approaches, as for
the CP approach, it is recommended to use ro-
bust estimation to adjust the variances of the es-
timated regression coefficients for the correlation
of observations on the same subject. The general
form for the robust estimator is the same as in the
CP approach, but will give different numerical re-
sults because of the different data layouts used in
each method.

IX. Bladder Cancer Study
Example (Continued)

We now present and compare SAS results from us-
ing all four methods we have described—CP, con-
ditional 1, conditional 2, and marginal—for an-
alyzing the recurrent event data from the bladder
cancer study.

Table 8.10 gives the regression coefficients for the
tx variable and their corresponding hazard ratios
(i.e., exp(β̂) for the no-interaction Cox PH mod-
els using these four approaches). The model used
for the CP approach is a standard Cox PH model
whereas the other three models are SC models that
stratify on the event order.

Table 8.10. Estimated βs and HRs
for tx from Bladder Cancer Data

Model β̂ ĤR = exp(β̂)

CP −0.407 0.666 (=1/1.50)
C1 −0.334 0.716 (=1/1.40)
C2 −0.270 0.763 (=1/1.31)
M −0.580 0.560 (=1/1.79)

CP = Counting Process, C1 = Conditional 1,
C2 = Conditional 2, M = Marginal

HR for M: 0.560 (=1/1.79)
differs from
HRs for CP: 0.666 (=1/1.50),

C1: 0.716 (=1/1.40),
C2: 0.763 (=1/1.31)

From this table, we can see that the hazard ratio
for the effect of the exposure variable tx differs
somewhat for each of the four approaches, with
the marginal model giving a much different re-
sult from that obtained from the other three ap-
proaches.
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Table 8.11. Estimated βs, SE(β)s,
and P-Values for tx from
No-Interaction Model for Bladder
Cancer Data

Model β̂ SE(NR) SE(R) P(NR) P(R)

CP −0.407 0.200 0.242 .042 .092
C1 −0.334 0.216 0.197 .122 .090
C2 −0.270 0.208 0.208 .195 .194
M −0.580 0.201 0.303 .004 .056

CP = Counting Process, C1 = Conditional 1,
C2 = Conditional 2, M = Marginal,
NR = Nonrobust, R = Robust, P = Wald P-value

Table 8.11 provides, again for the exposure vari-
able tx only, the regression coefficients, robust
standard errors, nonrobust standard errors, and
corresponding Wald Statistic P-values obtained
from using the no-interaction model with each
approach.

SE(NR) differs from SE(R)
P(NR) differs from P(R)

but no clear pattern

for example,
CP: P(NR) = .042 < P(R) = .092
C1: P(NR) = .122 > P(R) = .090
C2: P(NR) = .195 = P(R) = .194

The nonrobust and robust standard errors and P-
values differ to some extent for each of the dif-
ferent approaches. There is also no clear pattern
to suggest that the nonrobust results will always
be either higher or lower than the corresponding
robust results.

Wald test statistic(s):

Z = β̂/SE(β̂) ⇔ Z2 = [β̂/SE(β̂)]2

∼ N(0,1) under H0: β= 0 ∼ χ2
1 df

The P-values shown in Table 8.11 are computed us-
ing the standard Wald test Z or chi-square statistic,
the latter having a chi-square distribution with 1
df under the null hypothesis that there is no effect
of tx.

Table 8.12. Estimated βs and
Robust SE(β)s for tx from
Interaction SC Model for Bladder
Cancer Data

Interaction SC Model
No

Str1 Str2 Str3 Str4 Interaction
β̂1 β̂2 β̂3 β̂4 β̂

Model (SE) (SE) (SE) (SE) (SE)

CP — — — — −.407
(.242)

C1 −.518 −.459 .117 −.041 −.334
(.308) (.441) (.466) (.515) (.197)

C2 −.518 −.259 .221 −.195 −.270
(.308) (.402) (.620) (.628) (.208)

M −.518 −.619 −.700 −.651 −.580
(.308) (.364) (.415) (.490) (.303)

CP = Counting Process, C1 = Conditional 1,
C2 = Conditional 2, M = Marginal

Table 8.12 presents, again for the exposure vari-
able tx only, the estimated regression coefficients
and robust standard errors for both the interac-
tion and the no-interaction SC models for the 3
approaches (other than the CP approach) that use
a SC model.

Notice that for each of the 3 SC modeling ap-
proaches, the estimated βs and corresponding
standard errors are different over the four strata
as well as for the no-interaction model. For exam-
ple, using the conditional 1 approach, the esti-
mated coefficients are −0.518, −0.459, −0.117,
−0.041, and −0.334 for strata 1 through 4 and
the no-interaction model, respectively.
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Version 1: Interaction SC Model Such differing results over the different strata
should be expected because they result from fit-
ting an interaction SC model, which by definition
allows for different regression coefficients over the
strata.

hg(t,X) = h0g(t)exp[βgtx

+γ1gnum + γ2gsize]

g = 1, 2, 3, 4

Note: subscript g allows for differ-
ent regression coefficients for each
stratum

Conditional 1 for Subject 10

id int event start stop tx num size

10 1 1 0 12 0 1 1

Conditional 2 for Subject 10
Stop = Interval Length Since
Previous Event

id int event start stop tx num size

10 1 1 0 12 0 1 1

Marginal Approach for Subject 10

id int event stime tx num size

10 1 1 12 0 1 1

Note: int = stratum #

Notice also that for stratum 1 the estimated β
and its standard error are identical (−0.518 and
0.308, resp.) for the conditional 1, conditional
2, and marginal approaches. This is as expected
because, as illustrated for subject #10 at the left,
the survival time information for first stratum is
the same for stratum 1 for the 3 SC approaches
and does not start to differ until stratum 2.

Marginal approach

start time = 0 always
stop time = stime

Subject #10: (start, stop) = (0, 12)

Although the data layout for the marginal ap-
proach does not require (start,stop) columns, the
start time for the first stratum (and all other strata)
is 0 and the stop time is given in the stime column.
In other words, for stratum 1 on subject #10, the
stop time is 0 and the start time is 12, which is the
same as for the conditional 1 and 2 data for this
subject.

Bladder Cancer Study So, based on all the information we have provided
above concerning the analysis of the bladder can-
cer study,

1. Which of the four recurrent event analysis ap-
proaches is best?

2. What do we conclude about the estimated effect
of tx controlling for num and size?

1. Which approach is best?
2. Conclusion about tx?
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Which of the 4 approaches is best?
It depends!

CP: Don’t want to distinguish
recurrent event order

Want overall effect

The answer to question 1 is probably best phrased
as, “It depends!” Nevertheless, if the investigator
does not want to distinguish between recurrent
events on the same subject and wishes an overall
conclusion about the effect of tx, then the CP ap-
proach seems quite appropriate, as for this study.

If event order important:

Choose from the 3 SC approaches.

If, however, the investigator wants to distinguish
the effects of tx according to the order that the
event occurs (i.e., by stratum #), then one of
the three SC approaches should be preferred. So,
which one?

Conditional 1: time of recurrent
event from entry
into the study

The conditional 1 approach is preferred if the
study goal is to use time of occurrence of each
recurrent event from entry into the study to assess
a subject’s risk for an event of a specific order (i.e.,
as defined by a stratum #) to occur.

Conditional 2: Use time from
previous event to
next recurrent
event

The conditional 2 approach would be preferred if
the time interval of interest is the time (reset from
0) from the previous event to the next recurrent
event rather than time from study entry until each
recurrent event.

Marginal: Consider strata as
representing different
event types

Finally, the marginal approach is recommended
if the investigator wants to consider the events
occurring at different orders as different types of
events, for example different disease conditions.

Conditional 1 versus Marginal
(subtle choice)

Recommend: Choose conditional 1
unless strata
represent different
event types

We (the authors) consider the choice between the
conditional 1 and marginal approaches to be
quite subtle. We prefer conditional 1, provided
the different strata do not clearly represent dif-
ferent event types. If, however, the strata clearly
indicate separate event processes, we would rec-
ommend the marginal approach.

What do we conclude about tx?

Conclusions based on results from
CP and conditional 1 approaches

Overall, based on the above discussion, we think
that the CP approach is an acceptable method to
use for analyzing the bladder cancer data. If we
had to choose one of the three SC approaches as
an alternative, we would choose the conditional
1 approach, particularly because the order of re-
current events that define the strata doesn’t clearly
distinguish separate disease processes.
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Table 8.13. Comparison of Results
Obtained from No-Interaction
Models Across Two Methods for
Bladder Cancer Data

Counting Conditional
process 1

Parameter −0.407 −0.334
estimate

Robust 0.2418 0.1971
standard
error

Wald 2.8338 2.8777
chi-square

p-value 0.0923 0.0898
Hazard 0.667 0.716

ratio
95% (0.414, 1.069) (0.486, 1.053)

confidence
interval

Table 8.13 summarizes the results for the CP and
conditional 1 approaches with regard to the effect
of the treatment variable (tx), adjusted for the con-
trol variables num and size. We report results only
for the no-interaction models, because the interac-
tion SC model for the conditional 1 approach was
found (using LR test) to be not significantly differ-
ent from the no-interaction model.

The results are quite similar for the two differ-
ent approaches. There appears to be a small effect
of tx on survival from bladder cancer: ĤR(CP) =
0.667 = 1/1.50, ĤR(C1) = 0.716 = 1/1.40. This
effect is borderline nonsignificant (2-sided tests):
P(CP) = .09 = P(C1). 95% confidence intervals
around the hazard ratios are quite wide, indicat-
ing an imprecise estimate of effect.

Overall, therefore, these results indicate that there
is no strong evidence that tx is effective (after
controlling for num and size) based on recurrent
event survival analyses of the bladder cancer data.

X. A Parametric Approach
Using Shared Frailty

In the previous section we compared results ob-
tained from using four analytic approaches on
the recurrent event data from the bladder cancer
study. Each of these approaches used a Cox model.
Robust standard errors were included to adjust for
the correlation among outcomes from the same
subject.

Compared 4 approaches in previous
section

� Each used a Cox model� Robust standard errors
◦ Adjusts for correlation from

same subject

We now present a parametric ap-
proach

� Weibull PH model� Gamma shared frailty
component� Bladder Cancer dataset
◦ Data layout for the counting

process approach

Can review Chapter 7
Weibull model (Section VI)
Frailty models (Section XII)

In this section we present a parametric approach
for analyzing recurrent event data that includes
a frailty component. Specifically, a Weibull PH
model with a gamma distributed shared frailty
component is shown using the Bladder Cancer
dataset. The data layout is the same as described
for the counting process approach. It is recom-
mended that the reader first review Chapter 7, par-
ticularly the sections on Weibull models (Section
VI) and frailty models (Section XII).
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Hazard conditioned on frailty αk

hk(t|α, Xjk) = αkh(t|Xjk)

where α ∼ gamma(µ = 1, var = θ)
and where h(t|Xjk) = λ j k pt p−1

(Weibull) with λ j k = exp(β0 +
β1txjk + β2numjk + β3sizejk)

We define the model in terms of the hazard of the
jth outcome occurrence for the kth subject con-
ditional on his or her frailty αk. The frailty is a
multiplicative random effect on the hazard func-
tion h(t|Xjk), assumed to follow a gamma distribu-
tion of mean 1 and variance theta θ. We assume
h(t|Xjk) follows a Weibull distribution (shown at
left).

Including shared frailty

� Accounts for unobserved factors
◦ Subject specific
◦ Source of correlation
◦ Observations clustered by

subject

The frailty is included in the model to account
for variability due to unobserved subject-specific
factors that are otherwise unaccounted for by
the other predictors in the model. These unob-
served subject-specific factors can be a source
of within-subject correlation. We use the term
shared frailty to indicate that observations are
clustered by subject and each cluster (i.e., subject)
shares the same level of frailty.

Robust standard errors

� Adjusts standard errors� Does not affect coefficient
estimates

Shared frailty

� Built into model� Can affect coefficient estimates
and their standard errors

In the previous sections, we have used robust vari-
ance estimators to adjust the standard errors of
the coefficient estimates to account for within-
subject correlation. Shared frailty is not only an
adjustment, but also is built into the model and
can have an impact on the estimated coefficients
as well as their standard errors.

Weibull regression (PH form)
Gamma shared frailty
Log likelihood = −184.73658

t Coef. Std. Err. z P > |z|

tx −.458 .268 −1.71 0.011
num .184 .072 2.55 0.327
size −.031 .091 −0.34 0.730
cons −2.952 .417 −7.07 0.000

/ln p −.119 .090 −1.33 0.184
/ln the −.725 .516 −1.40 0.160

p .888 .080
1/p 1.13 .101
theta .484 .250

Likelihood ratio test of theta = 0:
chibar(01) = 7.34
Prob >= chibar2 = 0.003

The model output (obtained using Stata version
7) is shown on the left. The inclusion of frailty in
a model (shared or unshared) leads to one addi-
tional parameter estimate in the output (theta, the
variance of the frailty). A likelihood ratio test for
theta = 0 yields a statistically significant p-value
of 0.003 (bottom of output) suggesting that the
frailty component contributes to the model and
that there is within-subject correlation.

The estimate for the Weibull shape parameter p
is 0.888 suggesting a slightly decreasing hazard
over time because p̂ < 1. However, the Wald test
for ln (p) = 0 (or equivalently p = 1) yields a non-
significant p-value of 0.184.
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Comparing Hazard Ratios An estimated hazard ratio of 0.633 for the effect
of treatment comparing two individuals with the
same level of frailty and controlling for the other
covariates is obtained by exponentiating the es-
timated coefficient (−0.458) for tx. The estimated
hazard ratio and 95% confidence intervals are sim-
ilar to the corresponding results obtained using
a counting processes approach with a Cox model
and robust standard errors (see left).

Weibull with frailty model

ĤR(tx) = exp(−0.458) = 0.633

95% CI = exp[−0.458 ± 1.96(0.268)]

= (0.374, 1.070)

Counting processes approach with
Cox model

ĤR(tx) : exp(−0.407) = 0.667

95% CI for HR tx (robust): (0.414,
1.069)

Interpretations of HR from frailty
model

� Compares 2 individuals with
same α� Compares individual with
himself
◦ What is effect if individual

had used treatment rather
than placebo?

Another interpretation for the estimated hazard
ratio from the frailty model involves the compari-
son of an individual to himself. In other words, this
hazard ratio describes the effect on an individual’s
hazard (i.e., conditional hazard) if that individual
had used the treatment rather than the placebo.

XI. A Second Example We now illustrate the analysis of recurrent event
survival data using a new example. We consider a
subset of data from the Age-Related Eye Disease
Study (AREDS), a long-term multicenter, prospec-
tive study sponsored by the U.S. National Eye In-
stitute of the clinical course of age-related mac-
ular degeneration (AMD) (see AREDS Research
Group, 2003).

Age-Related Eye Disease
Study (AREDS)

Outcome

Age-related macular degeneration
(AMD)

Clinical trial
Evaluate effect of treatment with
high doses of antioxidants and zinc
on progression of AMD

n = 43 (subset of data analyzed
here)

In addition to collecting natural history data,
AREDS included a clinical trial to evaluate the
effect of high doses of antioxidants and zinc on
the progression of AMD. The data subset we con-
sider consists of 43 patients who experienced
ocular events while followed for their baseline
condition, macular degeneration.
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Exposure

tx = 1 if treatment, 0 if placebo

8 years of follow-up

The exposure variable of interest was treatment
group (tx), which was coded as 1 for patients ran-
domly allocated to an oral combination of antiox-
idants, zinc, and vitamin C versus 0 for patients
allocated to a placebo. Patients were followed for
eight years.

Two possible events

First event: visual acuity score <50
(i.e., poor vision)

Each patient could possibly experience two events.
The first event was defined as the sudden decrease
in visual acuity score below 50 measured at sched-
uled appointment times. Visual acuity score was
defined as the number of letters read on a stan-
dardized visual acuity chart at a distance of 4 me-
ters, where the higher the score, the better the
vision.

Second event: clinically advanced
severe stage of macular degenera-
tion

The second event was considered a successive
stage of the first event and defined as a clinically
advanced and severe stage of macular degenera-
tion. Thus, the subject had to experience the first
event before he or she could experience the second
event.

4 approaches for analyzing recur-
rent event survival data carried out
on macular degeneration data

Each model contains tx, age, and
sex.

We now describe the results of using the four ap-
proaches for analyzing recurrent event survival
with these data. In each analysis, two covariates
age and sex were controlled, so that each model
contained the variables tx, age, and sex.

CP model

h(t,X) = h0(t)exp[β tx + γ1 age
+γ2 sex]

No-interaction SC model

hg(t,X) = h0g(t)exp[β tx + γ1 age
+γ2 sex]

where g = 1, 2

Interaction SC model:

hg(t,X) = h0g(t)exp[βg tx + γ1g age

+γ2g sex]

where g = 1, 2

The counting process (CP) model is shown here at
the left together with both the no-interaction and
interaction SC models used for the three stratified
Cox (SC) approaches.
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Table 8.14. Comparison of
Parameter Estimates and Robust
Standard Errors for Treatment
Variable (tx) Controlling for Age
and Sex (Macular Degeneration
Data)

“No-
“Interaction” Cox interaction”
stratified model SC model

Model Stratum 1 Stratum 2
β̂1 β̂2 β̂

(SE) (SE) (SE)
Counting n/a n/a −0.174

process (0.104)
Cond 1 −0.055 −0.955 −0.306

(0.286) (0.443) (0.253)
Cond 2 −0.055 −1.185 −0.339

(0.286) (0.555) (0.245)
Marginal −0.055 −0.861 −0.299

(0.286) (0.465) (0.290)

In Table 8.14, we compare the coefficient estimates
and their robust standard errors for the treatment
variable (tx) from all four approaches. This table
shows results for both the “interaction” and “no-
interaction” stratified Cox models for the three
approaches other than the counting process ap-
proach.

Notice that the estimated coefficients for β1 and
their corresponding standard errors are identical
for the three SC approaches. This will always be
the case for the first stratum regardless of the data
set being considered.

The estimated coefficients for β2 are, as expected,
somewhat different for the three SC approaches.
We return to these results shortly.

Interaction SC models are preferred
(based on LR test results) to use of
no-interaction SC model

LR tests for comparing the “no-interaction” with
the “interaction” SC models were significant (P <

.0001) for all three SC approaches (details not
shown), indicating that an interaction model was
more appropriate than a no-interaction model for
each approach.
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Table 8.15. Comparison of Results
for the Treatment Variable (tx)
Obtained for Conditional 1 and
Marginal Approaches (Macular
Degeneration Data)

Cond 1 Marginal

Estimate β̂1 −0.0555 −0.0555
β̂2 −0.9551 −0.8615
β̂ −0.306 −0.2989

------------------------------------------------------------------------------
Robust SE(β̂1) 0.2857 0.2857

std. SE(β̂2) 0.4434 0.4653
error SE(β̂) 0.2534 0.2902

------------------------------------------------------------------------------
Wald H0:β1 = 0 0.0378 0.0378

chi- H0:β2 = 0 4.6395 3.4281
square H0:β = 0 1.4569 1.0609

------------------------------------------------------------------------------
P-value H0:β1 = 0 0.8458 0.8478

H0:β2 = 0 0.0312 0.0641
H0:β = 0 0.2274 0.3030

------------------------------------------------------------------------------
Hazard exp(β̂1) 0.946 0.946

ratio exp(β̂2) 0.385 0.423
exp(β̂) 0.736 0.742

------------------------------------------------------------------------------
95% Conf. exp(β̂1) (0.540, 1.656) (0.540, 1.656)

interval exp(β̂2) (0.161, 0.918) (0.170, 1.052)
exp(β̂) (0.448, 1.210) (0.420, 1.310)

In Table 8.15, we summarize the statistical infer-
ence results for the effect of the treatment vari-
able (tx) for the conditional 1 and marginal ap-
proaches only.

We have not included the CP results here because
the two events being considered are of very dif-
ferent types, particularly regarding severity of ill-
ness, whereas the CP approach treats both events
as identical replications. We have not considered
the conditional 2 approach because the investi-
gators were more likely interested in survival time
from baseline entry into the study than the sur-
vival time “gap” from the first to second event.

Because we previously pointed out that the inter-
action SC model was found to be significant when
compared to the corresponding no-interaction SC
model, we focus here on the treatment (tx) effect
for each stratum (i.e., event) separately.

Based on the Wald statistics and corresponding
P-values for testing the effect of the treatment on
survival to the first event (i.e., H0: β1 = 0), both the
conditional 1 and marginal approaches give the
identical result that the estimated treatment effect
(ĤR = 0.946 = 1/1.06) is neither meaningful nor
significant (P = 0.85).

For the second event, indicating a clinically severe
stage of macular degeneration, the Wald statistic
P-value for the conditional 1 approach is 0.03,
which is significant at the .05 level, whereas the
corresponding P-value for the marginal approach
is 0.06, borderline nonsignificant at the .05 level.

The estimated HR for the effect of the treatment
is ĤR = 0.385 = 1/2.60 using the conditional 1
approach and its 95% confidence interval is quite
wide but does not contain the null value of 1.
For the marginal approach, the estimated HR
is ĤR = 0.423 = 1/2.36, also with a wide confi-
dence interval, but includes 1.
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Conclusions regarding 1st event:

� No treatment effect� Same for conditional 1 and
marginal approaches

Thus, based on the above results, there appears to
be no effect of treating patients with high doses
of antioxidants and zinc on reducing visual acu-
ity score below 50 (i.e., the first event) based on
either conditional 1 or marginal approaches to
the analysis.

Conclusions regarding 2nd event:

� Clinically moderate and
statistically significant
treatment effect� Similar for conditional 1 and
marginal approaches, but more
support from conditional 1
approach

However, there is evidence of a clinically moder-
ate and statistically significant effect of the treat-
ment on protection (i.e., not failing) from the
second more severe event of macular degenera-
tion. This conclusion is more supported from the
conditional 1 analysis than from the marginal
analysis.

Comparison of conditional 1 with
marginal Approach

What if results had been different?

Despite similar conclusions from both ap-
proaches, it still remains to compare the two ap-
proaches for these data. In fact, if the results from
each approach had been very different, it would
be important to make a choice between these ap-
proaches.

Recommend conditional 1 if

Can assume 2nd event cannot occur
without 1st event previously
occurring

⇓
Should consider survival time to

2nd event conditional on
experiencing 1st event

Nevertheless, we authors find it difficult to make
such a decision, even for this example. The con-
ditional 1 approach would seem appropriate if
the investigators assumed that the second event
cannot occur without the first event previously oc-
curring. If so, it would be important to consider
survival time to the second event only for (i.e., con-
ditional on) those subjects who experience a first
event.

Recommend marginal if

Can assume each subject at risk for
2nd event whether or not 1st
event previously occurred

⇓
2nd event considered a separate

event, that is, unconditional of
the 1st event

⇓
Should consider survival times to

2nd event for all subjects

On the other hand, the marginal approach would
seem appropriate if each subject is considered to
be at risk for the second event whether or not
the subject experiences the first event. The second
event is therefore considered separate from (i.e.,
unconditional of) the first event, so that survival
times to the second event need to be included for
all subjects, as in the marginal approach.
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Macular degeneration data: recom-
mend marginal approach

In general: carefully consider inter-
pretation of each approach

For the macular degeneration data example, we
find the marginal approach persuasive. However,
in general, the choice among all four approaches
is not often clear-cut and requires careful consid-
eration of the different interpretations that can be
drawn from each approach.

XII. Survival Curves with
Recurrent Events

Goal: Plot and Interpret
Survival Curves

An important goal of most survival analyses,
whether or not a regression model (e.g., Cox PH)
is involved, is to plot and interpret/compare sur-
vival curves for different groups. We have previ-
ously described the Kaplan–Meier (KM) approach
for plotting empirical survival curves (Chapter 2)
and we have also described how to obtain adjusted
survival curves for Cox PH models (Chapters 3
and 4).

Types of survival curves:

KM (empirical): Chapter 2
Adjusted (Cox PH): Chapters 3 and 4

Previously: 1 (nonrecurrent) event
Now:
Survival plots with recurrent
events?

This previous discussion only considered survival
data for the occurrence of one (nonrecurrent)
event. So, how does one obtain survival plots when
there are recurrent events?

Focus on one ordered event at a time

S1(t) : 1st event
S2(t) : 2nd event

· · ·
Sk(t) : kth event

The answer is that survival plots with recurrent
events only make sense when the focus is on one
ordered event at a time. That is, we can plot a sur-
vival curve for survival to a first event, survival
to a second event, and so on.

Survival to a 1st event

S1(t) = Pr(T1 > t)

where
T1 = survival time up to

occurrence of 1st event
(ignores later recurrent events)

For survival to a first event, the survival curve
describes the probability that a subject’s time to
occurrence of a first event will exceed a specified
time. Such a plot essentially ignores any recurrent
events that a subject may have after a first event.
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Survival to a 2nd event

S2(t) = Pr(T2 > t)

where
T2 = survival time up to

occurrence of 2nd event

Two versions

Conditional:
T2c = time from 1st event to 2nd

event, restricting data to 1st
event subjects

Marginal:
T2m = time from study entry to 2nd

event, ignoring 1st event

For survival to a second event, the survival curve
describes the probability that a subject’s time to
occurrence of a second event will exceed a speci-
fied time.

There are two possible versions for such a plot.

Conditional: use survival time from time of first
event until occurrence of second event, thus
restricting the dataset to only those subjects
who experienced a first event.

Marginal: use survival time from study entry to
occurrence of second event, ignoring whether a
first event occurred.

Survival to a kth event (k ≥ 2)

Sk(t) = Pr(Tk > t)

where
Tk = survival time up to

occurrence of kth event

Similarly, for survival to the kth event, the sur-
vival curve describes the probability that a sub-
ject’s time to occurrence of the kth event will ex-
ceed a specified time.

Two versions

Conditional:
Tkc = time from the k − 1st to kth

event, restricting data to
subjects with k − 1 events

Marginal:
Tkm = time from study entry to kth

event, ignoring previous
events

As with survival to the second event, there are two
possible versions, conditional or marginal, for
such a plot, as shown on the left.

EXAMPLE

Days

ID Status Stratum Start Stop tx

M 1 11
M 2 11

H 1 01

H 2 01

P 1 01

P 2 01
P 3

0
100

0

30

0

20
60

100
105

30

50

20

60
85 01

We now illustrate such survival plots for recurrent
event data by returning to the small dataset previ-
ously described for three subjects Molly (M), Holly
(H), and Polly (P), shown again on the left.
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Deriving S1(t) : Stratum 1

t(j) nj mj qj R(t(j)} S1(t(j))

0 3 0 0 {M, H, P} 1.00
20 3 1 0 {M, H, P} 0.67
30 2 1 0 {M, H} 0.33

100 1 1 0 {M} 0.00

The survival plot for survival to the first event S1(t)
is derived from the stratum 1 data layout for any
of the three alternative SC analysis approaches.
Recall that mj and qj denote the number of fail-
ures and censored observations at time t(j). The
survival probabilities in the last column use the
KM product limit formula.

Deriving S2c(t): Stratum 2
(Conditional)

t(j) nj mj qj R(t(j)} S2c(t(j))

0 3 0 0 {M, H, P} 1.00
5 3 1 0 {M, H, P} 0.67

20 2 1 0 {M, P} 0.33
450 1 1 0 {M} 0.00

The conditional survival plot for survival to the
second event is derived from the stratum 2 data
layout for the conditional 2 approach. We denote
this survival curve as S2c(t). Notice that the sur-
vival probabilities here are identical to those in
the previous table; however, the failure times t(j)
in each table are different.

Deriving S2m(t): Stratum 2
(Marginal)

t(j) nj mj qj R(t(j)} S2m(t(j))

0 3 0 0 {M, H, P} 1.00
20 3 1 0 {M, H, P} 0.67
30 2 1 0 {H, P} 0.33

100 1 1 0 {P} 0.00

The marginal survival plot for survival to the sec-
ond event is derived from the stratum 2 data layout
for the marginal approach. We denote this sur-
vival curve as S2m(t). Again, the last column here
is identical to those in the previous two tables, but,
once again, the failure times t(j) in each table are
different.

Survival Plots for Molly, Holly
and Polly Recurrent Event
Data (n = 3)

1.0

.8

.6

.4

.2

20 40 60 80 100

Figure 8.1. S1(t): Survival to 1st Event

The survival plots that correspond to the above
three data layouts are shown in Figures 8.1 to 8.3.

Figure 8.1 shows survival probabilities for the first
event, ignoring later events. The risk set at time
zero contains all three subjects. The plot drops
from S1(t) = 1 to S1(t) = 0.67 at t = 20, drops
again to S1(t) = 0.33 at t = 30 and falls to S1(t) =
0 at t = 100 when the latest first event occurs.
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1.0
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Figure 8.2. S2c(t): Survival to 2nd
Event (Conditional)

Figure 8.2 shows conditional survival probabili-
ties for the second event using survival time from
the first event to the second event. Because all
three subjects had a first event, the risk set at time
zero once again contains all three subjects. Also,
the survival probabilities of 1, 0.67, 0.33, and 0 are
the same as in Figure 8.1. Nevertheless, this plot
differs from the previous plot because the survival
probabilities are plotted at different survival times
(t = 5, 20, 40 in Figure 8.2 instead of t = 20, 30,
100 in Figure 8.1)

1.0

.8

.6

.4

.2

20 40 60 80 100

Figure 8.3. S2m(t): Survival to 2nd
Event (Marginal)

Figure 8.3 shows marginal survival probabilities
for the second event using survival time from
study entry to the second event, ignoring the
first event. The survival probabilities of 1, 0.67,
0.33, and 0 are once again the same as in Figures
8.1 and 8.2. Nevertheless, this plot differs from the
previous two plots because the survival probabili-
ties are plotted at different survival times (t = 50,
60, 105 in Figure 8.3).

XIII. Summary

4 approaches for recurrent event
data
Counting process (CP),
conditional 1, conditional 2
marginal

The 4 approaches

� Differ in how risk set is
determined� Differ in data layout� All involve standard Cox model
program� Latter 3 approaches use a SC
model

We have described four approaches for analyzing
recurrent event survival data.

These approaches differ in how the risk set is deter-
mined and in data layout. All four approaches in-
volve using a standard computer program that fits
a Cox PH model, with the latter three approaches
requiring a stratified Cox model, stratified by the
different events that occur.

Identical recurrent events
⇓

CP approach

The approach to analysis typically used when re-
current events are treated as identical is called the
CP Approach.
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Recurrent events: different disease
categories or event order important

⇓
Stratified Cox (SC) approaches

When recurrent events involve different disease
categories and/or the order of events is considered
important, the analysis requires choosing among
the three alternative SC approaches.

CP approach: Start and Stop times

Standard layout: only Stop (sur-
vival) times (no recurrent events)

The data layout for the counting process approach
requires each subject to have a line of data for each
recurrent event and lists the start time and stop
time of the interval of follow-up. This contrasts
with the standard layout for data with no recurrent
events, which lists only the stop (survival) time on
a single line of data for each subject.

Conditional 1: same Start and Stop
Times as CP, but
uses SC model

The conditional 1 approach uses the exact same
(start, stop) data layout format used for the CP ap-
proach, except that for conditional 1, the model
used is a SC PH model rather than an unstratified
PH model.

Conditional 2: Start and Stop
Times

Start = 0 always
Stop = time since

previous
event

SC model

The conditional 2 approach also uses a (start,
stop) data layout, but the start value is always 0
and the stop value is the time interval length since
the previous event. The model here is also a SC
model.

Marginal approach:

Standard layout (nonrecurrent
event), that is, without (Start,
Stop) columns

Each failure is a separate process

The marginal approach uses the standard (non-
recurrent event) data layout instead of the (start,
stop) layout. The basic idea behind the marginal
approach is that it allows each failure to be con-
sidered as a separate process.

Recommend using robust estima-
tion to adjust for correlation of ob-
servations on the same subject.

For each of the SC alternative approaches, as for
the CP approach, it is recommended to use ro-
bust estimation to adjust the variances of the es-
timated regression coefficients for the correlation
of observations on the same subject.

Application 1: Bladder Cancer
study

n = 86
64 months of follow-

up

We considered two applications of the different
approaches described above. First, we compared
results from using all four methods to analyze
data from a study of bladder cancer involving 86
patients, each followed for a variable time up to
64 months.
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Repeated event: recurrence of
bladder cancer
tumor; up to
4 events

The repeated event analyzed was the recurrence of
a bladder cancer tumor after transurethral surgi-
cal excision. Each recurrence of new tumors was
treated by removal at each examination. About
25% of the 86 subjects experienced four events.

tx = 1 if thiotepa, 0 if placebo
num = initial # of tumors
size = initial size of tumors

The exposure variable of interest was drug treat-
ment status (tx, 0 = placebo, 1 = treatment with
thiotepa), There were two covariates: initial num-
ber of tumors (num) and initial size of tumors
(size).

CP results: no strong evidence for tx
(HR = 0.67, P = .09, 95% CI: 0.414,
1.069)

Results for the CP approach, which was consid-
ered appropriate for these data, indicated that
there was no strong evidence that tx is effective
after controlling for num and size (HR = 0.67,
P = .09, 95% CI: 0.414, 1.069)

Alternative parametric approach

� Weibull PH model� Gamma shared frailty
component� Bladder cancer dataset� Similar HR and confidence
interval as for counting process
approach

An alternative approach for analyzing recurrent
event data was also described using a parametric
model containing a frailty component (see Chap-
ter 7). Specifically, a Weibull PH model with a
gamma distributed frailty was fit using the blad-
der cancer dataset. The resulting estimated HR
and confidence interval were quite similar to the
counting process results.

Application 2: Clinical trial

n = 43
8 years of follow-up
High doses of antioxidants and zinc
Age-related macular degeneration

The second application considered a subset of data
(n = 43) from a clinical trial to evaluate the ef-
fect of high doses of antioxidants and zinc on the
progression of age-related macular degeneration
(AMD). Patients were followed for eight years.

Exposure: tx = 1 if treatment, 0 if
placebo

Covariates: age, sex

The exposure variable of interest was treatment
group (tx). Covariates considered were age and
sex.

Two possible events:

1st event: visual acuity score <50
(i.e., poor vision)

2nd event: clinically advanced
severe stage of macular
degeneration

Each patient could possibly experience two events.
The first event was defined as the sudden decrease
in visual acuity score below 50. The second event
was considered a successive stage of the first event
and defined as a clinically advanced and severe
stage of macular degeneration.
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Focus on conditional 1 vs.
marginal (events were of different
types)

Because the two events were of very different types
and because survival from baseline was of primary
interest, we focused on the results for the condi-
tional 1 and marginal approaches only.

Interaction SC model ✓
No-interaction SC model ×

An interaction SC model was more appropriate
than a no-interaction model for each approach,
thus requiring separate results for the two events
under study.

Conclusions regarding 1st event

� No treatment effect� Same for conditional 1 and
marginal approaches

The results for the first event indicated no effect
of the treatment on reducing visual acuity score
below 50 (i.e., the first event) from either condi-
tional 1 or marginal approaches to the analysis.

Conclusions regarding 2nd event

� Clinically moderate and
statistically significant
treatment effect

However, there was evidence of a clinically moder-
ate and statistically significant effect of the treat-
ment on the second more severe event of macular
degeneration.

Macular degeneration data: prefer
marginal approach (but not clear-
cut)

The choice between the conditional 1 and
marginal approaches for these data was not clear-
cut, although the Marginal approach was perhaps
more appropriate because the two events were of
very different types.

In general: carefully consider inter-
pretation of each approach

In general, however, the choice among all four ap-
proaches requires careful consideration of the dif-
ferent interpretations that can be drawn from each
approach.

Survival plots: one ordered event at
a time Two versions for survival to
kth event:
Conditional: only subjects with k −

1 events
Marginal: ignores previous events

Survival plots with recurrent events are derived
one ordered event at a time. For plotting survival
to a kth event where k ≥ 2, one can use either
a conditional or marginal plot, which typically
differ.
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Detailed
Outline

I. Overview (page 334)
A. Focus: outcome events that may occur more than

once over the follow-up time for a given subject,
that is, “recurrent events.”

B. Counting Process (CP) approach uses the Cox PH
model.

C. Alternative approaches that use a Stratified Cox
(SC) PH model.

II. Examples of Recurrent Event Data (pages 334–336)
A. 1. Multiple relapses from remission: leukemia

patients.
2. Repeated heart attacks: coronary patients.
3. Recurrence of tumors: bladder cancer patients.
4. Deteriorating episodes of visual acuity: macular

degeneration patients.
B. Objective of each example: to assess relationship

of predictors to rate of occurrence, allowing for
multiple events per subject.

C. Different analysis required depending on whether:
1. Recurrent events are treated as identical

(counting process approach), or
2. Recurrent events involve different disease

categories and/or the order of events is
important (stratified Cox approaches).

III. Counting Process Example (pages 336–337)
A. Data on two hypothetical subjects from a

randomized trial that compares two treatments for
bladder cancer tumors.

B. Data set-up for Counting Process (CP) approach:
1. Each subject contributes a line of data for each

time interval corresponding to each recurrent
event and any additional event-free follow-up
interval.

2. Each line of data for a given subject lists the
start time and stop time for each interval of
follow-up.
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IV. General Data Layout for Counting Process
Approach (pages 338–339)
A. ri time intervals for subject i.

δij event status (0 or 1) for subject i in interval j.
tij0 start time for subject i in interval j.
tij1 stop time for subject i in interval j.
Xijk value of kth predictor for subject i in
interval j.
i = 1, 2,. . ., N; j = 1, 2,. . ., ni; k = 1, 2,. . ., p.

B. Layout for subject i:

i j δij tij0 tij1 Xij1 . . . Xijp

i 1 δi1 ti10 ti11 X111 . . . Xi1p
i 2 δi2 ti20 ti21 X121 . . . Xi2p
· · · · · · ·
· · · · · · ·
· · · · · · ·
i ri δiri tiri0 tiri1 Xiri1 . . . Xirip

C. Bladder Cancer Study example:
1. Data layout provided for the first 26 subjects

(86 subjects total) from a 64-month study of
recurrent bladder cancer tumors.

2. The exposure variable: drug treatment status
(tx, 0 = placebo, 1 = treatment with thiotepa).

3. Covariates: initial number of tumors (num) and
initial size of tumors (size).

4. Up to 4 events per subject.
V. The Counting Process Model and Method

(pages 340–344)
A. The model typically used to carry out the

Counting Process (CP) approach is the standard
Cox PH model: h(t, X) = h0(t) exp[�βiXi].

B. For recurrent event survival data, the (partial)
likelihood function is formed differently than for
nonrecurrent event survival data:
1. A subject who continues to be followed after

having failed at t(j) does not drop out of the risk
set after t(j) and remains in the risk set until his
or her last interval of follow-up, after which the
subject is removed from the risk set.

2. Different lines of data contributed by the same
subject are treated in the analysis as if they were
independent contributions from different
subjects.
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C. For the bladder cancer data, the Cox PH Model for
CP approach is given by

h(t, X) = h0(t)exp[β tx + γ1 num + γ2 size].

D. The overall partial likelihood L from using the CP
approach will be automatically determined by the
computer program used once the data layout is in
the correct CP form and the program code used
involves the (start, stop) formulation.

VI. Robust Estimation (pages 344–346)
A. In the CP approach, the different intervals

contributed by a given subject represent correlated
observations on the same subject that must be
accounted for in the analysis.

B. A widely used technique for adjusting for the
correlation among outcomes on the same subject
is called robust estimation.

C. The goal of robust estimation for the CP
approach is to obtain variance estimators that
adjust for correlation within subjects when
previously no such correlation was assumed.

D. The robust estimator of the variance of an
estimated regression coefficient allows tests of
hypotheses and confidence interval estimation
about model parameters to account for correlation
within subjects.

E. The general form of the robust estimator can be
most conveniently written in matrix notation; this
formula is incorporated into the computer
program and is automatically calculated by the
program with appropriate coding.

VII. Results for CP Example (pages 346–347)
A. Edited output is provided from fitting the

no-interaction Cox PH model involving the three
predictors tx, num, and size.

B. A likelihood ratio chunk test for interaction terms
tx × num and tx × size was nonsignificant.

C. The PH assumption was assumed satisfied for all
three variables.

D. The robust estimator of 0.2418 for the standard
deviation of tx was similar though somewhat
different from the corresponding nonrobust
estimator of 0.2001.

E. There was not strong evidence that tx is effective
after controlling for num and size (HR = 0.67,
two-sided P = .09, 95% CI: 0.414, 1.069).
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F. However, for a one-sided alternative, the P-values
using both robust and nonrobust standard errors
were significant at the .05 level.

G. The 95% confidence interval using the robust
variance estimator is quite wide.

VIII. Other Approaches—Stratified Cox (pages 347–353)
A. The “strata” variable for each of the three SC

approaches treats the time interval number for
each event occurring on a given subject as a
stratified variable.

B. Three alternative approaches involving SC models
need to be considered if the investigator wants to
distinguish the order in which recurrent events
occur.

C. These approaches all differ from what is called
competing risk survival analysis in that the latter
allows each subject to experience only one of
several different types of events over follow-up.

D. Conditional 1 approach:
1. Same Start and Stop Times as CP.
2. SC model.

E. Conditional 2 approach:
1. Start and Stop Times, but Start = 0 always and

Stop = time since previous event.
2. SC model.

F. Marginal approach:
1. Uses standard layout (nonrecurrent event); no

(Start, Stop) columns.
2. Treats each failure is a separate process.
3. Each subject at risk for all failures that might

occur, so that # actual failures < # possible
failures.

4. SC model.
G. Must decide between two types of SC models:

1. No-interaction SC versus interaction SC.
2. Bladder cancer example:

No-interaction model: hg(t,X) =
h0g(t)exp[β tx + γ1 num + γ2 size]. where g =
1, 2, 3, 4.
Interaction model: hg(t,X) = h0g(t)exp[βgtx
+ γ1gnum + γ2gsize]. where g = 1, 2, 3, 4.

H. Recommend using robust estimation to adjust for
correlation of observations on the same subject.
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IX. Bladder Cancer Study Example (Continued)
(pages 353–357)
A. Results from using all four methods—CP,

conditional 1, conditional 2, and marginal—on
the bladder cancer data were compared.

B. The hazard ratio for the effect of tx based on a
no-interaction model differed somewhat for each
of the four approaches, with the marginal model
being most different:

M: 0.560 CP: 0.666 C1: 0.716 C2: 0.763

C. The nonrobust and robust standard errors and
P-values differed to some extent for each of the
different approaches.

D. Using an interaction SC model, the estimated βs
and corresponding standard errors are different
over the four strata (i.e., four events) for each
model separately.

E. The estimated β’s and corresponding standard
errors for the three alternative SC models are
identical, as expected (always for first events).

F. Which of the four recurrent event analysis
approaches is best?
1. Recommend CP approach if do not want to

distinguish between recurrent events on the
same subject and desire overall conclusion
about the effect of tx.

2. Recommend one of the three SC approaches if
want to distinguish the effect of tx according to
the order in which the event occurs.

3. The choice between the conditional 1 and
marginal is difficult, but prefer conditional 1
because the strata do not clearly represent
different event types.

G. Overall, regardless of the approach used, there was
no strong evidence that tx is effective after
controlling for num and size.

X. A Parametric Approach Using Shared Frailty
(pages 357–359)
A. Alternative approach using a parametric model

containing a frailty component (see Chapter 7).
B. Weibull PH model with a gamma distributed

frailty was fit using the bladder cancer dataset.
C. Estimated HR and confidence interval were quite

similar to the counting process results.
D. Estimated frailty component was significant

(P = 0.003).
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XI. A Second Example (pages 359–364)
A. Clinical trial (n = 43, 8-year study) on effect of

using high doses of antioxidants and zinc (i.e.,
tx = 1 if yes, 0 if no) to prevent age-related
macular degeneration.

B. Covariates: age and sex.
C. Two possible events:

1. First event: visual acuity score <50 (i.e., poor
vision).

2. Second event: clinically advanced stage of
macular degeneration.

D. Focus on conditional 1 vs. marginal because
events are of different types.

E. Interaction SC model significant when compared
to no-interaction SC model.

F. Conclusions regarding 1st event:
1. No treatment effect (HR = 0.946, P = 0.85).
2. Same for conditional 1 and marginal

approaches.
G. Conclusions regarding 2nd event:

1. Conditional 1: HR = .385 = 1/2.60, two-sided
P = .03.

2. Marginal: HR = .423 = 1/2.36, two-sided
P = .06).

3. Overall, clinically moderate and statistically
significant treatment effect.

H. Marginal approach preferred because 1st and 2nd
events are different types.

XII. Survival Curves with Recurrent Events
(pages 364–367)
A. Survival plots with recurrent events only make

sense when the focus is on one ordered event at a
time.

B. For survival from a 1st event, the survival curve is
given by S1(t) = Pr (T1 > t) where T1 = survival
time up to occurrence of the 1st event (ignores
later recurrent events).

C. For survival from the kth event, the survival curve
is given by Sk(t) = Pr (Tk > t) where Tk = survival
time up to occurrence of the kth event).
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D. Two versions for Sk(t):
i. Skc(t) conditional: Tkc = time from the k − 1st

to kth event, restricting data to subjects with
k − 1 events.

ii. Skm(t) marginal: Tkm = time from study entry
to kth event, ignoring previous events.

E. Illustration of survival plots for recurrent event
data using a small dataset involving three subjects
Molly (M), Holly (H), and Polly (P).

XIII. Summary (pages 367–370)
A. Four approaches for analyzing recurrent event

survival data: the counting process (CP),
conditional 1, conditional 2, and marginal
approaches.

B. Data layouts differ for each approach.
C. CP approach uses Cox PH model; other

approaches use Cox SC model.
D. Choice of approach depends in general on carefully

considering the interpretation of each approach.
E. Should use robust estimation to adjust for

correlation of observations on the same subject.

Practice
Exercises

Answer questions 1 to 15 as true or false (circle T or F).

T F 1. A recurrent event is an event (i.e., failure) that
can occur more than once over the follow-up on
a given subject.

T F 2. The Counting Process (CP) approach is appro-
priate if a given subject can experience more than
one different type of event over follow-up.

T F 3. In the data layout for the CP approach, a subject
who has additional follow-up time after having
failed at time t(j) does not drop out of the risk set
after t(j).

T F 4. The CP approach requires the use of a stratified
Cox (SC) PH model.

T F 5. Using the CP approach, if exactly two subjects fail
at month t(j) = 10, but both these subjects have
later recurrent events, then the number in the risk
set at the next ordered failure time does not de-
crease because of these two failures.



378 8. Recurrent Event Survival Analysis

T F 6. The goal of robust estimation for the CP
approach is to adjust estimated regression coef-
ficients to account for the correlation of obser-
vations within subjects when previously no such
correlation was assumed.

T F 7. Robust estimation is recommended for the CP
approach but not for the alternative SC ap-
proaches for analyzing recurrent event survival
data.

T F 8. The P-value obtained from using a robust stan-
dard error will always be larger than the corre-
sponding P-value from using a nonrobust stan-
dard error.

T F 9. The marginal approach uses the exact same
(start, stop) data layout format used for the CP
approach, except that for the marginal approach,
the model used is a stratified Cox PH model
variable rather than a standard (unstratified) PH
model.

T F 10. Supppose the maximum number of failures oc-
curring for a given subject is five in a dataset to
be analyzed using the marginal approach. Then a
subject who failed only twice will contribute five
lines of data corresponding to his or her two fail-
ures and the three additional failures that could
have possibly occurred for this subject.

T F 11. Suppose the maximum number of failures occur-
ring for a given subject is five in a dataset to
be analyzed using the conditional 1 approach.
Then an interaction SC model used to carry
out this analysis will have the following gen-
eral model form: hg(t, X) = h0g(t) exp[β1gX1 +
β2gX2 + · · · + βpgXp], g = 1,2,3,4,5.

T F 12. Suppose a no-interaction SC model using the con-
ditional 1 approach is found (using a likelihood
ratio test) not statistically different from a corre-
sponding interaction SC model. Then if the no-
interaction model is used, it will not be possible
to separate out the effects of predictors within
each stratum representing the recurring events on
a given subject.

T F 13. In choosing between the conditional 1 and the
marginal approaches, the marginal approach
would be preferred provided the different strata
clearly represent different event types.
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T F 14. When using an interaction SC model to analyze
recurrent event data, the estimated regression
coefficients and corresponding standard errors
for the first stratum always will be identical for
the conditional 1, conditional 2, and marginal
approaches.

T F 15. The choice among the CP, conditional 1, condi-
tional 2, and marginal approaches depends upon
whether a no-interaction SC or an interaction SC
model is more appropriate for one’s data.

16. Suppose that Allie (A), Sally (S), and Callie (C) are the
only three subjects in the dataset shown below. All three
subjects have two recurrent events that occur at different
times.

ID Status Stratum Start Stop tx

A 1 1 0 70 1
A 1 2 70 90 1
S 1 1 0 20 0
S 1 2 20 30 0
C 1 1 0 10 1
C 1 2 10 40 1

Fill in the following data layout describing survival
(in weeks) to the first event (stratum 1). Recall that
mj and qj denote the number of failures and censored
observations at time t(j). The survival probabilities in the
last column use the KM product limit formula.

t(j) nj mj qj R(t(j)) S1(t(j))

0 3 0 0 {A, S, C} 1.00
10

17. Plot the survival curve that corresponds to the data layout
obtained for Question 16.

1.0
.8
.6
.4
.2

20 40 60 80 100
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18. Fill in the following data layout describing survival
(in weeks) from the first to second event using the
conditional approach:

t(j) nj mj qj R(t(j)) S1(t(j))

0 3 0 0 {A, S, C} 1.00
10

19. Plot the survival curve that corresponds to the data layout
obtained for Question 18.

1.0
.8
.6
.4
.2

20 40 60 80 100

20. Fill in the following data layout describing survival
(in weeks) to the second event using the marginal
approach:

t(j) nj mj qj R(t(j)) S1(t(j))

0 3 0 0 {A, S, C} 1.00
30

21. Plot the survival curve that corresponds to the data layout
obtained for Question 20.

1.0
.8
.6
.4
.2

20 40 60 80 100

22. To what extent do the three plots obtained in Questions
17, 19, and 21 differ? Explain briefly.
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Test The dataset shown below in the counting process layout
comes from a clinical trial involving 36 heart attack patients
between 40 and 50 years of age with implanted defibrillators
who were randomized to one of two treatment groups
(tx, = 1 if treatment A, = 0 if treatment B) to reduce their
risk for future heart attacks over a four-month period. The
event of interest was experiencing a “high energy shock”
from the defibrillator. The outcome is time (in days) until an
event occurs. The covariate of interest was Smoking History
(1 = ever smoked, 0 = never smoked). Questions about the
analysis of this dataset follow.

Col 1 = id, Col 2 = event, Col 3 = start, Col 4 = stop,
Col 5 = tx, Col 6 = smoking

01 1 0 39 0 0 12 1 0 39 0 1
01 1 39 66 0 0 12 1 39 80 0 1
01 1 66 97 0 0 12 0 80 107 0 1
02 1 0 34 0 1 13 1 0 36 0 1
02 1 34 65 0 1 13 1 36 64 0 1
02 1 65 100 0 1 13 1 64 95 0 1
03 1 0 36 0 0 14 1 0 46 0 1
03 1 36 67 0 0 14 1 46 77 0 1
03 1 67 96 0 0 14 0 77 111 0 1
04 1 0 40 0 0 15 1 0 61 0 1
04 1 40 80 0 0 15 1 61 79 0 1
04 0 80 111 0 0 15 0 79 111 0 1
05 1 0 45 0 0 16 1 0 57 0 1
05 1 45 68 0 0 16 0 57 79 0 1
05 . 68 . 0 0 16 . 79 . 0 1
06 1 0 33 0 1 17 1 0 37 0 1
06 1 33 66 0 1 17 1 37 76 0 1
06 1 66 96 0 1 17 0 76 113 0 1
07 1 0 34 0 1 18 1 0 58 0 1
07 1 34 67 0 1 18 1 58 67 0 1
07 1 67 93 0 1 18 0 67 109 0 1
08 1 0 39 0 1 19 1 0 58 1 1
08 1 39 72 0 1 19 1 58 63 1 1
08 1 72 102 0 1 19 1 63 106 1 1
09 1 0 39 0 1 20 1 0 45 1 0
09 1 39 79 0 1 20 1 45 72 1 0
09 0 79 109 0 1 20 1 72 106 1 0
10 1 0 36 0 0 21 1 0 48 1 0
10 1 36 65 0 0 21 1 48 81 1 0
10 1 65 96 0 0 21 1 81 112 1 0
11 1 0 39 0 0 22 1 0 38 1 1
11 1 39 78 0 0 22 1 38 64 1 1
11 1 78 108 0 0 22 1 64 97 1 1
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23 1 0 51 1 1 30 1 0 57 1 0
23 1 51 69 1 1 30 1 57 78 1 0
23 0 69 98 1 1 30 1 78 99 1 0
24 1 0 43 1 1 31 1 0 44 1 1
24 1 43 67 1 1 31 1 44 74 1 1
24 0 67 111 1 1 31 1 74 96 1 1
25 1 0 46 1 0 32 1 0 38 1 1
25 1 46 66 1 0 32 1 38 71 1 1
25 1 66 110 1 0 32 1 71 105 1 1
26 1 0 33 1 1 33 1 0 38 1 1
26 1 33 68 1 1 33 1 38 64 1 1
26 1 68 96 1 1 33 1 64 97 1 1
27 1 0 51 1 1 34 1 0 38 1 1
27 1 51 97 1 1 34 1 38 63 1 1
27 0 97 115 1 1 34 1 63 99 1 1
28 1 0 37 1 0 35 1 0 49 1 1
28 1 37 79 1 0 35 1 49 70 1 1
28 1 79 93 1 0 35 0 70 107 1 1
29 1 0 41 1 1 36 1 0 34 1 1
29 1 41 73 1 1 36 1 34 81 1 1
29 0 73 111 1 1 36 1 81 97 1 1

Table T.1 below provides the results for the treatment variable
(tx) from no-interaction models over all four recurrent event
analysis approaches. Each model was fit using either a Cox
PH model (CP approach) or a Stratified Cox (SC) PH model
(conditional 1, conditional 2, marginal approaches) that
controlled for the covariate smoking.

Table T.1. Comparison of Results for the Treatment Variable (tx) Obtained
from No-Interaction Modelsa Across Four Methods (Defibrillator Study)

Model CP Conditional 1 Conditional 2 Marginal

Parameter 0.0839 0.0046 −0.0018 −0.0043
estimateb

Robust 0.1036 0.2548 0.1775 0.2579
standard
error

Chi-square 0.6555 0.0003 0.0001 0.0003
p-value 0.4182 0.9856 0.9918 0.9866
Hazard 1.087 1.005 0.998 0.996

ratio
95% confidence (0.888, 1.332) (0.610, 1.655) (0.705, 1.413) (0.601, 1.651)

interval

a No-interaction SC model fitted with PROC PHREG for the conditional 1, conditional 2 and
marginal methods; no-interaction standard Cox PH model fitted for CP approach.
b Estimated coefficient of tx variable.
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1. State the hazard function formula for the no-interaction
model used to fit the CP approach.

2. Based on the CP approach, what do you conclude about the
effect of treatment (tx)? Explain briefly using the results in
Table T.1.

3. State the hazard function formulas for the no-interaction
and interaction SC models corresponding to the use of the
marginal approach for fitting these data.

4. Table T.1 gives results for “no-interaction” SC models
because likelihood ratio (LR) tests comparing a “no-
interaction” with an “interaction” SC model were not sig-
nificant. Describe the (LR) test used for the marginal model
(full and reduced models, null hypothesis, test statistic, dis-
tribution of test statistic under the null).

5. How can you criticize the use of a no-interaction SC model
for any of the SC approaches, despite the finding that the
above likelihood ratio test was not significant?

6. Based on the study description given earlier, why does it
make sense to recommend the CP approach over the other
alternative approaches?

7. Under what circumstances/assumptions would you rec-
ommend using the marginal approach instead of the CP
approach?

Table T.2 below provides ordered failure times and corre-
sponding risk set information that result for the 36 subjects
in the above Defibrillator Study dataset using the Counting
Process (CP) data layout format.

Table T.2. Ordered Failure Times and Risk Set Information
for Defibrillator Study (CP)

Ordered # in # censored Subject ID #s
failure risk # failed in for outcomes
times t(j) set nj mj [t(j), t(j+1)) in [t(j), t(j+1))

0 36 0 0 —
33 36 2 0 6, 26
34 36 3 0 2, 7, 36
36 36 3 0 3, 10, 13
37 36 2 0 17, 28
38 36 4 0 22, 32, 33, 34
39 36 5 0 1, 8, 9, 11, 12
40 36 1 0 4
41 36 1 0 29
43 36 1 0 24
44 36 1 0 31

(Continued)
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Table T.2. (Continued)

Ordered # in # censored Subject ID #s
failure risk # failed in for outcomes
times t(j) set nj mj [t(j), t(j+1)) in [t(j), t(j+1))

45 36 2 0 5, 20
46 36 2 0 14, 25
48 36 1 0 21
49 36 1 0 35
51 36 2 0 23, 27
57 36 2 0 16, 30
58 36 2 0 18, 19
61 36 1 0 15
63 36 2 0 19, 34
64 36 3 0 13, 22, 33
65 36 2 0 2, 10
66 36 3 0 1, 6, 25
67 36 4 0 3, 7, 18, 24
68 36 2 0 5, 26
69 35 1 0 23
70 35 1 0 35
71 35 1 0 32
72 35 2 0 8, 20
73 35 1 0 29
74 35 1 0 31
76 35 1 0 17
77 35 1 0 14
78 35 2 0 11, 30
79 35 3 1 9, 15, 16, 28
80 34 2 0 4, 12
81 34 2 0 21, 36
93 34 2 0 7, 28
95 32 1 0 13
96 31 5 0 3, 6, 10, 26, 31
97 26 5 0 1, 22, 27, 33, 36
98 22 0 1 23
99 21 2 0 30, 34

100 19 1 0 2
102 18 1 0 8
105 17 1 0 32
106 16 2 0 19, 20
107 14 1 1 12, 35
108 12 1 0 11
109 11 0 2 9, 18
110 9 1 0 25
111 8 0 5 4, 14, 15, 24, 29
112 3 1 0 21
113 2 0 1 17
115 1 0 1 27
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8. In Table T.2, why does the number in the risk set (nj) re-
main unchanged through failure time (i.e., day) 68, even
though 50 events occur up to that time?

9. Why does the number in the risk set change from 31 to
26 when going from time 96 to 97?

10. Why is the number of failures (mj) equal to 3 and the
number of censored subjects equal to 1 in the interval
between failure times 79 and 80?

11. What 5 subjects were censored in the interval between
failure times 111 and 112?

12. Describe the event history for subject #5, including his or
her effect on changes in the risk set.

Based on the CP data layout of Table T.2, the following table
(T.3) of survival probabilities has been calculated.

Table T.3. Survival Probabilities for Defibrillator Study
Data Based on CP Layout

t(j) nj mj qj S(t(j)) = S(t(j−1))Pr(T > t(j)|T ≥ t(j))

0 36 0 0 1.0
33 36 2 0 1 × 34/36 = .94
34 36 3 0 .94 × 33/36 = .87
36 36 3 0 .87 × 33/36 = .79
37 36 2 0 .79 × 34/36 = .75
38 36 4 0 .75 × 32/36 = .67
39 36 5 0 .67 × 31/36 = .57
40 36 1 0 .57 × 35/36 = .56
41 36 1 0 .56 ×35/36 = .54
43 36 1 0 .54 × 35/36 = .53
44 36 1 0 .53 × 35/36 = .51
45 36 2 0 .51 × 34/36 = .48
46 36 2 0 .48 × 34/36 = .46
48 36 1 0 .46 × 35/36 = .44
49 36 1 0 .44× 35/36 = .43
51 36 2 0 .43 × 34/36 = .41
57 36 2 0 .41 × 34/36 = .39
58 36 2 0 .39 × 34/36 = .36
61 36 1 0 .36 × 35/36 = .35
63 36 2 0 .35 × 34/36 = .33
64 36 3 0 .33 × 33/36 = .31
65 36 2 0 .31× 34/36 = .29
66 36 3 0 .29 × 33/36 = .27
67 36 4 0 .27 × 32/36 = .24
68 36 2 0 .24 × 34/36 = .22
69 35 1 0 .22 × 34/35 = .22

(Continued)
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Table T.3. (Continued)

t(j) nj mj qj S(t(j)) = S(t(j−1))Pr(T > t(j)|T ≥ t(j))

70 35 1 0 .22 × 34/35 = .21
71 35 1 0 .21 × 34/35 = .20
72 35 2 0 .20 × 33/35 = .19
73 35 1 0 .19 × 34/35 = .19
74 35 1 0 .19 × 34/35 = .18
76 35 1 0 .18 × 34/35 = .18
77 35 1 0 .18 × 34/35 = .17
78 35 2 0 .17 × 33/35 = .16
79 35 3 1 .16 × 31/35 = .14
80 34 2 0 .14 × 32/34 = .13
81 34 2 0 .13 × 32/34 = .13
95 32 1 0 .13 × 31/32 = .12
96 31 5 0 .12 × 26/31 = .10
97 26 5 0 .10 × 21/26 = .08
98 22 0 1 .08 × 22/22 = .08
99 21 2 0 .08 × 19/21 = .07

100 19 1 0 .07 × 18/19 = .07
102 18 1 0 .07 × 17/18 = .06
105 17 1 0 .06 × 16/17 = .06
106 16 2 0 .06 × 14/16 = .05
107 14 1 1 .05 × 13/14 = .05
108 12 1 0 .05 × 21/26 = .05
109 11 0 2 .05 × 11/11 = .05
110 9 1 0 .05 × 8/9 = .04
111 8 0 5 .04 × 8/8 = .04
112 3 1 0 .04 × 2/3 = .03
113 2 0 1 .03 × 2/2 = .03
115 1 0 1 .03 × 1/1 = .03

13. Suppose the survival probabilities shown in Table T.3 are
plotted on the y-axis versus corresponding ordered failure
times on the x-axis.

i. What is being plotted by such a curve? (Circle one or
more choices.)

a. Pr(T1 > t) where T1 = time to first event from study
entry.

b. Pr(T > t) where T = time from any event to the
next recurrent event.

c. Pr(T > t) where T = time to any event from study
entry.

d. Pr(not failing prior to time t).
e. None of the above.

ii. Can you criticize the use of the product limit formula
for S(t(j)) in Table T.3? Explain briefly.
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14. Use Table T.2 to complete the data layouts for plotting the
following survival curves.
a. S1(t) = Pr(T1 > t) where T1 = time to first event from

study entry

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t|T1 ≥ t)

0 36 0 0 1.00
33 36 2 0 0.94
34 34 3 0 0.86
36 31 3 0 0.78
37 28 2 0 0.72
38 26 4 0 0.61
39 22 5 0 0.47
40 17 1 0 0.44
41 16 1 0 0.42
43 15 1 0 0.39
44 14 1 0 0.36
45 13 2 0 0.31
46 11 2 0 0.25
48 9 1 0 0.22
49 8 1 0 0.19
51
57
58
61

b. Conditional S2c(t) = Pr(T2c > t) where T2c = time to
second event from first event.

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t|T1 ≥ t)

0 36 0 0 1.00
5 36 1 0 0.97
9 35 1 0 0.94

18 34 2 0 0.89
20 32 1 0 0.86
21 31 2 1 0.81
23 28 1 0 0.78
24 27 1 0 0.75
25 26 1 0 0.72
26 25 2 0 0.66
27 23 2 0 0.60
28 21 1 0 0.58
29 20 1 0 0.55
30 19 1 0 0.52

(Continued)
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(Continued)

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t|T1 ≥ t)

31 18 3 0 0.43
32 15 1 0 0.40
33 14 5 0 0.26
35 9 1 0 0.23
39 8 2 0 0.17
40
41
42
46
47

c. Marginal S2m(t) = Pr(T2m > t) where T2m = time to
second event from study entry.

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t|T1 ≥ t)

0 36 0 0 1.00
63 36 2 0 0.94
64 34 3 0 0.86
65 31 2 0 0.81
66 29 3 0 0.72
67 26 4 0 0.61
68 22 2 0 0.56
69 20 1 0 0.53
70 19 1 0 0.50
71 18 1 0 0.47
72 17 2 0 0.42
73 15 1 0 0.39
74 14 1 0 0.36
76 13 1 0 0.33
77 12 1 0 0.31
78 11 2 0 0.25
79
80
81
97

15. The survival curves corresponding to each of the data lay-
outs (a, b, c) described in Question 14 will be different.
Why?
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Answers to
Practice
Exercises

1. T

2. F: The marginal approach is appropriate if events are of
different types.

3. T

4. F: The marginal, conditional 1, and conditional 2 ap-
proaches all require a SC model, whereas the CP approach
requires a standard PH model.

5. T

6. F: Robust estimation adjusts the standard errors of re-
gression coefficients.

7. F: Robust estimation is recommended for all four ap-
proaches, not just the CP approach.

8. F: The P-value from robust estimation may be either larger
or smaller than the corresponding P-value from nonrobust
estimation.

9. F: Replace the word marginal with conditional 1 or con-
ditional 2. The marginal approach does not use (Start,
Stop) columns in its layout.

10. T

11. T

12. T

13. T

14. T

15. F: The choice among the CP, conditional 1, conditional
2, and marginal approaches depends on carefully consid-
ering the interpretation of each approach.

16. t(j) nj mj qj R(t(j)} S1(t(j))

0 3 0 0 {A, S, C} 1.00
10 3 1 0 {A, S, C} 0.67
20 2 1 0 {A, S} 0.33
70 1 1 0 {A} 0.00
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17. S1(t)

1.0
.8
.6
.4
.2

20 40 60 80 100

18. t(j) nj mj qj R(t(j)} S1(t(j)) Conditional

0 3 0 0 {A, S, C} 1.00
10 3 1 0 {A, S, C} 0.67
20 2 1 0 {A, C} 0.33
30 1 1 0 {C} 0.00

19. S2c(t) Conditional

1.0
.8
.6
.4
.2

20 40 60 80 100

20. t(j) nj mj qj R(t(j)} S1(t(j)) Marginal

0 3 0 0 {A, S, C} 1.00
30 3 1 0 {A, S, C} 0.67
40 2 1 0 {A, C} 0.33
90 1 1 0 {A} 0.00

21. S2m(t) Marginal

1.0
.8
.6
.4
.2

20 40 60 80 100

22. All three plots differ because the risk sets for each plot
are defined differently inasmuch as the failure times are
different for each plot.
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Introduction This chapter considers survival data in which each subject
can experience only one of several different types of events
over follow-up. This situation contrasts with the topic of the
preceding chapter in which subjects could experience more
than one event of a given type. When only one of several dif-
ferent types of event can occur, we refer to the probabilities
of these events as “competing risks,” which explains the title
of this chapter.

Modeling competing risks survival data can be carried out
using a Cox model, a parametric survival model, or models
that use the cumulative incidence (rather than survival). In
this chapter, we mainly consider the Cox model because of its
wide popularity and also because of the availability of com-
puter programs that use the Cox model for analysis of com-
peting risks.

The typical (“cause-specific”) approach for analyzing com-
peting risks data is to perform a survival analysis for each
event type separately, where the other (competing) event types
are treated as censored categories. There are two primary
drawbacks to the above method. One problem is that the
above method requires the assumption that competing risks
are independent. The second problem is that the generalized
Kaplan–Meier (KM)-based product-limit survival curve ob-
tained from fitting separate Cox models for each event type
has questionable interpretation when there are competing
risks.

Unfortunately, if the independence assumption is incorrect,
there is no direct methodology available for analyzing com-
peting risks simultaneously. The only “indirect” method for
addressing this problem involves carrying out a “sensitiv-
ity analysis” that treats subjects with events from compet-
ing risks as all being event-free or as all experiencing the
event of interest. An example of this “sensitivity” approach is
provided.
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The primary alternative summary curve to the KM-based sur-
vival curve is the “cumulative incidence curve (CIC),” which
estimates the “marginal probability” of an event (both terms
are defined in this chapter). This CIC is not estimated using
a product-limit formulation, and its computation is not in-
cluded in mainstream statistical packages. Moreover, the in-
dependence of competing risks is still required when a propor-
tional hazard model is used to obtain hazard ratio estimates
for individual competing risks as an intermediate step in the
computation of a CIC. Nevertheless, the CIC has a meaning-
ful interpretation in terms of treatment utility regardless of
whether competing risks are independent. A variation of the
CIC, called the “conditional probability curve (CPC),” pro-
vides a risk probability conditional on an individual not ex-
periencing any of the other competing risks by time t.

An equivalent approach to the cause-specific method for an-
alyzing competing risks is called the Lunn–McNeil (LM) ap-
proach. The LM approach allows only one model to be fit
rather than separate models for each event type and, more-
over, allows flexibility to perform statistical inferences about
simpler versions of the LM model. This approach has added
appeal in that competing events are not considered as sim-
ply being censored. Nevertheless, as with the cause-specific
approach, the LM method assumes the independence of com-
peting risks.
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Abbreviated
Outline

The outline below gives the user a preview of the material
covered by the presentation. A detailed outline for review pur-
poses follows the presentation.

I. Overview (page 396)
II. Examples of Competing Risks Data

(pages 396–398)
III. Byar Data (pages 399–400)
IV. Method 1—Separate Models for Different Event

Types (pages 400–403)
V. The Independence Assumption (pages 403–411)

VI. Cumulative Incidence Curves (CIC)
(pages 412–420)

VII. Conditional Probability Curves (CPC)
(pages 420–421)

VIII. Method 2—Lunn–McNeil (LM) Approach
(pages 421–427)

IX. Method 2a—Alternative Lunn–McNeil (LMalt)
Approach (pages 427–430)

X. Method 1—Separate Models versus
Method 2—LM Approach (pages 431–434)

XI. Summary (pages 434–439)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize examples of competing risks survival
data.

2. Given competing risks data, outline the steps needed to
analyze such data using separate Cox models.

3. Given computer output from the analysis of competing
risk data, carry out an analysis to assess the effects of
explanatory variables on one or more of the competing
risks.

4. State or describe the independence assumption typically
required in the analysis of competing risks data.

5. Describe how to carry out and/or interpret a “sensitivity
analysis” to assess the independence assumption about
competing risks.

6. State why a survival function obtained from competing
risk using the Cox model has a questionable interpreta-
tion.

7. State or describe the “cumulative incidence” approach
for analyzing competing risks data.

8. Given competing risk data, describe how to calculate a
CIC and/or a CPC curve.

9. Given competing risks data, outline the steps needed to
analyze such data using the Lunn–McNeil method.

10. Given computer output from fitting either a LM or LMalt
model, carry out an analysis to assess the effect of ex-
planatory variables on one or more of the competing
risks.
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Presentation

I. Overview

Different types of
events: A B C . . .
(competing risks)
are possible, but only
one of these can
occur per subject

Focus

In this chapter, we consider survival data in which
each subject can experience only one of different
types of events over follow-up. The probabilities of
these events are typically referred to as competing
risks. We describe how to use the Cox PH model
to analyze such data, the drawbacks to this ap-
proach, and some approaches for addressing these
drawbacks.

II. Examples of Competing
Risks Data

1. Dying from either lung cancer or
stroke

2. Advanced cancer patients either
dying from surgery or getting
hospital infection

3. Soldiers dying in accident or in
combat

4. Limb sarcoma patients
developing local recurrence, lung
metastasis, or other metastasis
over follow-up

Competing risks occur when there are at least two
possible ways that a person can fail, but only one
such failure type can actually occur. For example,

1. A person can die from lung cancer or from a
stroke, but not from both (although he can have
both lung cancer and atherosclerosis before he
dies);

2. Patients with advanced-stage cancer may die
after surgery before their hospital stay is long
enough for them to get a hospital infection;

3. Soldiers in war may die during combat or may
die by (e.g., traffic) accident;

4. In a clinical trial, patients with nonmetastatic
limb sarcoma undergoing chemotherapy and
surgery might develop a local recurrence, lung
metastasis, or other metastasis after follow-up.

Each example above allows only
one event out of several possible
events to occur per subject

If event not death, then recurrent
events are possible

Competing risks + recurrent events
beyond scope of this chapter

For each of the above examples, the possible
events of interest differ, but only one such event
can occur per subject. Note, however, if at least
one of the possible event types does not involve
death, it is also possible that such events can recur
over follow-up. Thus, although the analysis of re-
current events that also involves competing risks
may be required, this more complex topic is be-
yond the scope of this chapter (see Tai et al., 2001).
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Objective: assess

X1, X2, . . . , X p ⇒ Failure rate
(survival probability)

for any one event allowing for
competing risks from other possi-
ble events

A logical objective for competing risks data is to
assess the relationship of relevant predictors to the
failure rate or corresponding survival probability
of any one of the possible events allowing for the
competing risks of the other ways to fail.

Another objective
Compare hazard rate for event A
with hazard rate for event B

We might also want to compare the failure rates
(e.g., using a hazard ratio) for two or more possible
events, controlling for relevant predictors.

Lung Cancer vs. Stroke (1)

HRLC(E vs. not E) = 1?
(allowing for competing risk from
stroke)

In the lung cancer versus stroke example above, we
might ask whether the lung cancer death rate in
“exposed” persons is different from the lung can-
cer rate in “unexposed” persons, allowing for the
possibility that subjects could have died from a
stroke instead.

HR(LC vs. Stroke) = 1?
(controlling for predictors)

We might also want to know if the lung cancer
death rate differs from the stroke death rate con-
trolling for predictors of interest.

Surgery Death vs. Hospital
Infection (2)

HRHOSPINF(E vs. not E) = 1?
(allowing for competing risk from
surgery)

Note: death from surgery reduces
number of hospital infections to be
treated

In the second example, the competing risks are
death from surgery versus development of a hos-
pital infection. For infection control investigators,
the hospital infection event is of primary inter-
est. Nevertheless, the occurrence of death from
surgery reduces the burden of hospital infection
control required. Thus, the estimation of hospital
infection rates are complicated by the competing
risk of death from surgery.

Accidental Death vs. Combat
Death (3)

HRCOMBAT (E vs. not E)
(allowing competing risk of acci-
dental death)

Suppose entire company dies at
accident time t before entering combat

⇓
SCOMBAT(t) = P(TCOMBAT > t) = 1

where TCOMBAT = time to combat death

The third example involves competing risks of
death from either combat or accident in a com-
pany of soldiers. Here, primary interest concerns
the hazard ratio for combat death comparing two
exposure groups. Suppose the entire company dies
at time t in a helicopter accident on their way to
a combat area. Because no one died in combat
by time t, the survival probability of not dying in
combat is one, even though no combat took place.
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However,

TC+A = combat or accidental death

⇓
“event free” SC+A(t) = P(TC+A > t) = 0

However, if we define the outcome of interest as
death from either combat or accident, the “event
free” survival probability is zero after the accident
occurred (at time t).

Moreover,

SKM(TCOMBAT > t)

is undefined because the risk set is
empty at time t

Moreover, the KM survival probability for combat
death at time t is undefined because no one was at
risk for a combat death at time t.

Competing Risks Data Survival
Curve Interpretation?

This example points out that when there are com-
peting risks, the interpretation of a survival curve
may be difficult or questionable (more on this is-
sue later).

Limb sarcoma patients (4)

Competing risks
1 = local recurrence, 2 = lung meta-
stasis, or 3 = other metastasis

HRc(E vs. not E), c = 1, 2, 3
(allowing for competing risk from
other two failure types)

In the fourth example involving limb sarcoma pa-
tients, the competing risks are the three failure
types shown at the left.

In this study, the investigators wanted hazard ra-
tios for each failure type, allowing for competing
risks from the other two failure types.

HR(Lung Metastasis vs. Local
Recurrence)? Controlling for
Predictors

It was also of interest to compare the failure rates
for lung metastasis versus local recurrence (or any
other two of the three failure types), controlling for
relevant predictors.

No failure types involve death
⇓

Recurrent events possible

But can use classical competing
risk methods if focus on only first
failure

Because none of the failure types involves death,
recurrent events are possible for any of the three
failure types. If, however, the information on only
the first failure is targeted, the classical competing
risk methodology described in this chapter can be
applied.
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III. Byar Data

� Randomized clinical trial� Compare treatments for Stage
III and IV prostate cancer� Rx status: placebo or one of
3 dose levels of DES

We now introduce an example of competing risks
survival analysis of data from a randomized clini-
cal trial (Byar and Green, 1980) comparing treat-
ments for prostate cancer. We henceforth refer to
this as the Byar data. Patients with Stages III
(local extension beyond the prostate gland) and
IV (distant metastases, elevated acid phosphatase,
or both) prostate cancer were randomized to re-
ceive either a placebo or one of three dose levels of
the active treatment diethylstilbestrol (DES).

Competing risks: deaths from

Cancer (main focus)
CVD
Other

Covariate information collected

Some predictors grouped

In this study, patients could die from prostate can-
cer, cardiovascular disease, or other causes. Co-
variate information was also collected to account
for the possible influence of predictors on survival.
These data have been analyzed extensively (Byar
and Corle, 1977, Kay, 1986, and Lunn and McNeil,
1995). Some grouping of the predictors was con-
sidered to be clinically meaningful.

Predictors Value Category

Treatment (Rx) 0 Placebo, 0.2 mg DES
1 1.0, 5 mg DES

Age at diagnosis 0 ≤74 years
Diagnosis (Age) 1 75–79 years

2 ≥80 years
Standardizeda 0 ≥100

weight (Wt) 1 80–99
2 <80

Performance 0 Normal
status (PF) 1 Limitation of activity

History of 0 No
CVD (Hx) 1 Yes

Hemoglobin (Hg) 0 ≥12 g/100 ml
1 9.0–11.9 g/100 ml
2 <9 g/100 ml

Size of the primary 0 <30 cm2

lesion (SZ) 1 ≥30 cm2

Gleeson 0 ≤10
Score+(SG) 1 >10

a weight (kg) − height (cm) + 200
+ index of tumor invasiveness/aggressiveness

Key risk factors related to the primary outcome
of interest (cancer deaths) and the appropriate
grouping is shown at the left.

Primary interest was to assess the effect of treat-
ment (Rx) adjusted for relevant risk factors in the
presence of the competing risks. Notice from the
table that the Rx variable is grouped into a binary
variable by coding subjects receiving the placebo
or 0.2 mg of DES as 0 and coding subjects receiv-
ing 1.0 or 5.0 mg of DES as 1.
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Independence assumption (dis-
cussed later)
Next

Analysis of competing risks
survival data

Assume independent
competing risks

From a clinical perspective, these three competing
risks can be considered to be independent (e.g.,
failure from heart disease and/or other causes of
death is unrelated to risk of failure from prostate
cancer). We discuss this “independence assump-
tion” in more detail in a subsequent section of this
chapter.

We now describe the approach typically used to
analyze competing risks data. This approach as-
sumes that competing risks are independent. We
illustrate this approach using the Byar data.

IV. Method 1—Separate
Models for Different
Event Types

� Use Cox (PH) model� Estimate separate hazards or
HRs for each failure type� Other (competing) failure types
are treated as censored� Persons lost to follow-up or
withdrawal are also censored

The typical approach for analyzing competing
risks data uses the Cox (PH) model to separately
estimate hazards and corresponding hazard ratios
for each failure type, treating the other (compet-
ing) failure types as censored in addition to those
who are censored from loss to follow-up or with-
drawal. We refer to this approach as Method 1
because we later describe an alternative approach
(Method 2) that requires only a single model to be
fit.

If only one failure type of interest
⇓

Estimate only one hazard or HR

If only one failure type is of primary interest, then
the analysis might be restricted to estimating haz-
ards or hazard ratios for that type only (but still
treating the competing failure types as censored).

Cause-specific hazard function

hc(t) = lim
�t→0

P(t ≤ Tc < t + �t|Tc ≥ t)/�t

where Tc = time-to-failure from
event c
c = 1, 2, . . . , C (# of event types)

To describe this method mathematically, we define
the cause-specific hazard function shown at the
left. The random variable Tc denotes the time-to-
failure from event type c. Thus, hc(t) gives the in-
stantaneous failure rate at time t for event type c,
given not failing from event c by time t.

Cox PH cause-specific model
(event-type c):

hc(t,X) = h0c(t)exp[
p∑

i=1

βicXi],

c = 1, . . . , C

βic allows effect of Xi to differ by
event-type

Using a Cox PH model that considers predictors
X = (X1, X2, . . . , Xp), the cause-specific hazard
model for event type c has the form shown at the
left. Note that βic, the regression coefficient for the
ith predictor, is subscripted by c to indicate that
the effects of the predictors may be different for
different event types.
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BYAR DATA EXAMPLE

Cause-specific model: Cancer
No-interaction model:

hCa(t,X) = h0Ca(t)exp[β1CaRx + β2CaAge

+ β3CaWt + β4CaPF + β5CaHx

+ β6CaHG + β7CaSZ + β8CaSG]

HRCa(RX = 1 vs. RX = 0) = exp[β1Ca]

CVD and Other deaths are censored

Cause-specific model: CVD

Cause-specific model: Other

hCVD(t,X) = h0CVD(t)exp[β1CVDRx + β2CVDAge

+ β3CVDWt + β4CVDPF + β5CVDHX

+ β6CVDHG + β7CVDSZ + β8CVDSG]

HRCVD(RX = 1 vs. RX = 0) = exp[β1CVD]

Cancer and Other are censored

Cancer and CVD are censored

HOTH(t,X) = h0OTH(t)exp[β1OTHRx + β2OTHAge

+ β3OTHWt + β4OTHPF + β5OTHHX

+ β6OTHHG + β7OTHSZ + β8OTHSG]

Competing Risks: Cancer, CVD, Other

We illustrate the above model using the Byar data
involving the three competing risks and the eight
predictors.

A no-interaction cause-specific model for Cancer
death (Ca) is shown at the left. From this model,
the hazard ratio for the effect of Rx controlling for
the other variables is exp[β1Ca].

Because Cancer is the event-type of interest, the
two competing event-types, CVD and Other, need
to be treated as censored in addition to usual cen-
sored observations (i.e., for persons who are either
lost to follow-up or withdraw from the study).

Similarly, if CVD is the event-type of interest, the
cause-specific no-interaction hazard model and
the hazard ratio formula for the effect of treatment
is shown at the left, and the event types Cancer
and Other would be treated as censored.

And finally, if Other is the event-type of interest,
the cause-specific no-interaction hazard model
and the hazard ratio formula for the effect of treat-
ment is shown at the left, and the event types
Cancer and CVD would be treated as censored.

Table 9.1. Edited Output for
Cancer with CVD and Other
Censored

Haz.
Var DF Coef Std.Err. p >|z| Ratio

Rx 1 −0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 −0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood = −771.174

Edited output for each of the above three cause-
specific models is now presented.

First, we show the results for the event type Can-
cer, treating CVD and Other as censored.
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ĤRCa(RX = 1 vs. RX = 0)
= exp(−0.550) = 0.577

Wald ChiSq = (−.550/.170)2

= 10.345 (P = 0.001)
Signif. below .01 level

95% CI for exp[β1Ca]:
exp[−0.550 ± 1.96(0.170)]
= (0.413, 0.807)

From this output, the adjusted ĤR for the effect of
Rx is 0.577 (=1/1.73).

The P-value for a two-tailed Wald test is 0.001; thus
Rx has a significant positive effect on survival for
Cancer death with competing risks from CVD and
Other deaths.

Also, the 95% confidence interval for this HR is
(0.413, 0.807) = (1/2.43, 1/1.24).

Table 9.2. Edited Output for CVD
with Cancer and Other Censored
Var DF Coef Std.Err. p > |z| Haz.Ratio

Rx 1 0.354 0.174 0.042 1.425
Age 1 0.337 0.134 0.012 1.401
Wt 1 0.041 0.150 0.783 1.042
PF 1 0.475 0.270 0.079 1.608
Hx 1 1.141 0.187 0.000 3.131
HG 1 0.018 0.202 0.929 1.018
SZ 1 −0.222 0.364 0.542 0.801
SG 1 −0.023 0.186 0.900 0.977

Log likelihood = −763.001

We next provide edited output when the event-type
is CVD, treating Cancer and Other as censored.

ĤRCVD(RX = 1 vs. RX = 0)
= exp(0.354) = 1.425

Wald ChiSq = (.354/.174)2

= 4.220 (P = 0.042)
Signif. at .05 level

Here, the adjusted ĤR for the effect of Rx is 1.425.

The P-value for a two-tailed Wald test is 0.042;
thus, Rx has a significant (P < .05) but negative
effect on survival for CVD death with competing
risks from Cancer and Other deaths.

95% CI for exp[β1CVD]:
exp.[0.354 ± 1.96(0.174)]
= (1.013, 2.004)

The 95% confidence interval for this HR is (1.013,
2.004).

Table 9.3. Edited Output for Other
with Cancer and CVD Censored
Var DF Coef Std.Err. p >|z| Haz.Ratio

Rx 1 −0.578 0.279 0.038 0.561
Age 1 0.770 0.204 0.000 2.159
Wt 1 0.532 0.227 0.019 1.702
PF 1 0.541 0.422 0.200 1.718
Hx 1 0.023 0.285 0.935 1.023
HG 1 0.357 0.296 0.228 1.428
SZ 1 0.715 0.423 0.091 2.045
SG 1 −0.454 0.298 0.127 0.635

Log likelihood = −297.741

Last, we provide edited output when the event-
type is Other, treating Cancer and CVD as
censored.
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ĤRCOTH(RX = 1 vs. RX = 0)
= exp(−0.580) = 0.561

Wald ChiSq = (−.578/.279)2

= 4.29 (P = 0.038)
Signif. at .05 level

Here, the adjusted ĤR for the effect of Rx is 0.561
(= 1/1.78).

The P-value for a two-tailed Wald test is .038; thus,
Rx has a significant (P < .05) protective effect on
survival for Other deaths with competing risks
from Cancer and CVD deaths.

95% CI for exp[β1OTH]:
exp .[−0.578 ± 1.96(0.279)]
= (0.325, 0.969)

The 95% confidence interval for this HR is (0.325,
0.969), which is somewhat imprecise.

Not assessed in the above analysis:

PH assumption

Interaction of Rx with control vari-
ables

We have thus completed a competing risk analy-
sis of the Byar data assuming that a no-interaction
Cox PH model is appropriate. We haven’t actually
checked the PH assumption for any of the vari-
ables in the model nor have we assessed whether
there is significant interaction between Rx and the
other variables being controlled. Typically, these
situations should be explored to ensure a more
appropriate analysis.

V. The Independence
Assumption

Censoring: a major concern in
survival analysis

Right Censoring vs. left censoring
↓� More often� Our focus

At the beginning of this text in Chapter 1, we intro-
duced the concept of censoring as a major concern
for the analysis of survival data. We distinguished
between right- and left-censoring and indicated
our focus in the text would be on right-censoring,
which occurs more often.

Important assumption

� Required for all approaches/
models described to this point� Relevant for competing risks

We also briefly introduced in Chapter 1 an impor-
tant assumption about censoring that is required
for all approaches/models for analyzing survival
data described up to this point, including data
with competing risks. This assumption is typically
stated as follows: censoring is noninformative or
independent.

Censoring Is Noninformative
(Synonym: Independent)
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Typical context

� No competing risks� Homogeneous sample

Noninformative censoring can be defined in a con-
text that assumes the absence of competing risks
and a homogeneous study sample; that is, all sub-
jects have the same values for covariate predictors.

Definition: noninformative censor-
ing:

Probability of being censored at
time t does not depend on prog-
nosis for failure at time t

In the above context, we define noninformative
censoring to mean that the probability of being
censored for any subject in the risk set at time t
does not depend on that subject’s prognosis for
failure at time t.

EXAMPLE
Harry in homogeneous risk set at time t

Event: death from any cause

Suppose, for example, that Harry is in a homoge-
neous risk set at time t (e.g., the entire risk set is,
say, white, male, age 60) and the event of interest
is death from any cause, so there are no competing
risks.

3 possible outcomes at time t
Fail, not fail, unknown (censored)
status

Given the above scenario, one of the following
three outcomes can be observed on each subject,
including Harry, in the risk set at time t: he can
fail (i.e., die), not fail, or have unknown (censored)
outcome from withdrawal or loss to follow-up.

Harry in poorer health than other
subjects in risk set at time t

⇓
Harry’s prognosis for failing higher
than other subjects in the risk set at
time t

Now, suppose Harry is in much poorer health
than other subjects in the risk set at time t. Then
Harry’s potential for failing at time t is likely to
be higher than for other subjects in the risk set at
time t.

Noninformative censoring
⇓⇑

Pr (C | PH) = Pr(C | GH)
where

C = censoring
PH = poor health
GH = good health

Now, if censoring is noninformative, then de-
spite Harry’s being in poorer health than other
subjects at time t, a subject like Harry would
just as likely be censored as any other sub-
ject in the risk set, including subjects healthier
than Harry who have a lower prognosis for failure.
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Harry more likely to be censored
than other subjects in risk set

⇓
Pr(C | PH) > Pr(C | GH)

⇓⇑

Nevertheless, because Harry has poor health, he
might be more likely to drop out of the study (i.e.,
be censored) at time t because of his poor health
than other healthier subjects in the risk set. If
so, Harry’s censoring would be informative (or
dependent).

Informative censoring unfortunately can lead to
biased results in a survival analysis. A bias can
result because people who get censored are more
likely to have failed than those not censored. Thus,
the estimated survival probability at any time t
may overestimate the true survival probability at
time t if a large proportion of those with unknown
status (i.e., censored) actually failed.

Informative Censoring
(Synonym: DEPENDENT)

⇓
Biased results

Ŝ(t) overestimates S(t)
if

large proportion of censored sub-
jects actually failed at time t

Competing risks
⇓

Different types of censoring

� Failure from competing risks� Lost to follow-up� Withdrawal� End of study

When the survival analysis problem involves com-
peting risks, the requirement of noninformative
or independent censoring has the additional
complication that there are different types of cen-
soring that are possible. That is, when focusing
on the cause-specific hazard for event-type A, say,
competing risks other than A are also considered
as censored in addition to standard censorship
from lost to follow-up, withdrawal, or ending of
the study.

Noninformative (i.e.,
Independent) Censoring with
Competing Risks

Harry in risk set at time t
⇓

Harry just as likely to be censored
as any other subject in risk set
regardless of reason for censoring
or prognosis for event-type A

Thus, for competing risks, censoring is noninfor-
mative or independent if for a subject like Harry
in the risk set at time t, Harry is just as likely to be
censored at time t as any other subject in the risk
set at t, regardless of the reason for censoring, in-
cluding failure from a competing risk, or Harry’s
prognosis for failing from event-type A.

Byar data: 3 competing risks
(Cancer, CVD, Other deaths)

Noninformative censoring?

For example, in the Byar data set, there were
three competing risks of interest, Cancer, CVD,
or Other deaths. What, then, must we assume if
censoring in this study were noninformative?
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Cause-specific focus: Cancer
Noninformative censoring

⇓
Harry just as likely to be censored

as any other subject in risk set
regardless of type of censoring

Types of censoring—competing risks:
CVD or Other death or usual censoring

Suppose censoring is noninformative and we
focus on cause-specific deaths for Cancer. Then
any subject (e.g., Harry) in the risk set at time t
with a given set of covariates is just as likely to
be censored at time t as any other subject in the
risk set with the same set of covariates regard-
less of whether the reason for censoring is a CVD
or Other death, withdrawal from study, or loss to
follow-up.

Informative (Dependent)
Censoring

Harry in poorer health than other
subjects in risk set at time t

⇓
Harry more likely to be censored

than other subjects in risk set

On the other hand, if censoring is informative
(or dependent) and Harry was in poorer health
than other subjects in the risk set at time t, he
might be more likely to be censored, including dy-
ing from CVD or Other cause, at time t than other
subjects in the risk set.

Initial context: subjects are homoge-
neous

More general context: each subject
representative of subjects in the risk
set with the same values of predic-
tors

Recall that the context in which we initially de-
fined noninformative censoring assumed subjects
in the risk set at time t to be “homogeneous,” that
is, having the same values for the predictors of
interest. Actually, because predictors are typically
included in one’s model, the more general context
assumes that each subject in the risk set at time t is
representative of all subjects with the same values
of the predictors who survive to time t.

EXAMPLE
E = exposed, Age = 45, Gender = male

Noninformative censoring

All subjects in risk set for which
E = exposed, Age = 45, Gender = male
    are equally likely to be censored
    regardless of type of censoring

⇓

For example, if the predictors are exposure (E),
Age, and Gender, then noninformative censoring
requires that a subject in the risk set at time t who
is exposed, 45 years old, and male, is just as likely
to be censored at time t as any other subject in
the risk set at time t who is also exposed, 45 years
old, and male.
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Important assumption for
competing risks

Censoring is noninformative (i.e.,
independent)
regardless of different types of
censoring possible

Synonym: Competing risks are
independent

The important message at this point when ana-
lyzing competing risks survival data is that it is
typically assumed that censoring is noninforma-
tive or independent regardless of the different
ways that censoring can occur, including failure
from competing risks other than the cause-specific
event-type of interest. A synonymous expression
is to say that competing risks are independent,
which we henceforth adopt in our remaining dis-
cussion of this topic.

Questions about independence as-
sumption

1. How can we determine whether
this assumption is satisfied?

2. How can we proceed with the
analysis to consider the
possibility that the assumption
is not satisfied?

So, if we typically require that competing risks are
independent, (1) how can we determine whether
this assumption is satisfied and (2) how can we
proceed with the analysis to consider the possibil-
ity that the assumption is not satisfied?

Answer to 1:
We can never explicitly prove the

assumption is satisfied for given
data.

For example, Byar data: Cancer
death
Then can’t determine would have
died from Cancer if hadn’t died
from CVD.

CVD death
⇓

Cancer death unobservable

Unfortunately, the answer to the first question is
that we can never explicitly prove that compet-
ing risks are or are not independent for a given
dataset. For example, in the Byar dataset, we can-
not determine for certain whether a subject who
died from, say, CVD at time t would have died from
Cancer if he hadn’t died from CVD.

In general
Failure from competing risk A

⇓
Failure from competing risk B

unobservable

In other words, dying from Cancer at time t is an
unobservable outcome for a subject who died from
CVD at or before time t. More generally, failure
from a competing risk at time t is unobservable for
a subject who has already failed from a different
competing risk up to time t.

Answer to 2:
Alternative strategies available

but no strategy is always best

Because we can never fully determine whether
competing risks are independent, how can we pro-
ceed with the analysis of competing risks survival
data? The answer is that there are several alterna-
tive strategies, but no one strategy that is always
best.
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Strategy 1
Decide assumption satisfied on
clinical/biological/other grounds

One strategy is to decide on clinical/biological/
other grounds without any data analysis that the
independence assumption is satisfied and then
carry out the analysis assuming independence.

EXAMPLE OF STRATEGY 
1—CANCER VS. CVD
Decide independence if subjects who were
censored because of CVD death were no
more or less likely to have died from
Cancer.

For example, suppose the two competing risks are
Cancer deaths and CVD deaths. Then you may
decide that the assumption of independent com-
peting risks is reasonable if at any time t, subjects
who were censored because of CVD death were no
more or less likely to have died from Cancer.

Strategy 2
Include common risk factors for
competing risks in survival model

EXAMPLE OF STRATEGY 
2—CANCER VS. CVD
Include age smoking in model to
remove the common effects of these
variables on competing risks

A second strategy is to measure those variables
that are common risk factors for competing risks
being considered and then include those variables
in the survival model. For example, with Cancer
and CVD, perhaps including age and smoking sta-
tus in the survival model might remove common
effects on competing risks.

Criticism of Strategies 1 and 2
Assumptions cannot be
verified with observed data

A criticism of each of the above strategies is that
they both rely on assumptions that cannot be ver-
ified with the observed data.

Strategy 3
Use a sensitivity analysis

� Considers “worst-case”
violations of the
independence assumption

Another strategy (3) that can be used is a sensitiv-
ity analysis. As with Strategies 1 and 2, a sensitiv-
ity analysis cannot explicitly demonstrate whether
the independence assumption is satisfied. How-
ever, this strategy allows the estimation of param-
eters by considering “worst-case” violations of the
independence assumption.

Sensitivity analysis

� Determines extreme ranges for
estimated parameters of one’s
model

Thus, using a sensitivity analysis, the investigator
can determine extreme ranges for the estimated
parameters in one’s model under violation of the
independence assumption.

If “worst-case” not meaningfully
different from independence

then
at most a small bias when
assuming independence

If such “worst-case” results do not meaningfully
differ from results obtained under the indepen-
dence assumption, then the investigator may
conclude that at most a small bias can result from
an analysis that assumes independence.
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If “worst-case” meaningfully
different from independence

then
only extreme of bias but not
actual bias is determined

If, on the other hand, the sensitivity analysis pro-
vides results that meaningfully differ from results
obtained under the independence assumption, the
investigator learns only the extremes to which
the results could be biased without adjusting
for the actual bias.

EXAMPLE BYAR DATA

Cause-specific focus: Cancer
Censored: CVD deaths, Other deaths,

     usual censoring

Worst-case situations:

1. CVD or Other deaths are assumed
    to die of cancer instead
2. CVD or Other deaths assumed to
    survive as long as the largest
    survival time observed in the study

We now illustrate how a sensitivity analysis can be
carried out using the Byar data, where we focus
on the cause-specific survival for Cancer deaths,
treating CVD and Other deaths as censored in ad-
dition to usual censoring.

The following two worst-case situations are con-
sidered. (1) All subjects that are censored because
of CVD or Other deaths are assumed to die of can-
cer instead. (2) All subjects that are censored be-
cause of CVD or Other deaths survive as long as
the largest survival time observed in the study.

Table 9.4. Edited Output for
Cancer Worst-Case (1)
Var DF Coef Std.Err. p >|z| Haz.Ratio

Rx 1 −0.185 0.110 0.092 0.831
Age 1 0.286 0.087 0.001 1.332
Wt 1 0.198 0.093 0.032 1.219
PF 1 0.402 0.170 0.018 1.495
Hx 1 0.437 0.112 0.000 1.548
HG 1 0.292 0.120 0.015 1.339
SZ 1 0.672 0.159 0.000 1.958
SG 1 0.399 0.115 0.001 1.491

Log likelihood = −1892.091

Table 9.5. Edited Output for
Cancer Worst-Case (2)

Haz.
Var DF Coef Std.Err. p >|z| Ratio

Rx 1 −0.411 0.169 0.015 0.663
Age 1 −0.118 0.139 0.394 0.888
Wt 1 0.086 0.138 0.532 1.090
PF 1 0.125 0.254 0.622 1.133
Hx 1 −0.266 0.179 0.138 0.767
HG 1 0.314 0.169 0.063 1.369
SZ 1 0.825 0.197 0.000 2.282
SG 1 1.293 0.201 0.000 3.644

Log likelihood = −839.631

Table 9.4 and Table 9.5 give edited output for the
above two scenarios followed by a repeat of the
output previously shown (Table 9.1) under the in-
dependence assumption.

To carry out worst-case scenario (1), the Status
variable (indicating whether a subject failed or
was censored) was changed in the dataset from
0 to 1 for each subject that had a CVD or Other
death.

For worst-case scenario (2), the longest survival
time observed in the study was 76 weeks. Thus,
the survival time for each subject that had a CVD
or Other death was changed in the dataset from
the actual time of death to 76 weeks.

To evaluate the results of the sensitivity analysis,
we need to compare the output in Table 9.1, which
assumes that competing risks are independent,
with output for worst-case situations provided in
Table 9.4 and Table 9.5. We focus this compari-
son on the estimated coefficient of the Rx variable.
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Table 9.1. (Repeated). Edited
Output for Cancer with CVD and
Other Censored (Assumes
Competing Risks Independent)

Haz.
Var DF Coef Std.Err. p >|z| Ratio

Rx 1 −0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 −0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood = −771.174

Var DF Coef Std.Err. p >|z| Haz.Ratio
Worst-Case (1):
Rx 1 −0.185 0.110 0.092 0.831
Worst-Case (2):
Rx 1 −0.411 0.169 0.015 0.663
Independent competing risks:
Rx 1 −0.550 0.171 0.001 0.577

The first line of output corresponding to the Rx
variable is shown at the left for both worst-case
scenarios together with the output obtained from
assuming independent competing risks.

WC(1) WC(2) Independent

ĤRs 0.831 0.663 0.577
P-values 0.092 0.015 0.001

(N.S.) (<.05) (�.01)

These results for the RX variable show consider-
able differences among all three scenarios. In par-
ticular, the three estimated hazard ratios are 0.831
(=1/1.20), 0.663 (=1/1.51), and .577 (=1/1.73).
Also, the P-values for the significance of the effect
of Rx (0.092, 0.015, .001) lead to different conclu-
sions about the effect of Rx.

Independence Nonindependence
x [ ]

.577 .663 .831

Note that the HR obtained from assuming inde-
pendence does not lie between the HRs from the
two worst-case scenarios. This should not be sur-
prising because both worst-case scenarios assume
nonindependence.

If
competing risks not independent

then
conclusions about the effect of Rx
could be very different

These results suggest that if the competing risks
were not independent, then the conclusions about
the effect of Rx could be somewhat different.
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But,

� Have not demonstrated whether
independence assumption
satisfied� Have not obtained correct
results under violation of
independence assumption

However, these results do not demonstrate
whether the independence assumption is satisfied,
nor do they provide estimates of the unbiased haz-
ard ratios and corresponding Wald tests under vi-
olation of the independent assumption.

Worst-case (1)
More departure from indepen-

dence
More realistic
More emphasis

than

Worst-case (2)

Worst-case (1) gives more departure from inde-
pendence than worst-case (2). It can also be ar-
gued that worst-case (1) is more realistic and thus
should be emphasized more than worst-case (2),
because subjects who were censored because of
CVD or Other deaths would not be expected to
survive the entire study if they hadn’t died.

Sensitivity analysis: approaches can
vary for example,

� Randomly select subset of 50%
(or 25%) of subjects censored
with CVD or Other deaths� Assume everyone in subset dies
of Cancer

The previous observation suggests that the inves-
tigator can vary the approach used to either carry
out or interpret such a sensitivity analysis. For ex-
ample, an alternative approach would be to mod-
ify worst-case (1) by randomly selecting a subset
of 50% (or 25%) of subjects censored with CVD or
Other deaths and then assuming that everyone in
this subset dies of Cancer instead.

Main point:

Sensitivity analysis is one of sev-
eral strategies to address concern
about independence assumption

Evaluates how badly biased the re-
sults can get if independence not
satisfied

In any case, the main point here is that a sensitiv-
ity analysis of the type we have illustrated is one of
several strategies that can be used to address con-
cern about the independence assumption. Such a
sensitivity analysis allows the investigator to eval-
uate how badly biased the results could get if the
independence assumption is not satisfied.

Nevertheless

� No method to directly assess
independence assumption� Typical analysis assumes
independence assumption is
satisfied

Nevertheless, as mentioned earlier, there is no
method currently available that can directly as-
sess the independence assumption nor guarantee
correct estimates when the independence assump-
tion is violated. Consequently, the typical survival
analysis assumes that the independence assump-
tion is satisfied when there are competing risks,
even if this is not the case.
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VI. Cumulative Incidence
Curves (CIC)

Survival curves S(t):
provide summary information over
time of survival experience

KM: empirical approach for esti-
mating survival curves

Adjusted survival curves: general-
ized version of KM using a regres-
sion model to adjust for covariates

Up to now: One event-type of
interest (no competing
risks)

We have previously discussed (Chapter 1 and
beyond) the use of survival curves to provide sum-
mary information over time of the survival expe-
rience of (sub) groups of interest. The Kaplan–
Meier (KM) approach (Chapter 2), also called the
product-limit approach, is a widely used empiri-
cal method for estimating survival curves. A gen-
eralized version of KM can be used with a regres-
sion (e.g., Cox) model to estimate adjusted survival
curves (Chapter 3) that account for covariates. Up
to now, such survival curves have been described
only for the situation when there is only one event-
type of interest.

Competing risks: KM may not be as
informative as when only one risk

When competing risks are being considered, the
KM survival curve may not be as informative as
with only one risk.

Hypothetical Study

� n = 100 subjects� All subjects with prostate cancer

Survt (months) # Died Cause

3 99 CVD
5 1 Cancer

Consider the following hypothetical scenario: a
5-month follow-up of 100 subjects with (say,
prostate) cancer. Suppose that at 3 months from
start of follow-up, 99 of the 100 subjects die from
CVD. And at 5 months, the 1 remaining subject
dies from prostate cancer.

Study goal: cause-specific cancer
survival
Censored: CVD deaths

The goal of the study is to determine the cause-
specific survival experience for cancer mortality,
where a CVD death is considered as censored.

Table 9.6. Hypothetical Survival
Data

j tj nj mj qj SCa(tj) ↔ KM

0 0 100 0 0 1
1 3 100 0 99 1
2 5 1 1 — 0

Table 9.6 summarizes the survival experience in
this hypothetical study. The first five columns of
this table show the ordered failure-time interval
number ( j), the time of failure (tj), the number
in the risk set (nj), the number who fail (mj), and
the number who are censored at each failure time
(qj), assuming that a subject who died of CVD at
a given time is censored at that time. The last col-
umn shows the KM survival probabilities SCa(tj)
for cause-specific cancer at each failure time.
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Risk set at tj = 5: 1 subject

Pr(T > 5 | T ≥ 5) = (1 − 1)/2 = 0

KMCa: SCa(t = 5)

= S(t = 4) × Pr(T > 5 | T ≥ 5)
= 1 × 0
= 0

From this table, we see that there is only one sub-
ject in the risk set at 5 months, and that this sub-
ject fails at month 5. The conditional probability
of surviving past 5 months given survival up to
5 months is (1 − 1)/1 = 0, so that the KM survival
probability at 5 months is 0.

KMCa ⇒ RiskCa(T ≤ 5)
= 1 − 0 = 1

Nevertheless,

1 cancer death
100 initial subjects

= 0.01 (small)

Thus, use of the KMCa curve in the presence
of competing risks (for CVD), suggests that the
5-month risk for cancer death is 1; that is, 1 − SCa
(t = 5). Nevertheless, because 99 patients died of
CVD instead of cancer, the proportion of the initial
100 subjects who died of cancer is .01, a very small
“risk” in contrast to the KM-based “risk” of 1.

Question:
How many of the 99 CVD deaths
would have died of cancer at t = 5
if they hadn’t died of CVD at t = 3?

A natural question at this point is, how many of the
99 patients who died of CVD at 3 months would
have died of cancer by 5 months instead if they
hadn’t died of CVD?

Cannot answer: unobservable Unfortunately, we cannot ever answer this ques-
tion because those dying of CVD cannot be ob-
served further once they have died.

Table 9.7. Hypothetical Survival
Data Sensitivity Analysis A (99
CVD Deaths of Cancer at t = 5)

j tj nj mj qj SCa(tj)↔KM

0 0 100 0 0 1
1 3 100 0 0 1
2 5 100 100 0 0

But we can consider a sensitivity-type of analy-
sis to see what might happen under certain al-
ternative scenarios. Suppose, for example, that all
99 subjects who died of CVD at 3 months would
have died of cancer at 5 months if they hadn’t died
of CVD. Also assume as before that the 100th sub-
ject survived up to 5 months but then immediately
died. The survival experience for this situation is
shown in Table 9.7. Notice that the KM survival
probability at month 5 is 0, which is the same value
as obtained in the original dataset.
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KM method assumes non-
informative (i.e., independent) cen-
soring

⇓
Pr(T > 5|censored at month 3)

=
Pr(T > 5|survived to month 5) = 0

⇓
99 CVDs deaths would have been
cancer deaths at month 5

The reason why Tables 9.6 and 9.7 give the same
5-month survival probability (=0) is that the KM
method assumes noninformative (i.e., indepen-
dent) censoring. For the original data (Table 9.6),
noninformative censoring requires that those who
were censored at month 3 were as likely to have
died from cancer at month 5 as those who were
in the risk set at month 5. Because the one per-
son in the risk set at month 5 actually died from
cancer, then the KM method assumes that all 99
CVD deaths being viewed as censored would have
been cancer deaths at month 5, which is what is
represented in Table 9.7.

Table 9.8. Hypothetical Survival
Data Sensitivity Analysis B (99
CVD Deaths of survive past t = 5)

j tj nj mj qj SCa(tj) ↔ KM

0 0 100 0 0 1
1 3 100 0 0 1
2 5 100 1 99 0.99

Now let’s consider a different version (B) of a sen-
sitivity analysis. Suppose that all 99 subjects who
died of CVD at 3 months would not have died of
cancer at 5 months if they hadn’t died of CVD. Also
assume as before that the 100th subject survived
up to 5 months but then immediately died. The
survival experience for this situation is shown in
Table 9.8.

Table 9.8: SCa(t = 5) = 0.99
different from

Table 9.6: SCa(t = 5) = 0

The KM survival probability at month 5 is 0.99
(i.e., close to 1), which is very different from
the value of 0 obtained in the original dataset
(Table 9.6).

Focus on 1 − S(t) = Risk:
RiskCa(T ≤ 5) = 1 − 0.99 = 0.01

If we then focus on 1 − S(t) instead of S(t), sensi-
tivity analysis B suggests that the 5-month risk for
cancer death is 0.01 (i.e., 1 − 0.99).

Table 9.6: RiskCa(T ≤ 5) = 1
derived from the data

Table 9.8: RiskCa(T ≤ 5) = 0.01
derived from sensitivity analysis

but also derived directly from
data as a marginal probability

We thus see that the KM-based risk of 1 computed
from the actual data (Table 9.6) is quite differ-
ent from the KM-based risk of .01 computed in
Table 9.8, where the latter derives from a sensitiv-
ity analysis that does not use the actual data. Note,
however, that a “risk” of .01 for cancer death can
be derived directly from the actual data by treat-
ing the CVD deaths as cancer survivors. That is,
.01 is the proportion of all subjects who actually
developed cancer regardless of whether they died
from CVD. This proportion is an example of what
is called a marginal probability.
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Which is more informative,

RiskCa(T ≤ 5) = 1 or 0.01?

Answer: both informative

So which of these two “risk” estimates (1 vs. 01)
is more informative? Actually, they are both infor-
mative in different ways.

“Risk” of .01 considers treatment
utility

for example, proportion of cancer
patients needing treatment

The “risk” of .01 is informative from the stand-
point of treatment utility for cancer because in
these data, the proportion of cancer patients need-
ing treatment is quite small when allowing for
competing risks.

“Risk” of 1 considers etiology,
providing competing risks are
independent

for example, cancer survival is un-
likely after 5 months

On the other hand, the “risk” of 1, corresponding
to the survival probability of 0, is informative from
an etiologic standpoint providing competing risks
are independent; for example, cancer patients who
don’t die of CVD would be expected to die from
their cancer by 5 months; that is, cancer survival
is unlikely after 5 months.

Main point

KM survival curve may not be very
informative

� Requires independence
assumption about competing
risks� Independence assumption
cannot be verified

The main point of the above illustration is that
when there are competing risks, the KM survival
curve may not be very informative because it is
based on an independence assumption about com-
peting risks that cannot be verified.

Alternative to KM: Cumulative
Incidence Curve (CIC) uses
marginal probabilities

This has led to alternative approaches to KM for
competing risk data. One such alternative, called
the Cumulative Incidence Curve (CIC), involves
the use of marginal probabilities as introduced
above. (Kalbfleisch and Prentice, 1980)

Only one risk: CIC = 1 − KM

CIC with competing risks

� Derived from cause-specific
hazard function� Estimates marginal
probability when competing
risks are present� Does not require independence
assumption

In the simplest case, if there is only one risk, the
CIC is (1 − KM). With competing risks, how-
ever, the CIC is derived from a cause-specific haz-
ard function, provides estimates of the “marginal
probability” of an event in the presence of compet-
ing events, and does not require the assumption
that competing risks are independent.
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Marginal probabilities
Useful to assess treatment utility

in cost-effectiveness analyses

for example, 0.01 (5-month)
marginal probability for Cancer
(Table 9.6)

Such marginal probabilities are relevant to clini-
cians in cost-effectiveness analyses in which risk
probabilities are used to assess treatment utility.
For example, the .01 (5-month) marginal proba-
bility for cancer derived from hypothetical data
in Table 9.6 illustrates small treatment utility for
cancer.

Steps to Construct CIC

1. Estimate hazard at ordered
failure times tj for event type (c)
of interest

ĥc(tj) = mcj

nj

where
mcj = # of events for event type

c at time tj
nj = # of subjects at risk at time

tj

How does one construct a CIC? We first estimate
the hazard at ordered time points tj when the
event of interest occurs. This hazard estimate is
simply the number of events that occur at tj di-
vided by the number at risk at tj (analogous to the
KM estimate). We can write this as ĥc(tj) = mcj/nj
where the mcj denotes the number of events for
risk c at time tj and nj is the number of subjects at
that time. Thus, at any particular time, mcj/nj is
the estimated proportion of subjects failing from
risk c.

2. Estimate
S(tj−1) = overall survival

probability of
surviving previous
time (tj−1)

overall ⇒ subject survives
all other competing
events

To be able to fail at time tj, the subject needs to be
“around to fail”; that is, he must have survived the
previous time when a failure occurred. The prob-
ability of surviving the previous time tj−1 is de-
noted S(tj−1), where S(t) denotes the overall sur-
vival curve rather than the cause-specific survival
curve Sc(t). We must consider “overall” survival
here, because the subject must have survived all
other competing events.

3. Compute estimated incidence of
failing from event-type c at
time tj

Îc(tj) = Ŝ(tj − 1) × ĥc(tj)

The probability (i.e., incidence) of failing from
event-type c at time tj is then simply the proba-
bility of surviving the previous time period multi-
plied by ĥc(tj).

4. CIC(tj) = ∑j
j′=1 Îc(tj′)

= ∑j
j′=1 Ŝ(tj′−1)ĥc(tj′)

The cumulative incidence at time tj is then the cu-
mulative sum up to time tj, (i.e., from j′ = 1 to
j′ = j) of these incidence values over all event-type
c failure times.
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  • n = 24 subjects
  • All subjects receive treatment XRT
    for head and neck cancer

EXAMPLE OF CIC CALCULATION
(ANOTHER HYPOTHETICAL STUDY

We illustrate the calculation of a CIC through an
example.

Consider another hypothetical study involving
24 individuals receiving radiotherapy (XRT) for
the treatment of head and neck cancer. Patients
may die of the disease (cancer), other causes, or
still be alive at the time of analysis.

The data are shown at the left.

Survival Time in Months

Died of disease: 0.7, 3, 4.9, 6, 6, 6.9,
10, 10.8, 17.1, 20.3

Died of other causes: 1.5, 2.8, 3.8, 4.7,
7, 10, 10, 11.2

Censored: 3.2, 7.6, 10, 11, 15, 24.4

Table 9.9. CIC Calculation—
Hypothetical Data

tj nj mj ĥca(tj) Ŝ(tj − 1) Îca(tj) CIC(tj)

0 24 0 0 — 0 0
0.7 24 1 0.042 1.000 0.042 0.042
1.5 23 0 0 0.958 0 0.042
2.8 22 0 0 0.916 0 0.042
3.0 21 1 0.048 0.875 0.042 0.084
3.2 20 0 0 0.833 0 0.084
3.8 19 0 0 0.833 0 0.084
4.7 18 0 0 0.789 0 0.084
4.9 17 1 0.059 0.745 0.044 0.128
6 16 2 0.125 0.702 0.088 0.216
6.9 14 1 0.071 0.614 0.044 0.260
7.0 13 0 0 0.570 0 0.260
7.6 12 0 0 0.526 0 0.260

10 11 1 0.091 0.526 0.048 0.308
10.8 7 1 0.143 0.383 0.055 0.363
11.0 6 0 0 0.328 0 0.363
11.2 5 0 0 0.328 0 0.363
15 4 0 0 0.262 0 0.363
17.1 3 1 0.333 0.262 0.087 0.450
20.3 2 1 0.5 0.175 0.088 0.537
24.4 1 0 0 0.087 0 0.537

The calculation of the CIC for these data is shown
in Table 9.9.

From the table, we can see that the highest CIC
probability of 0.537 is reached when t = 20.3
weeks when the last observed event occurred.
Thus, the cumulative risk (i.e., marginal probabil-
ity) for a cancer death by week 20 is about 53.7%
when allowing for the presence of competing risks
for CVD and Other Deaths.
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Cumulative Incidence Curve

Because the CIC curve describes “cumulative in-
cidence,” a plot of the curve starts at 0 when t = 0
and is a nondecreasing function up until the latest
time of individual follow-up (t = 24.4).
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CIC Summary

� Gives marginal probability� Does not use product limit
formulation� Not included in mainstream
commercially available
statistical packages (e.g., SAS,
STATA, SPSS)

Thus, as the example illustrates, the “marginal
probability” estimated by the CIC does not use
a product-limit (i.e., KM) formulation. Moreover,
the computation of a CIC is currently not included
in mainstream commercially available statistical
packages.

Independence of competing risks
not required for CIC approach

As mentioned earlier, the assumption of indepen-
dent competing risks is not required for the calcu-
lation of the CIC, in contrast to the KM survival
curve, which requires this assumption.

Nevertheless, CIC requires

h(t) = hc1(t) + hc2(t) + · · · + hck(t)

where

h(t) = overall hazard
hc(t) = hazard for event-type c

Note: satisfied if

� Mutually exclusive event-types� Non-recurrent events

Nevertheless, the CIC does require that the overall
hazard is the sum of the individual hazards for
all the risk types (Kalbfleisch and Prentice, 1980).
The latter assumption will be satisfied, however,
whenever competing risks are mutually exclusive
and events are nonrecurrent; that is, one and only
one event can occur at any one time and only once
over time.

Comparing CICs for 2 or more
groups:

� Statistical test available (Gray,
1988)� Analogous to log rank test� No independence assumption� Does not adjust for covariates

Gray (1988) developed a test to compare two
or more CICs. This test is analogous to the log
rank test. The independence assumption is not
required. However, this test does not adjust for
covariates.
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Cumulative Incidence Curves –
Byar Data

The plot shown at the left gives the CICs for the
two treatments for the Byar data.
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Gray’s test results: χ2 = 6.6, df = 1
p-value: 0.01

Using Gray’s test to compare the two CICs shown
in the plot, we find the two curves to be signifi-
cantly different (P = 0.01).

PH model used to obtain CIC
⇓

Independence of competing risks re-
quired

(but CIC meaningful for treatment
utility)

So far, we have described the CIC without consid-
ering (Cox PH) models that account for covariates.
However, when a PH model is used to obtain haz-
ard ratio estimates for individual competing risks
as an intermediate step in the computation of a
CIC, the independence of competing risks is
required. In any case, the CIC has a meaningful
interpretation in terms of treatment utility regard-
less of whether competing risks are independent.

Modeling CIC with covariates using
PH model: Fine and Gray (1999)

(CIC also called subdistribution
function)

Software available (Gebski, 1997)

Fine and Gray (1999) provide methodology for
modeling the CIC with covariates using a propor-
tional hazards assumption. They refer to the CIC
curves as subdistribution functions. The mathe-
matical details of these methods are beyond the
scope of this text but software is available that al-
lows for such models to be fitted (Gebski, 1997)

Fine and Gray model analogous to
Cox PH model

Effects of predictors (e.g., HRs)
have similar interpretation

The CIC models developed by Fine and Gray are
analogous to the Cox PH model but, for any fail-
ure type, they model a CIC. The results from fitting
these models have a similar interpretation regard-
ing the effects of predictors in the model as can
be derived from the (standard) Cox PH model ap-
proach for competing risks data.

Table 9.10. Edited Output for
Cancer with CVD and Other
Censored—Byar Data (Fine and
Gray CIC Approach)
Var DF Coef Std.Err. p >|z| Haz.Ratio

Rx 1 −0.414 0.171 0.008 0.661
Age 1 −0.112 0.145 0.221 0.894
Wt 1 0.088 0.146 0.274 1.092
PF 1 0.126 0.260 0.313 1.135
Hx 1 −0.256 0.182 0.080 0.774
HG 1 0.321 0.191 0.046 1.379
SZ 1 0.841 0.207 0.001 2.318
SG 1 1.299 0.198 0.001 3.665

−2 LOG L = 1662.766546

For the Byar data, the fitted CIC model that fo-
cuses on cancer deaths as the event-type of inter-
est is shown in Table 9.10 below which we have
repeated Table 9.1, which uses the standard com-
peting risks Cox PH model approach.
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Table 9.1. (Repeated). Edited
Output for Cancer with CVD and
Other Censored (Standard Cox PH
Approach)
Var DF Coef Std.Err. p >|z| Haz.Ratio

Rx 1 −0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 −0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood = −771.174

Although corresponding coefficient estimates and
standard errors are different in the two outputs,
both outputs are reasonably similar.

Fine and Standard
Gray CIC Cox PH

(Table 9.10) (Table 9.1)

β̂Rx: −0.414 −0.550

ĤRRx: 0.661 (= 1
1.513 ) 0.577(= 1

1.73 )

P-value: 0.008 0.001

For example, the estimated coefficient of Rx is
−0.414 in Table 9.10 versus −0.550 in Table 9.1.
The corresponding hazard ratio estimates (eβ) are
.661 (=1/1.513) and 0.577 (=1/1.733), respectively,
so that the strength of the association is slightly
weaker using the Fine and Gray approach for
these data, although both hazard ratios are highly
significant.

VII. Conditional Probability
Curves (CPC)

A third measure of failure risk: CPC
(Other measures: 1 − KM and CIC)

CPCc = Pr(Tc ≤ t | T ≥ t)

where, Tc = time until event c
occurs

T = time until any
competing risk
risk event occurs

for example, Byar data

CPCpc = Pr(Tpc ≤ 24 | T ≥ 24)
where pc = prostate cancer

Another approach to competing risks is called
the Cumulative Conditional Probability or CPC.
CPCs provide a third summary measure, in addi-
tion to (1 minus KM) and CIC, of the risk of failure
of an event in the presence of competing risks. Put
simply, the CPCc is the probability of experiencing
an event c by time t, given that an individual has
not experienced any of the other competing risks by
time t.

Thus, with the Byar dataset, we may be inter-
ested in the risk of dying of prostate cancer
at 24 months, given that the subject is alive at
24 months to experience this event.

CPCc = CICc/(1 − CICc′)

where CICc′ = CIC from risks other
than c

For risk type c, the CPC is defined by CPCc =
CICc/(1 − CICc′), where CICc′ is the cumulative
incidence of failure from risks other than risk c
(i.e., all other risks considered together).
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Graphs of CPCs obtained from CICs

Tests to compare CPCs:

Pepe and Mori (1993)—2 curves
Lunn (1998)—g curves

Graphs of CPC curves can be obtained from CIC
curves and have been studied by Pepe–Mori (1993)
and Lunn (1998). Pepe–Mori provide a test to com-
pare two CPC curves. Lunn (1998) extended this
test to g-groups and allows for strata.
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Byar Data: Cumulative Conditional
Probability

For the Byar data, the plot shown here gives
the CPC curves comparing the two DES treat-
ments. These curves give the probability of an
event (death) from prostate cancer at any particu-
lar time given that the patient is alive at this time
to experience the event.

(Note: the Fine and Gray approach has not been
extended to model the CPCs in a regression frame-
work.)

Test for equality: p-value = .01
(Pepe–Mori)

The Pepe–Mori test shows a significant difference
between these two CPC curves.

VIII. Method 2—The Lunn–
McNeil (LM) Approach

Method 1: separate estimates for
each failure type, treating the com-
peting failure types as censored

We have previously (Section IV) described an ap-
proach (called Method 1) for analyzing competing
risks data that uses the Cox (PH) model to sep-
arately estimate hazards and corresponding haz-
ard ratios for each failure type, treating the other
(competing) failure types as censored in addition
to those not failing from any event-type.

Method 2: LM Approach

� Uses a single Cox (PH) model� Gives identical results as
obtained from Method 1� Allows flexibility to perform
statistical inferences not
available from Method 1

We now describe Method 2, called the Lunn–
McNeil (LM) approach, that allows only one Cox
PH model to be fit rather than separate mod-
els for each event-type (i.e., Method 1 above).
This approach, depending on the variables put in
the model, can give identical results to those ob-
tained from separate models. Moreover, the LM
approach allows flexibility to perform statistical
inferences about various features of the competing
risk models that cannot be conveniently assessed
using Method 1.
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Table 9.11. Augmented Data for
ith Subject at Time ti Using LM
Approach

Subj Stime Status D1 D2 D3 . . . DC X1 . . . Xp

i ti e1 1 0 0 . . . 0 Xi1 . . . Xip

i ti e2 0 1 0 . . . 0 Xi1 . . . Xip

i ti e3 0 0 1 . . . 0 Xi1 . . . Xip
...

...
...

...
...

...
...

...
...

...
i ti eC 0 0 0 . . . 1 Xi1 . . . Xip

D1, D2, D3, . . . , DC: indicators for event-types

To carry out the LM approach, the data layout
must be augmented. If there are C competing risks,
the original data must be duplicated C times, one
row for each failure type as shown in Table 9.11
for the ith subject with survival time ti in the ta-
ble. Also, C dummy variables D1, D2, D3, . . . , DC
are created as shown in the table. The value of the
status variable ec, with c going from 1 to C, equals
1 if event type c occurs at time c, and equals 0
if otherwise. The Xs in the table denote the pre-
dictors of interest and, as shown in the table, are
identical in each row of the table.

The dummy variables D1, D2, D3, . . . ,DC are indi-
cators that distinguish the C competing risks (i.e.,
event-types).

Definition
Dc equals 1 for event-type c

and 0 otherwise, c = 1, 2, . . . , C

Thus, the dummy variable Dc equals 1 for event-
type c and 0 otherwise.

for example,

Event-type 1: D1 = 1,
D2 = 0, D3 = 0, . . . , DC = 0

Event-type 2: D1 = 0, D2 = 1,

D3 = 0, . . . , DC = 0
Event-type 3: D1 = 0, D2 = 0,

D3 = 1, . . . , DC = 0

For example, for event type 1, the Ds are D1 = 1,
D2 = 0, D3 = 0, . . . , DC = 0; for event-type 2, the
Ds are D1 = 0, D2 = 1, D3 = 0, . . . , DC = 0; and
for event-type 3, the Ds are D1 = 0, D2 = 0, D3 =
1, . . . , DC = 0.

Table 9.12. Augmented Data for
Subjects 1, 14, 16, and 503 from
Byar Data Using LM Approach

Subj Stime Status CA CVD OTH Rx Age Wt

1 72 0 1 0 0 0 1 2
1 72 0 0 1 0 0 1 2
1 72 0 0 0 1 0 1 2

14 49 1 1 0 0 0 0 0
14 49 0 0 1 0 0 0 0
14 49 0 0 0 1 0 0 0
16 3 0 1 0 0 1 2 1
16 3 1 0 1 0 1 2 1
16 3 0 0 0 1 1 2 1

503 41 0 1 0 0 0 1 0
503 41 0 0 1 0 0 1 0
503 41 1 0 0 1 0 1 0

Table 9.12 shows observations for subject #s 1, 14,
16, and 503 from the Byar dataset. The CA, CVD,
and OTH columns denote the C = 3 dummy vari-
ables D1, D2, and D3, respectively. The last three
columns, labeled Rx, Age, and Wt give values for
three of the eight predictors.

In this table, there are three lines of data for each
subject, which correspond to the three competing
risks, Cancer death, CVD death, and Other death,
respectively. The survival time (Stime) for subject
1 is 72, for subject 14 is 49, for subject 16 is 3, and
for subject 503 is 41.
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From the Status and Event (i.e., CA, CVD, OTH)
columns, we can see that subject 1 was censored,
subject 14 died of Cancer, subject 16 died of CVD,
and subject 503 died from Other causes.

For subject 1, the values for the predictors Rx, Age,
and Wt, were 0, 1, and 2, respectively. These values
appear identically in the last three columns of the
three rows for this subject. Similarly, for subject
16, the predictor values for Rx, Age, and Wt, are
1, 2, and 1, respectively.

General Stratified Cox LM Model

g = 1, 2, . . . , C

h∗
g(t,X) = h∗

0g(t)

× exp[β1X1 + β2X2+ · · · + βpXp

+ δ21D2X1 + δ22D2X2+ · · · + δ2pD2Xp

+ δ31D3X1 + δ32D3X2+ · · · + δ3pD3Xp

+ · · ·
+ δC1DCX1 + δC2DCX2+ · · · + δCpDCXp]

1st row: predictors X1, X2, . . . , Xp
2nd row: product terms
D2X1, D2X2, . . . , D2Xp

· · ·
Cth row: product terms
DCX1, DCX2, . . . , DCXp

To use the LM approach with augmented data to
obtain identical results from fitting separate mod-
els (Method 1), an interaction version of a strati-
fied Cox PH model is required. A general form for
this model based on the notation used for the col-
umn heading variables in Table 9.11 is shown at
the left.

Recall that the X1, X2, . . . , Xp denote the p predic-
tors of interest. D2, D3, . . . , DC are C − 1 dummy
variables that distinguish the C event-types. Note
that event-type 1 (g = 1) is the referent group, so
variable D1 is omitted from the model. Thus, the
first row in the exponential formula contains the
Xs, the second row contains product terms involv-
ing D2 with each of the Xs, and so on, with the last
(Cth) row containing product terms of DC with
each of the Xs. The strata (g = 1, . . . , c) are the
C event-types.

LM Hazard Model for
Event-Type 1

h1(t,X) = h∗
01(t)

× exp[β1X1 + β2X2+ · · · + βpXp]

(D2 = D3 = · · · = DC = 0)

For event-type 1 (g = 1), the above stratified Cox
model simplifies to the expression shown at the
left. Note that because g = 1, the values of the
dummy variables D2, D3, . . . , Dc are D2 = D3 =
· · · = DC = 0.
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No product terms in model

HRg=1(X1 = 1 vs. X1 = 0) = exp[β1]

Product terms XjX1 in model

HRg=1(X1 = 1 vs. X1 = 0)
= exp[β1 + �βjXj]

(product terms XjX1 in the model)

Thus, for g = 1, if X1 is a (0,1) variable, the other
Xs are covariates, and there are no product terms
XjX1 in the model, the formula for the HR for the
effect of X1 adjusted for the covariates is exp[β1].
The more general exponential formula described
in Chapter 3 would need to be used instead to ob-
tain adjusted HRs if there are interaction terms in
the model of the form XjX1.

LM Hazard Model for
Event-Type g (>1)

hg(t,X) = h∗
0g(t)

×exp[β1X1 + β2X2+ · · · + βpXp

+ δg1X1+ δg2X2 + · · · + δgpXp]

= h∗
0g(t)exp[(β1 + δg1)X1+ (β2 + δg2)X2

+ · · · + (βp + δgp)Xp]

For any g greater than 1, the general hazard model
simplifies to a hazard function formula that con-
tains only those product terms involving the sub-
script g, because Dg = 1 and Dg′ = 0 for g′ not
equal to g.

With a little algebra we can combine coefficients
of the same predictor to rewrite this hazard model
as shown here.

No product terms XjX1 in the model

HRg(X1 = 1 vs. X1 = 0)
= exp[(β1 + δg1)]

Product terms XjX1 in the model

HRg(X1 = 1 vs. X1 = 0)
= exp[(β1 + δg1)

+ �(βj + δgjXj)]

Thus, for g > 1, if X1 is a (0,1) variable, the other
Xs are covariates, and there are no product terms
XjX1 in the model, the formula for the HR for the
effect of X1 adjusted for the covariates is exp[β1 +
δg1].This HR expression would again need to be
modified if the model contains product terms of
the form XjX1.

EXAMPLE OF LM MODEL FOR
BYAR DATA

Separate models approach (Method 1):
Cause-specific model: Cancer
CVD and Other deaths censored

No-interaction model
hCa(t,X) = h0Ca(t)exp[β1CaRx + β2CaAge

+ β3CaWt + β4CaPF + β5CaHx
+ β6CaHG + β7CaSZ + β8CaSG]

HRCa(RX = 1 vs. RX = 0) = exp[β1Ca]

We now illustrate the above general LM model for-
mation using the Byar data.

Recall that using Method 1, the separate models
approach, the Cox hazard formula used to fit a sep-
arate model for Cancer deaths, treating CVD and
Other deaths as censored is repeated here.

Also shown is the formula for the hazard ratio for
the effect of the Rx variable, adjusted for other
variables in the model.
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LM SC Model for Byar Data

g = 1, 2, 3

h∗
g(t,X) = h0g(t)

× exp[β1Rx + β2Age + · · · +β8SG

+ δ21D2Rx + δ22D2Age + · · · + δ28D2SG

+ δ31D3Rx + δ32D3Age + · · · + δ38D3SG]

1st row: predictors
Rx, Age, Wt, PF, . . . , SG

2nd row: products
D2Rx, D2Age, . . . , D2SG

3rd row: products
D3Rx, D2Age, . . . , D3SG

D2 = CVD and D3 = OTH are (0,1)
dummy variables that distinguish
the 3 event-types

Using the general LM data layout given in Table
9.11, the stratified Cox LM model for the Byar data
that incorporates C = 3 event-types is shown at
the left. The strata, denoted by g = 1, 2, 3, identify
the three event-types as Cancer, CVD, and Other,
respectively.

Notice that in the exponential part of the model,
there are 3 rows of terms that correspond to the 3
event-types of interest. The first row contains p = 8
predictors Rx, Age, Wt, PF, HX, HG, SZ , SG. The
second row contains product terms of the dummy
variable D2 (the CVD indicator) with each of the 8
predictors. Similarly, the third row contains prod-
uct terms of D3 (the Other indicator) with each of
the predictors.

HRCa(Rx = 1 vs. Rx = 0) = exp[β1]
HRCVD(Rx = 1 vs. Rx = 0)

= exp[(β1 + δ21)]
HROTH(Rx = 1 vs. Rx = 0)

= exp[(β1 + δ31)]

From the above model, it follows that the hazard
ratio formulas for the effects of Rx corresponding
to each event-type are as shown at the left. Notice
that for CVD and Other deaths, the coefficient δg1
of the product term DgRx, g = 2, 3, is added to the
coefficient β1 of Rx in the exponential term.

Table 9.13. Edited Output for LM
Model (No-Interaction SC)-Byar
Data
Var DF Coef Std.Err. p >|z| Haz.Ratio

Rx 1 −0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 −0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

RxCVD 1 0.905 0.244 0.000 2.471
AgeCVD 1 0.332 0.196 0.089 1.394
WtCVD 1 −0.146 0.203 0.472 0.864
PFCVD 1 0.222 0.377 0.556 1.248
HxCVD 1 1.236 0.259 0.000 3.441
HGCVD 1 −0.449 0.268 0.094 0.638
SZCVD 1 −1.375 0.417 0.001 0.253
SGCVD 1 −1.366 0.275 0.000 0.255
RxOth 1 −0.028 0.327 0.932 0.972
AgeOth 1 0.764 0.248 0.002 2.147
WtOth 1 0.344 0.265 0.194 1.411
PFOth 1 0.288 0.497 0.562 1.334
HxOth 1 0.117 0.337 0.727 1.125
HGOth 1 −0.111 0.345 0.748 0.895
SZOth 1 −0.439 0.470 0.350 0.645
SGOth 1 −1.797 0.360 0.000 0.166

log likelihood = −1831.92

Table 9.13 shows edited output obtained from fit-
ting the above LM model.

The first eight rows of output in this table are
identical to the corresponding eight rows of out-
put in the previously shown Table 9.1 obtained
from Method 1, which fits a separate model for
Cancer deaths only. This equivalence results be-
cause the first eight rows of the LM output cor-
respond to the reduced version of the LM model
when D2 = D3 = 0, which identifies Cancer as the
event of interest.

However, the remaining 16 rows of LM output
are not identical to the corresponding 8 rows of
Table 9.2 (for CVD) and 8 rows of Table 9.3 (for
Other). Note that the remaining 16 coefficients in
the LM output identify the δgj coefficients in the
LM model rather than the sum (β1 + δgj) required
for computing the HR when g = 2 and 3.
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ĤRCa(Rx = 1 vs. Rx = 0)
= exp[−0.550] = 0.577
= (1/1.733)

Wald ChiSq = (−.550/.171)2

= 10.345(P = 0.001)

95% CI for exp[β1Ca]:
exp[−0.550 ± 1.96(0.171)]
= (0.413, 0.807)

From Table 9.13, the adjusted ĤR for the effect of
Rx when the event-type is Cancer can be read di-
rectly off the output as 0.577. Also, the Wald statis-
tic for testing H0: β1 = 0 is highly significant (P =
.001). The corresponding 95% confidence interval
for this HR has the limits (0.413, 0.807).

LM results for Cancer identical to
Method 1 results for Cancer

These results are identical to those obtained for
the adjusted ĤR, the Wald test, and interval esti-
mate obtained in Table 9.1 using Method 1 to as-
sess the effect of Rx on survival for cancer death.

ĤRCVD(Rx = 1 vs. Rx = 0)
= exp(β̂1 + δ̂11)
= exp(−0.550 + 0.905)
= exp(0.355) = 1.426

ĤROTH(Rx = 1 vs. Rx = 0)
= exp(β̂1 + δ̂21)
= exp(−0.550 − 0.028)
= exp(−0.578) = 0.561

Using Table 9.13 to obtain adjusted ĤR for the
Rx effect when the event-type is CVD or Other,
we must exponentiate the sum (β̂1 + δ̂g1) for g =
2 and 3, respectively.

LM results for CVD and Other iden-
tical to Method 1 results for CVD
and Other

These results are shown at the left, and they are
identical to those obtained in Tables 9.2 and 9.3
using Method 1.

Wald test statistics for CVD and
Other

WaldCVD =
[

β̂1 + δ̂11

SE
β̂1+δ̂ 21

]2

WaldOTH =
[

β̂1 + δ̂11

SE
β̂1+δ̂ 21

]2

Note, however, that using the LM model to obtain
Wald test statistics and 95% confidence intervals
for the HRs for CVD and Other, the mathemat-
ical formulas (shown at left for the Wald tests)
require obtaining standard errors of the sums
(β̂1 + δ̂g1) for g = 2 and 3, whereas the output in
Table 9.13 gives only individual standard errors
of β̂1, δ̂11, and δ̂21.

Computer packages provide for
computation of the above formulas

SAS: test statement

STATA: lincom command

SAS and STATA provide special syntax to specify
the computer code for such computations:
SAS’s PHREG allows a “test” statement; STATA
allows a “lincom” command.
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Alternative LM formulation (LMalt
model)

Output identical to Method 1
(Tables 9.1, 9.2, 9.3)

Nevertheless, there is an alternative version of the
LM model that avoids the need for special syn-
tax. This alternative formulation, which we call
the LMalt model, results in output that is identical
to the output from the separate models (Method 1)
approach for analyzing competing risk data as
given in Tables 9.1 through 9.3.

IX. Method 2a—Alternative
Lunn–McNeil (LMalt)
Approach

� Uses same data layout as
Table 9.11� Column headings:
◦ Dummy variables

D1, D2, . . . , DC
◦ Predictor variables

X1, X2, . . . , Xp� Above variables are transformed
into product terms

The data layout required to fit the LMalt model
is the same as shown earlier in Table 9.11. How-
ever, the variables listed in the columns of this ta-
ble, namely, the dummy variables D1, D2, . . . , DC
and the predictor variables X1, X2, . . . , Xp, serve
as basic variables that are transformed into prod-
uct terms that define the LMalt model.

1st row of LMalt model:
product terms

D1X1, D1X2, . . . , D1Xp
coefficients δ′

11, . . . , δ
′
1p

1st row of LM model
predictors X1, X2, . . . , Xp
coefficients β1, . . . ,βp

The primary difference in the two formulas
is that the first row of the exponential term
in the LMalt model contains product terms
D1X1, D1X2, . . . , D1Xp with coefficients denoted
δ′

11, . . . , δ
′
1p whereas the first row in the LM

model contains the predictors X1, X2, . . . , Xp
without product terms and coefficients denoted
β1, . . . ,βp.

General Stratified Cox
LMalt Model

g = 1, . . . , C

h′
g(t,X) = h′

0g(t)

× exp[δ′
11D1X1 + δ′

12D1X2 + · · · + δ′
1pD1Xp

+ δ′
21D2X1 + δ′

22D2X2+ · · · + δ′
2pD2Xp

+ δ′
31D3X1 + δ′

32D3X2 + · · · + δ′
3pD3Xp

+ · · ·
+ δ′

C1DCX1 + δ′
C2DCX2 + · · · + δ′

CpDCXp]

The general form of the LMalt model is shown at
the left. We have used a superscript prime (′) to dis-
tinguish the hazard model formula for the LMalt
model from the corresponding formula for the LM
model given earlier.
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� LMalt and LM models are
different� Estimated regression
coefficients will not be identical� Estimated HRs, test statistics,
and interval estimates are
identical� Computational formulas are
different

Because the LMalt model and the LM model are
different hazard models, their estimated regres-
sion coefficients will not be identical. Neverthe-
less, when used on the same dataset, the esti-
mated HRs of interest and their corresponding test
statistics and interval estimates are identical even
though the formulas used to compute these statis-
tics are different for the two models.

LMalt Hazard Model for
Event-Type 1

h′
1(t,X) = h′

01(t)
× exp[δ′

11X1 +δ′
12X2 + · · · +δ′

1pXp]

(D1 = 1, D2 = D3 = · · · = DC = 0)
HRg=1(X1 = 1 vs. X1 = 0) = exp[δ′

11]

(no products XjX1 in model)

For g = 1 (i.e., event-type 1), the LMalt model sim-
plifies to the expression shown at the left. Note that
because g = 1, the values of the dummy variables
are D1 = 1, and D2 = D3 = · · · = DC = 0.

Thus, for g = 1, if X1 is a (0,1) variable, the other
Xs are covariates, and there are no product terms
of the form XjX1 in the model, the formula for the
HR for the effect of X1 adjusted for the covariates
is exp[δ11].

LM HR = exp[β1] Recall that for the LM model, the corresponding
HR formula also involved the coefficient of the X1
variable, denoted as β1.

LMalt Hazard Model for
Event-Type g (>1)

h′
1(t,X) = h′

0g(t)

× exp[δ′
g1X1 +δ′

g2X2 + · · · +δ′
gpXp]

(Dg = 1, and Dg′ = 0 for g′ �= g)
HRg(X1 = 1 vs. X1 = 0) = exp[δ′

g1]

(no products XjX1 in model)

For any g greater than 1, the general hazard model
simplifies to a hazard function formula that con-
tains only those product terms involving the sub-
script g, because Dg = 1 and Dg′ = 0 for g′ �= g.

Thus, for g > 1, if X1 is a (0,1) variable, the other
Xs are covariates, and there are no products XjX1
in model, the formula for the HR for the effect of
X1 adjusted for the covariates is exp[δ′

g1].

LM HR = exp[β1 + δg1] Recall that for the LM model, the exponential in
the HR formula involved the sum (β1 + δg1).
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Statistical inferences (i.e., Wald test,
95% CI)

LMalt model: need standard error for
δ̂

′
g1(directly provided by output)

LM model: standard error of
(β̂1 + δ̂g1). (more complicated
computation)

Thus for g > 1, statistical inferences about HRs
using the LMalt model only require use of the stan-
dard error for δ̂

′
g1 that is directly provided in the

output.

In contrast, the LM model requires computing
the more complicated standard error of the sum
(β̂1 + δ̂g1).

Next: Byar data example of LMalt
model

We now illustrate the above general LMalt model
formation using the Byar data.

LMalt SC Model for Byar Data

g = 1, 2, 3
h′

g(t,X) = h0g′(t)

× exp[δ′
11D1Rx + δ′

12D1Age + · · ·
+ δ′

1pD1SG + δ′
21D2Rx

+ δ′
22D2Age + · · · + δ′

28D2SG
+ δ′

31D3Rx + δ′
32D3Age + · · ·

+ δ′
38D3SG]

The stratified Cox (SC) LMalt model that incorpo-
rates the C = 3 event-types is shown at the left.
The strata, denoted by g = 1, 2, 3, identify the
three event-types, Cancer, CVD, and Other.

D1 = CA, D2 = CVD, and D3 =
OTH are (0,1) dummy variables for
the 3 event-types

1st row: products
D1Rx, D1Age, . . . , D1SG
(LM predictors, Rx, Age, . . . , SG)

2nd row: products
D2Rx, D2Age, . . . , D2SG

3rd row: products
D3Rx, D3Age, . . . , D3SG

Notice that in the exponential part of the model,
the first row contains product terms of the dummy
variable D1 (the CA indicator) with each of the 8
predictors Rx, Age, Wt, PF, HX, HG, SZ, SG. Recall
that in the LM version of this model, the first row
contained main effects of the predictors instead of
product terms.

The second and third rows, as in the LM model,
contain product terms of the dummy variable D2
(the CVD indicator) and D3 (the OTH indicator),
respectively, with each of the 8 predictors.

HRCa(Rx = 1 vs. Rx = 0) = exp[δ′
11]

HRCVD(Rx = 1 vs. Rx = 0)
= exp[δ′

21]
HROTH(Rx = 1 vs. Rx = 0)

= exp[δ′
31]

From the above model, it follows that the HR for-
mulas for the effects of Rx corresponding to each
event-type are of the form exp(δ′

g1), where δ′
g1 is

the coefficient of the product term DgRx in the
LMalt model.
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Waldg =
[

δ̂
′
g1

SE
δ̂ ′

g1

]2

g = 1 (CA), 2 (CVD), 3 (OTH)

Consequently, Wald test statistics (shown at the
left) and confidence intervals for these HRs use
standard errors that are directly obtained from the
standard error column from the output obtained
for the LMalt model.

Statistical inference information

LMalt model: directly provided by
output

LM model: not directly provided by
output (requires additional
computer code)

Thus, the LMalt model allows the user to perform
statistical inference procedures using the infor-
mation directly provided in the computer output,
whereas the LM model requires additional com-
puter code to carry out more complicated compu-
tations.

Table 9.14. Edited Output for SC
LMalt Model—Byar Data

Var DF Coef Std.Err. p >|z| Haz.Ratio

RxCa 1 −0.550 0.170 0.001 0.577
AgeCa 1 0.005 0.142 0.970 1.005
WtCa 1 0.187 0.138 0.173 1.206
PFCa 1 0.253 0.262 0.334 1.288
HxCa 1 −0.094 0.179 0.599 0.910
HGCa 1 0.467 0.177 0.008 1.596
SZCa 1 1.154 0.203 0.000 3.170
SGCa 1 1.343 0.202 0.000 3.830

RxCVD 1 0.354 0.174 0.042 1.429
AgeCVD 1 0.337 0.134 0.012 1.401
WtCVD 1 0.041 0.150 0.783 1.042
PFCVD 1 0.475 0.270 0.079 1.608
HxCVD 1 1.141 0.187 0.000 3.131
HGCVD 1 0.018 0.202 0.929 1.018
SZCVD 1 −0.222 0.364 0.542 0.801
SGCVD 1 −0.023 0.186 0.900 0.977

RxOth 1 −0.578 0.279 0.038 0.561
AgeOth 1 0.770 0.204 0.000 2.159
WtOth 1 0.532 0.227 0.019 1.702
PFOth 1 0.541 0.422 0.200 1.718
HxOth 1 0.023 0.285 0.935 1.023
HGOth 1 0.357 0.296 0.228 1.428
SZOth 1 0.715 0.423 0.091 2.045
SGOth 1 −0.454 0.298 0.127 0.635

log likelihood = −1831.916

Table 9.14 shows edited output obtained from fit-
ting the above LMalt model.

The first eight rows of output in this table are iden-
tical to the eight rows of output in the previously
shown Table 9.1 obtained from Method 1, which
fits a separate model for Cancer deaths only, treat-
ing CVD and Other deaths as censored.

The next eight rows in the table are identical to
the eight rows of output in the previous Table 9.2,
which fits a separate model for CVD deaths only,
treating Cancer and Other deaths as censored.

The last eight rows in the table are identical to the
eight rows of output in the previous Table 9.3,
which fits a separate model for Other deaths only,
treating Cancer and CVD deaths as censored.

Table 9.14 (LMalt) output
identical to

Tables 9.1, 9.2, 9.3 (Method 1)
output combined

Thus, the output in Table 9.14 using the single
LMalt model gives identical results to what is ob-
tained from fitting 3 separate models in Tables
9.1, 9.2, and 9.3.
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X. Method 1—Separate
Models versus Method
2—LM Approach

Why bother with LM or LMalt
models when you can simply
fit 3 separate models?

Answer: Can perform statistical in-
ferences that cannot be done when
fitting 3 separate models

The reader may have the following question at this
point: Why bother with the LM or LMalt models
as long as you can get the same results from fit-
ting three separate models using Method 1? The
answer is that the LM or LMalt model formulation
allows for performing statistical inferences about
various features of the competing risk models that
cannot be conveniently assessed when fitting three
separate models using Method 1.

LM Model for Byar Data

g = 1, 2, 3

h∗
g(t,X) = h∗

0g(t)

× exp[β1Rx + β2Age + · · · + β8SG

+ δ′
21D2Rx + δ′

22D2Age + · · · + δ′
28D2SG

+ δ′
31D3Rx + δ′

32D3Age + · · · + δ′
38D3SG]

We illustrate such “extra” inference-making using
the LM model previously described for the Byar
data example. This model is shown again at the
left. Equivalent inferences can be made using the
LMalt model (see Exercises at end of this chapter).

Inference question: Byar data

No-interaction SC LM model
versus

interaction SC LM model

One inference question to consider for the Byar
data is whether a no-interaction SC LM model
is more appropriate than the interaction SC LM
model defined above.

No-interaction SC model

g = 1, 2, 3
h∗

g(t,X) = h∗
0g(t)

×exp[β1Rx+β2Age + · · · +β8SG]

The no-interaction SC model is shown here at the
left.

Assumes

HRCA(Xi) = HRCVD(Xi)
= HROTH(Xi)

≡ HR(Xi) for any Xi variable

for example, Rx = 0 vs Rx = 1:
HRCA(Rx) = HRCVD(Rx)

= HROTH(Rx)
= exp[β1]

This model assumes that the hazard ratio for the
effect of a single predictor (say, binary) Xi adjusted
for the other variables in the model is the same for
each event-type of interest.

For example, in the above no-interaction SC LM
model the hazard ratio for the effect of Rx is
exp[β1] for each g, where β1 is the coefficient of
Rx.
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H0: all δgj = 0,
g = 2, 3; j = 1, 2, . . . , 8

where δgj is coefficient of DgXj in the
interaction SC LM model

To carry out the comparison of the interaction
with the no-interaction SC LM models, the null
hypothesis being tested is that the coefficients of
the 16 product terms (δgj) in the interaction SC
model are equal to zero.

Likelihood Ratio Test

LR = −2 log LR − (−2 log LF)
approx χ2

16 under H0

R = no interaction SC (reduced)
model

F = interaction SC (full) model

This null hypothesis is conveniently tested using
the LM model with a likelihood ratio test statistic
obtained by subtracting −2 log L statistics from
the two models being compared. The degrees of
freedom being tested is 16, the number of δgj co-
efficients being set equal to zero under H0.

Table 9.15. Edited Output—No-
Interaction SC LM Model—Byar
Data

Var DF Coef Std.Err. p > |z| Haz.Ratio

Rx 1 −0.185 0.110 0.092 0.831
Age 1 0.287 0.087 0.001 1.332
Wt 1 0.198 0.093 0.032 1.219
PF 1 0.402 0.170 0.018 1.495
Hx 1 0.437 0.112 0.000 1.548
HG 1 0.292 0.120 0.015 1.339
SZ 1 0.672 0.159 0.000 1.958
SG 1 0.399 0.115 0.001 1.491

log likelihood = −1892.091

Table 9.15 gives the output resulting from the no-
interaction SC LM model for the Byar dataset. In
this table, there is one coefficient corresponding
to each of the eight predictors in the model, as
should be the case for a no-interaction SC model.
Nevertheless, baseline hazard functions h∗

0g(t) are
allowed to be different for different g even if the
coefficients are the same for different g.

Table 9.15: Log likelihoodR

= −1892.091
Table 9.13: Log likelihoodF

= −1831.916

From Table 9.15, we find that the log-likelihood
statistic for the reduced (no-interaction SC) model
is −1892.091. From Table 9.13 (or 9.14), the log-
likelihood statistic for the full (interaction SC)
model is −1831.916.

LR = −2 log LR − (−2 log LF)
= −2(−1892.091)

− (−2(−1831.916))
= 120.35 approx χ2

16 under H0

(P < 0.001)

The likelihood ratio test statistic (LR) is then cal-
culated to be 120.35, as shown at the left. This
statistic has an approximate chi-square distribu-
tion with 16 degrees of freedom under H0.

Reject H0: interaction SC model
more appropriate than
no-interaction SC model

The P-value is less than .001, which indicates a
highly significant test result, thus supporting use
of the full-interaction SC model.



Presentation: X. Method 1—Separate Models versus Method 2—LM Approach 433

Cancer and CVD very different
clinically ,-
HRCa(Rx = 1 vs. 0)

�= HRCVD(Rx = 1 vs. 0)

For the Byar dataset, the decision to reject the no-
interaction SC model makes sense when consid-
ering that two of the competing risks are Cancer
deaths and CVD deaths. Because Cancer and CVD
are clinically very different diseases, one would ex-
pect the effect of any of the predictors, particularly
Rx, on time to failure to be different for these dif-
ferent disease entities.

DIFFERENT STUDY EXAMPLE

⇓

⇓

Competing risks: Stage 1 vs. Stage 2
Breast Cancer

HRstg1(Rx = 0 vs. 1) = HRstg2(Rx = 0 vs. 1)
       Plausible

Non-interaction SC Cox reasonable
depending on similarity of competing risks

Suppose, however, the competing risks for a dif-
ferent study had been, say, two stages of breast
cancer. Then it is plausible that the effect from
comparing two treatment regimens might be the
same for each stage. That is, a no-interaction SC
LM model may be (clinically) reasonable depend-
ing on the (clinical) similarity between competing
risks.

Unstratified LM model (LMU):

h∗(t,X) = h∗
0(t)

× exp[γ1CVD + γ2OTH

+β•
1Rx + β•

2Age + · · · + β•
8SG

+ δ•
21D2Rx + δ•

22D2Age + · · · + δ•
28SG

+ δ•
31D3Rx + δ•

32D3Age + · · · + δ•
38SG]

Returning again to the Byar data example, another
variation of the LM model is shown at the left and
denoted LMU. This is a Cox PH model applied to
the augmented data of Table 9.11 that is not strat-
ified on the competing risks (i.e., there is no sub-
script g in the model definition). We have used
a superscript bullet (•) to distinguish the LMU
model from the LM and LMalt models.

LMU model: CVD and OTH
included in model

LM model: CVD and OTH not
included in model

(Both LMU and LM models use
augmented dataset)

The LMU model includes the two event-type
dummy variables CVD and OTH in the model,
rather than stratifying on these variables. As for
the LM model, the fit of the LMU model is based
on the augmented dataset given in Table 9.11.

LMU model: need to check PH
assumption (Chapter 4)

PH assumption not satisfied

⇓
Use LM instead of LMU model

Because the LMU model is an unstratified Cox
PH model, we would want to use the methods of
Chapter 4 to assess whether the PH assumption is
satisfied for the CVD and OTH variables (as well
as the other variables). If the PH assumption is
found wanting, then the (stratified Cox) LM model
should be used instead.
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PH assumption satisfied
⇓

Determine HRs using exponential
formula (Chapter 3)

If the PH assumption is satisfied, hazard ratios for
the effects of various predictors in the LMU model
can be determined using the standard exponential
formula described in Chapter 3 for the Cox PH
model.

Cancer survival (CVD = OTH = 0):

HRCa(Rx = 1 vs. Rx = 0) = exp[δ•
11]

CVD survival (CVD = 1, OTH = 0):

HRCVD(Rx = 1 vs. Rx = 0)
= exp[γ1 + δ•

21]

Other survival (CVD = 0, OTH = 1):

HROTH(Rx = 1 vs. Rx = 0)
= exp[γ1 + δ•

31]

In particular, to obtain the hazard ratio for the ef-
fect of Rx on Cancer survival, we would specify
CVD = OTH = 0 in the model and then exponen-
tiate the coefficient of the Rx variable in the model,
as shown at the left.

Similar HR expressions (but involving γ1 and γ2
also) are obtained for the effect of Rx when CVD
deaths and Other deaths are the event-types of
interest.

Essential point

Use of single LM-type model offers
greater flexibility for the analysis
than allowed using Method 1

At this point, we omit further description of re-
sults from fitting the LMU model to the Byar
dataset. The essential point here is that the use
of a single LM-type model with augmented data
allows greater flexibility for the analysis than can
be achieved when using Method 1 to fit separate
hazard models for each event-type of interest.

XI. Summary

Competing Risks

Each subject can experience only
one of several different types of
events over follow-up

This chapter has considered survival data in which
each subject can experience only one of several dif-
ferent types of events over follow-up. The different
events are called competing risks.

Typical approach

� Cox PH model� Separate model for each
event-type� Other (competing) event-types
treated as censored

We have described how to model competing risks
survival data using a Cox PH model. The typical
approach for analyzing competing risks data is
to perform a survival analysis for each event-type
separately, where the other (competing) event-
types are treated as censored categories.
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Drawbacks

1. Require independent competing
risks that is, censored subjects
have same risk as all subjects in
risk set

2. Product-limit (e.g., KM) curve
has questionable interpretation

There are two primary drawbacks to the above
method. One problem is the requirement that
competing risks be independent. This assumption
will not be satisfied if those subjects censored from
competing risks do not have the same risk for fail-
ing as subjects who are not censored from the
cause-specific event of interest at that same time.

A second drawback is that the estimated product-
limit survival curve obtained from fitting separate
Cox models for each event-type has questionable
interpretation when there are competing risks.

Several alternative strategies re-
garding independence assumption:
No single strategy is always best

Regarding the independence assumption, several
alternative strategies for addressing this issue are
described, although no single strategy is always
best.

Sensitivity analysis: worst-case vio-
lations of independence assumption

For example, subjects censored
from competing risks treated in
analysis as if

� All event-free� All experience event of interest

A popular strategy is a sensitivity analysis, which
allows the estimation of parameters by consider-
ing worst-case violations of the independence as-
sumption. For example, subjects censored from
competing risks might be treated in the analysis
as either all being event-free or all experiencing
the event of interest.

� Independence assumption not
easily verifiable� Typical analysis assumes
independence assumption is
satisfied

Unfortunately, the independence assumption is
not easily verifiable. Consequently, the typical
competing risks analysis assumes that the inde-
pendence assumption is satisfied even if this is not
the case.

CIC Alternative to KM

� Derived from cause-specific
hazard function� Estimates marginal
probability when competing
risks are present� Does not require independence
assumption� Useful to assess treatment utility
in cost-effectiveness analyses

To avoid a questionable interpretation of the KM
survival curve, the primary alternative to using
KM is the Cumulative Incidence Curve (CIC),
which estimates the marginal probability of an
event. Marginal probabilities are relevant for as-
sessing treatment utility whether competing risks
are independent.
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CIC(tj) =
j∑

j′=1

Îc(tj′)

=
j∑

j′=1

Ŝ(tj′−1)ĥc(tj′)

ĥc(tj′) = estimated hazard at ordered
failure time tj′ for the event-type (c)

S(tj′−1) = overall survival probabil-
ity of previous time (tj′−1)

The formula for the calculating the CIC is shown
at the left. The ĥc(tj′) in the formula is the esti-
mated hazard at survival time tj′ for the event-
type (c) of interest. The term S(tj′−1) denotes
the overall survival probability of previous time
(tj′−1), where “overall survival” indicates a subject
that survives all competing events.

CIC

� Does not use product limit
formulation� Not included in mainstream
commercially available
statistical packages (e.g., SAS,
STATA, SPSS)

As the formula indicates, the CIC is not estimated
using a product-limit formulation. Also, its com-
putation is not included in mainstream commer-
cially available standard statistical packages.

PH model used to obtain CIC
⇓

Independence of competing risks re-
quired

If a proportional hazard model is used to obtain
hazard ratio estimates for individual competing
risks as an intermediate step in the computation of
a CIC, the assumption of independent competing
risks is still required.

Modeling CIC with covariates using
PH model: Fine and Gray (1999)

Software available (Gebski, 1997)
Fine and Gray model analogous to
Cox PH model

Recent work of Fine and Gray (1999) provides
methodology for modeling the CIC with covariates
using a proportional hazards assumption. Soft-
ware is available for this method (Gebski, 1997,
Tai et al., 2001), although not in standard com-
mercial packages.

Alternative to CIC

CPCc = Pr(Tc ≤ t | T ≥ t)

where Tc = time until event c
occurs

T = time until any
competing risk event
occurs

An alternative to the CIC is the Conditional Prob-
ability Curve (CPC). For risk type c, CPCc is the
probability of experiencing an event c by time t,
given that an individual has not experienced any of
the other competing risks by time t.

CPCc = CICc/(1 − CICc′)

where CICc′ = CIC from risks other
than c

The CPC can be computed from the CIC through
the formula CPCc = CICc/(1 − CICc′), where CICc′

is the cumulative incidence of failure from risks
other than risk c (i.e., all other risks considered
together).
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Tests to compare CPCs:

Pepe and Mori (1993)—2 curves
Lunn (1998)—g curves

Pepe–Mori provide a test to compare two CPC
curves. Lunn (1998) extended this test to g-groups
and allows for strata.

Method 2: LM Approach

� Uses a single Cox (PH) model� Gives identical results as
obtained from Method 1� Allows flexibility to perform
statistical inferences not
available from Method 1

We have also described an alternative approach,
called the Lunn–McNeil (LM) approach, for an-
alyzing competing risks data. The LM approach
allows only one model to be fit rather than sep-
arate models for each event-type (Method 1).
This method is equivalent to using Method 1.
The LM model also allows the flexibility to per-
form statistical inferences to determine whether
a simpler version of an initial LM model is more
appropriate.

Augmented Data for ith Subject at
Time t Using LM Approach

Subj Stime Status D1 D2 D3 . . . DC X1 . . . Xp

i ti e1 1 0 0 . . . 0 Xi1 . . . Xip

i ti e2 0 1 0 . . . 0 Xi1 . . . Xip

i ti e3 0 0 1 . . . 0 Xi1 . . . Xip

...
...

...
...

...
...

...
...

...
...

i ti eC 0 0 0 . . . 1 Xi1 . . . Xip

To carry out the LM approach, the data layout
must be augmented. If there are C competing risks,
the original data must be duplicated C times, one
row for each failure type.

g = 1, 2, . . . , C

h∗
g(t,X) = h∗

0g(t)

× exp[β1X1 + β2X2 + · · · + βpXp

+ δ21D2X1 + δ22D2X2 + · · · + δ2pD2Xp

+ δ31D3X1 + δ32D3X2 + · · · + δ3pD3Xp

+ · · ·
+ δC1DCX1 + δC2DCX2 + · · · + δCpDCXp]

To use the LM approach with augmented data to
obtain identical results from fitting separate mod-
els (Method 1), an interaction version of a strati-
fied Cox (SC) PH model is required. A general form
for this model is shown at the left.

LM model: need standard error of

(β̂1 + δ̂g1)

(special syntax required for compu-
tation)

The LM model can be used to obtain Wald test
statistics and 95% confidence intervals for HRs
separately for each competing risk. These statis-
tics require obtaining standard errors of the sums
of estimated regression coefficients (e.g., β̂1 +
δ̂g1). Such computations require special syntax
available in standard computer packages such as
SAS, STATA, and SPSS.
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Alternative LM formulation: LMalt
model

LMalt yields output identical to
Method 1

Nevertheless, there is an alternative formation of
the LM model that avoids the need for special syn-
tax. This alternative formulation, called the LMalt
model, yields output that is identical to the output
from the separate models (Method 1) approach for
analyzing competing risk data.

1st row of LMalt model

Product terms D1X1, D1X2, . . . , D1Xp

Coefficients δ′
11,. . . ,δ

′
1p

1st row of LM model

Predictors X1, X2, . . . , Xp

Coefficients β1, . . . ,βp

The primary difference in the two formulas
is that the first row of the exponential term
in the LMalt model contains product terms
D1X1, D1X2, . . . , D1Xp1 with coefficients denoted
δ′

11, . . . , δ
′
1p whereas the first row in the LM

model contains the predictors X1, X2, . . . , Xp
without product terms and coefficients denoted
β1, . . . ,βp.

LMalt model: Waldg =
[

δ′
g1

SE
δ̂ ′

g1

]2

directly obtained from output

Using the LMalt model, Wald test statistics (shown
at the left) and confidence intervals use standard
errors that are directly obtained from the stan-
dard error column from the output obtained for
the LMalt model.

Statistical inference information

LMalt model: directly provided by
output

LM model: not directly provided by
output (requires additional
computer code)

Thus, the LMalt model allows the user to perform
statistical inference procedures using the infor-
mation directly provided in the computer output,
whereas the LM model requires additional com-
puter code to carry out more complicated compu-
tations.

Advantage of LM (Method 2) over
method 1:

LM offers flexibility for statistical
inferences to consider simpler
models

An advantage of using either the LM or LMalt ap-
proach instead of fitting separate models (Method
1) is the flexibility to perform statistical inferences
that consider simpler versions of an interaction SC
LM model.
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For example,
No-interaction SC LM model

versus
interaction SC LM model

Unstratified LM model
versus

SC LM model

For example, one inference question to consider is
whether a no-interaction SC LM model is more ap-
propriate than an interaction SC model. A differ-
ent question is whether an unstratified LM model
is more appropriate than a stratified LM model.
These questions can be conveniently addressed us-
ing a single ( i.e., LM) model instead of fitting sep-
arate models (Method 1).

Overall,

� Can use standard computer
packages� Independence assumption
required

Overall, in this chapter, we have shown that com-
peting risks data can be analyzed using standard
computer packages provided it can be assumed
that competing risks are independent.
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Detailed
Outline

I. Overview (page 396)
A. Focus: competing risks—analysis of survival data

in which each subject can experience only one of
different types of events over follow-up.

B. Analysis using Cox PH model.
C. Drawbacks to typical approach that uses Cox

model.
D. Alternative approaches for analysis.

II. Examples of Competing Risks Data
(pages 396–398)
A. Dying from either lung cancer or stroke.

1. Assess whether lung cancer death rate in
exposed” persons is different from lung cancer
death rate in “unexposed,” allowing for
competing risks.

2. Also, compare lung cancer with stroke death
rates controlling for predictors.

B. Advanced cancer patients either dying from
surgery or getting hospital infection.
1. If focus on hospital infection failure, then

death from surgery reduces burden of hospital
infection control required.

C. Soldiers dying in accident or in combat.
1. Focus on combat deaths.
2. If entire company dies from accident on way to

combat, then KM survival probability for
combat death is undefined.

3. Example illustrates that interpretation of KM
curve may be questionable when there are
competing risks.

D. Limb sarcoma patients developing local
recurrence, lung metastasis, or other metastasis.
1. None of failure types involves death, so

recurrent events are possible.
2. Can avoid problem of recurrent events if focus

only on time to first failure.
3. Analysis of recurrent events and competing

risks in same data not addressed.
III. Byar Data (pages 399–400)

A. Randomized clinical trial comparing treatments
for prostate cancer.

B. Three competing risks: deaths from prostate
cancer, CVD, or other causes.
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C. Covariates other than treatment are Age, Weight
(Wt), Performance Status (PF), History of CVD
(Hx), Hemoglobin (Hg), Lesion size (SZ), and
Gleeson score (SG).

D. Competing risks considered independent, for
example, death from CVD independent of death
from death from cancer.

IV. Method 1—Separate Models for Different Event
Types (pages 400–403)
A. Use Cox (PH) model to estimate separate hazards

and HRs for each failure type, where other
competing risks are treated as censored in addition
to usual reasons for censoring: loss to follow-up,
withdrawal from study, or end of study.

B. Cause-specific hazard function:
hc(t) = lim�t→0 P(t ≤ Tc < t + �t|Tc ≥ t)/�t
where Tc = time-to-failure from event c, c = 1,
2,. . ., C (# of event types).

C. Cox PH cause-specific model (event-type c):

hc(t,X) = h0c(t)exp[
p∑

i=1

βicXi]

where c = 1, . . . , C, and βic allows effect of Xi to
differ by event-type.

D. Byar data example: Cancer, CVD, Other Deaths are
C = 3 competing risks.
1. Cause-specific (no-interaction) model for

Cancer:

hCa(t,X) = h0Ca(t) exp[β1CaRx + β2CaAge
+β3CaWt + β4CaPF + β5CaHx
+β6CaHG + β7CaSZ + β8CaSG]

where CVD and Other deaths treated as
censored observations

HRCa(RX = 1 vs. RX = 0) = exp[β1Ca]

2. Separate cause-specific (no-interaction) models
for CVD and Other.

3. Edited output presented for each cause-specific
model:
a. Cause-specific Cancer results for RX (with

CVD and Other censored):

ĤRCa(RX = 1 vs. RX = 0) = 0.575 (P = 0.001)
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b. Cause-specific CVD results for RX (with
Cancer and Other censored):

ĤRCVD(RX = 1 vs. RX = 0) = 1.429 (P = 0.040)

c. Cause-specific Other results for RX (with
Cancer and CVD censored):

ĤROTH(RX= 1 vs. RX = 0) = 0.560 (P = 0.038)

V. The Independence Assumption (pages 403–411)
A. Non-informative (independent) censoring: risk

for being censored at time t does not depend on
prognosis for failure at time t.
1. Typical context: no competing risks;

homogeneous sample.
2. Informative censoring can lead to bias results.

B. Non-informative (independent) censoring with
competing risks. Any subject in the risk set at
time t with a given set of covariates is just as likely
to be censored at time t as any other subject in the
risk set with the same set of covariates regardless
of whether the reason for censoring is a competing
risk, withdrawal from study, or loss to follow-up.
1. Informative censoring: subject in risk set at

time t is more likely to be censored from a
competing risk than other subjects in the risk
set at the same time.

2. Homogeneous: subjects in the risk set having
the same values of the predictors of interest.

3. Synonym: Competing risks are independent.
C. Assessing the independence assumption.

1. No method available to directly assess the
independence assumption nor guarantee
unbiased estimates if independence
assumption is violated.

2. Consequently, the typical analysis of competing
risks assumes that the independence
assumption is satisfied, even if not.

3. Strategies for considering independence
assumption
a. Decide that assumption holds on clinical/

biological/other grounds.
b. Include in your model variables that are

common risk factors for competing risks.
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c. Use a frailty model containing a random effect
that accounts for competing risks.

d. Perform a sensitivity analysis by considering
worst-case violations of independence
assumption.

e. All of above strategies rely on assumptions
that cannot be verified from observed data.

4. Example of sensitivity analysis using Byar data.
a. Treat all subjects that die of competing risks

CVD and Other as Cancer deaths.
b. Treat all subjects that die of competing risks

CVD and Other as surviving as long as the
largest survival time in the study.

c. Results suggest that if competing risks are not
independent, then conclusions about the effect
of Rx could be very different.

d. Alternative sensitivity approach: randomly
select a subset (e.g., 50%) of subjects who have
CVD or Other deaths and assume everyone in
subset dies of Cancer.

VI. Cumulative Incidence Curves (CIC)
(pages 412–420)
A. Hypothetical study: n = 100 subjects, all subjects

with prostate cancer

Survt (months) # Died Cause

3 99 CVD
5 1 Cancer

Study goal: cause-specific Cancer survival
Censored: CVD deaths
KMCa : SCa(t = 5) = 0 and RiskCa(T ≤ 5) = 1

B. How many of 99 deaths from CVD would have
died from Cancer if not dying from CVD?
1. No answer is possible because those with CVD

deaths cannot be observed further.
2. Sensitivity analysis A: 99 CVD deaths die of

Cancer at t = 5.
a. KMCa: SCa(t = 5) = 0 and RiskCa(T ≤ 5) = 1

because KM assumes noninformative
censoring; that is, those censored at t = 3
were as likely to die from cancer at t = 5 as
those who were in the risk set at t = 5.

b. Same KM result as obtained for actual data.
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3. Sensitivity analysis B: 99 CVD deaths survive
past t = 5.
a. KMCa: SCa(t = 5) = 0.99 and RiskCa(T ≤ 5) =

0.01.
b. Different KM result than actual data.
c. Can be derived directly from actual data as a

marginal probability.
4. Main point: KM survival curve may not be very

informative.
C. Cumulative Incidence Curve (CIC): alternative to

KM for competing risks.
1. Derived from cause-specific hazard function.
2. Estimates marginal probability.
3. Does not require independence assumption.
4. Has a meaningful interpretation in terms of

treatment utility.
5. CIC formula:

CIC(tj) =
j∑

j′=1

Îc(tj′) =
j∑

j′=1

Ŝ(tj′−1)ĥc(tj′)

6. Calculation of CIC for another hypothetical
dataset.

7. Tests have been developed (Pepe and Mori,
1992) for comparing the equality of CICs for
two or more groups: analogous to log rank test.

8. When a PH model is used to obtain hazard
ratio estimates in the computation of a CIC, the
independence of competing risks is required.

9. Fine and Gray (1999) provide methodology for
modeling the CIC (also called subdistribution
function) with covariates using a proportional
hazards assumption: analogous to fitting Cox
PH model.

10. Example of Fine and Gray output compared
with Cox PH output for Byar data.

VII. Conditional Probability Curves (CPC)
(pages 420–421)
A. CPCc = Pr(Tc ≤ t|T ≥ t) where Tc = time until

event c occurs, T = time until any competing risk
event occurs.

B. Formula in terms of CIC: CPCc = CICc/(1 − CICc′)
where CICc′ = CIC from risks other than c.

C. Graphs of CPCs can be derived from graphs of
CICs.

D. Tests to compare CPCs: Pepe and Mori (1993)—
2 curves; Lunn (1998)—g curves.
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VIII. Method 2—Lunn–McNeil (LM) Approach
(pages 421–427)
A. Allows only one Cox PH model to be fit rather than

fitting separate modes for each event type
(Method 1).

B. LM uses an augmented data layout.
1. For ith subject at time ti, layout has C rows of

data, where C = # event-types.
2. Dummy variables D1, D2, . . . , DC are created to

distinguish the C event-types.
3. The Status variable, ec, c = 1, . . . , C, equals 1

for event-type c and 0 otherwise.
4. Predictors are denoted by X1, . . . , Xp.
5. Example of data layout for Byar dataset.

C. General form of LM model (interaction SC model).

h∗
g(t,X)

g = 1,2,...,C

= h∗
0g(t) exp[β1X1 + β2X2 + · · · + βpXp

+ δ21D2X1 + δ22D2X2 + · · · + δ2pD2Xp

+ δ31D3X1 + δ32D3X2 + · · · + δ3pD3Xp

+ · · ·
+ δC1DCX1 +δC2DCX2 +· · ·+δCpDCXp]

1. LM model for event-type g = 1:
a. h∗

1(t,X) = h∗
01(t)

× exp[β1X1 + β2X2 + · · · + βpXp]
b. D2 = D3 = · · · = DC = 0
c. HRg=1(X1 = 1 vs. X1 = 0) = exp[β1]

2. LM model for event-type g (>1):
a. h∗

g(t,X) = h∗
0g(t)

× exp[(β1 + δg1)X1 + (β2 + δg2)X2

+ · · · + (βp + δgp)Xp]
b. HRg(X1 = 1 vs. X1 = 0 = exp[(β1 + δg1)]

D. LM model for Byar data.
1. h∗

g(t,X) = h∗
0g(t)

× exp[β1Rx + β2Age + · · · + β8SG
+ δ21D2Rx + δ22D2Age + · · · + δ28D2SG
+ δ31D3Rx + δ32D3Age + · · · + δ38D3SG]

g = 1, 2, 3
2. D2 = CVD and D3 = OTH are (0,1) dummy

variables for 3 event-types.
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3. HRCa(Rx = 1 vs. Rx = 0) = exp[β1]
HRCVD(Rx = 1 vs. Rx = 0) = exp[β1 + δ21]
HROTH(Rx = 1 vs. Rx = 0) = exp[β1 + δ31]

4. Mathematical formulas for Wald tests and
confidence intervals require standard errors for
sums (β̂1 + δ̂g1) for g = 2 and 3; requires
special syntax for computer.

5. Output provided and compared to output from
Method 1.

IX. Method 2a—Alternative Lunn–McNeil (LMalt)
Approach (pages 427–430)
A. An alternative LM formulation that gives identical

output to that obtained from Method 1 (separate
models approach).

B. Same data layout as for LM model, but only
product terms in LMalt model.

C. General form of LMalt (interaction SC) model:

g = 1, . . . , C
h′

g(t,X) = h0g
′(t)

× exp[δ′
11D1X1 + δ′

12D1X2 + · · · + δ′
1pD1Xp

+ δ′
21D2X1 + δ′

22D2X2 + · · · + δ′
2pD2Xp

+ · · ·
+ δ′

C1DCX1 + δ′
C2DCX2 + · · · + δ′

CpDCXp]

D. Hazard ratio formula involves only coefficients of
product terms for all g:

HRg(X1 = 1 vs. X1 = 0) = exp[δ′
g1], g = 1, 2, 3

a. Statistical inference information directly provided
by LMalt output.

E. Example of output for LMalt model using Byar
data.

X. Method 1—Separate Models versus Method 2—LM
Approach (pages 431–434)
A. LM and LMalt models allow flexibility to perform

statistical inferences about features of competing
risks model not conveniently available using
separate models (Method 1) approach.

B. LM and LMalt models can assess whether a
no-interaction SC model is more appropriate than
the initial interaction SC LM model.
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C. Example of comparison of no-interaction with
interaction SC model using Byar data.

D. LM and LMalt models can assess whether an
unstratified LM model (called LMU) is more
appropriate than a stratified LM model.

E. Example of LMU model involving Byar data.
XI. Summary (pages 434–439)

A. Competing risks survival data can be analyzed
using Cox PH models and standard computer
packages.

B. There are two alternative methods that use a Cox
PH model formulation.
1. Fit separate models for each cause-specific

event type, treating the remaining event types
as censored.

2. Use the Lunn–McNeil (LM) approach to fit a
single model that incorporates the analysis for
each cause-specific event.

C. Each of the above approaches requires that
competing risks be independent (noninformative
censoring).

D. Without the independence assumption, methods
for competing risks analysis are unavailable.

E. The Cumulative Incidence Curve (CIC) or the
Conditional Probability Curve (CPC) are
alternatives to the KM curve, when use of a KM
curve has questionable interpretation.

Practice
Exercises

Answer questions 1 to 15 as true or false (circle T or F).

T F 1. A competing risk is an event-type (i.e., failure sta-
tus) that can occur simultaneously with another
event of interest on the same subject.

T F 2. An example of competing risks survival data is a
study in which patients receiving radiotherapy for
head and neck cancer may either die from their
cancer or from some other cause of death.

T F 3. If all competing risks in a given study are different
causes of death, then it is possible to have both
competing risks and recurrent events in the same
study.
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T F 4. Suppose patients with advanced-stage cancer
may die after surgery before their hospital stay is
long enough to get a hospital infection. Then such
deaths from surgery reduce the hospital’s burden
of infection control.

T F 5. The typical approach for analyzing competing
risks using a Cox PH model involves fitting sepa-
rate models for each competing risk ignoring the
other competing risks.

T F 6. Suppose that a cause-specific risk of interest is
development of lung metastasis and a competing
risk is local recurrence of a lung tumor. Then a
patient who develops a local recurrence is treated
as a failure in a competing risk analysis.

T F 7. When there are no competing risks, then any
study subject in the risk set at a given time has
the same risk for failing as any other subject in
the risk set with the same values for covariate pre-
dictors at time t.

T F 8. If, when analyzing competing risks survival data,
it is assumed that censoring is noninformative
(i.e., independent), then a subject in the risk set at
time t is as likely to fail from any competing risk
as to be lost to follow-up.

T F 9. When a sensitivity analysis indicates that a worst-
case scenario gives meaningfully different results
from an analysis that assumes independence of
competing risks, then there is evidence that the
independence assumption is violated.

T F 10. The typical competing risk analysis assumes that
competing risks are independent even if this as-
sumption is not true.

T F 11. The Cumulative Incidence Curve (CIC) provides
risk estimates for the occurrence of a cause-
specific event in the presence of competing risks.

T F 12. CIC = 1 − KM, where KM denotes the Kaplan–
Meier curve.

T F 13. A CIC for a cause-specific event that ignores the
control of covariates does not require the assump-
tion of independent competing risks.

T F 14. A Cumulative Probability Curve (CPC) gives the
probability of experiencing an event c by time t,
from risk c, given that an individual has experi-
enced any of the other competing risks by time t.



Practice Exercises 449

T F 15. If CICc = .4, then CPC = .4/.6 = .667.
T F 16. The Lunn–McNeil (LM) approach fits a single

stratified Cox model using an augmented dataset
to obtain the same results as obtained by fitting
separate Cox models for each cause-specific com-
peting risk.

T F 17. An advantage of the Lunn–McNeil (LM) approach
over the approach that fits separate Cox models is
that the LM approach allows for testing whether
a no-interaction SC model might be preferable to
an interaction SC model.

T F 18. Given the LM model stratified on two cause-
specific events, Cancer and CVD:

h∗
g(t,X) = h∗

0g(t)exp[β1Rx + β2Age

+ δ1(D × Rx) + δ2(D × Age)],
g = 1, 2 where
D = 0 if Ca and = 1 if CVD

then

HRCVD(Rx = 1 vs. Rx = 0) = exp[β1 + δ1]

T F 19. Given the LMalt model for two cause-specific
events, Cancer and CVD:

h′
g(t,X) = h′

0g (t) × exp[δ′
11D1Rx + δ′

12D1Age
+ δ′

21D2Rx + δ′
22D2Age],

g = 1, 2 where

D1 = 1 if Ca or 0 if CVD, and
D2 = 0 if Ca or 1 if CVD,
then

HRCVD(Rx = 1 vs. Rx = 0) = exp[δ′
21]

T F 20. The LMU model that would result if the LM model
of Question 18 were changed to an unstratified
Cox PH model can be written as follows.

h•(t,X) = h•
0(t) exp[β•

1Rx + β•
2Age + δ•

21(D × Rx)
+ δ•

22(D × Age)]
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Consider a hypothetical study of the effect of a bone mar-
row transplant for leukemia on leukemia-free survival, where
transplant failures can be of one of two types: relapse of
leukemia and nonrelapse death (without prior relapse of
leukemia). Suppose that in hospital A, 100 patients undergo
such a transplant and that within the first 4 years post-
transplant, 60 die without relapse by year 2 and 20 relapse
during year 4. Suppose that in hospital B, 100 patients un-
dergo such a transplant but post-transplant, there are 20 non-
relapse deaths by year 1, 15 relapses during year 2, 40 non-
relapse deaths between years 3 and 4, and 5 relapses during
year 4.
21. What are the competing risks in this study?
22. What is the proportion of initial patients in hospitals

A and B, respectively, that have leukemia relapse by 4
years?

The following tables provide the Kaplan–Meier curves for
relapse of leukemia for each study.

Hospital A

tj nj mj qj S(tj)

0 100 0 60 1
2 40 0 0 1
4 40 20 20 .5

Hospital B

tj nj mj qj S(tj)

0 100 0 20 1
1 80 0 0 1
2 80 15 0 0.8125
3 65 0 40 0.8125
4 25 5 20 0.65

23. How have both tables treated the competing risk for
nonrelapse death in the calculation of the KM probabili-
ties?

24. Why are the KM probabilities different at 4 years for each
hospital?
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25. Compute the CIC curves for each hospital using the
following tables.

Hospital A

tj nj mj ĥca(tj) Ŝ(tj−1) ˆIca(tj) CIC(tj)

0 100 0 0
2 40 0 0 1 0 0
4 40 20

Hospital B

tj nj mj ĥca(tj) Ŝ(tj−1) ˆIca(tj) CIC(tj)

0 100 0 0
1 80 0 0 1 0 0
2 80 15
3 65 0
4 25 5

26. Why are the CIC probabilities the same at 4 years?
Consider a hypothetical study to assess the effect of a new
hospital infection control strategy for patients who undergo
heart transplant surgery in a given hospital. The exposure
variable of interest is a binary variable Group (G): G = 0 for
those patients receiving heart transplants from 1992 through
1995 when the previous hospital control strategy was used;
G = 1 for those patients receiving heart transplants from
1996 through 1999 when the new hospital infection control
strategy was adopted. The primary event of interest is getting
a hospital infection after surgery. A competing risk is death
during recovery from surgery without getting a hospital infec-
tion. Control variables being considered are tissue mismatch
score (TMS) at transplant and AGE at transplant. The out-
come variable of interest is time (DAYS after surgery) until a
patient developed a hospital infection.
27. State a cause-specific no-interaction Cox PH model for

assessing the effect of group status (G) on time until a
hospital infection event.

28. When fitting the model given in Question 27, which pa-
tients should be considered censored?

29. Describe or provide a table that would show how the data
on the ith patient should be augmented for input into a
Lunn–McNeil (LM) model for this analysis.
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30. State a LM model that can be used with an augmented
dataset that will provide identical results to those ob-
tained from using the model of Question 27.

31. For the LM model of Question 30, what is the formula
for the hazard ratio for the group effect G, controlling for
TMS and AGE.

32. Describe how you would test whether a no-interaction SC
LM model would be more appropriate than an interaction
SC LM model.

33. State a LMalt model that can be used with an augmented
dataset that will provide identical results to those ob-
tained from using the model of Question 27.

34. For the LMalt model of Question 33, what is the formula
for the hazard ratio for the group effect G, controlling for
TMS and AGE?

Test The dataset shown below describes a hypothetical study of
recurrent bladder cancer. The entire dataset contained 53
patients, each with local bladder cancer tumors who are
followed for up to 30 months after transurethral surgical
excision. Three competing risks being considered are local
recurrence of bladder cancer tumor (event = 1), bladder
metastasis (event = 2), or other metastasis (event = 3). The
variable time denotes survival time up to the occurrence of
one of the three events or censorship from loss to follow-
up, withdrawal, or end of study. The exposure variable of
interest is drug treatment status (tx, 0 = placebo, 1 = treat-
ment A), The covariates listed here are initial number of tu-
mors (num) and initial size of tumors (size) in centimeters.

id event time tx num size

1 1 8 1 1 1
2 0 1 0 1 3
3 0 4 1 2 1
4 0 7 0 1 1
5 0 10 1 5 1
6 2 6 0 4 1
7 0 10 1 4 1
8 0 14 0 1 1
9 0 18 1 1 1

10 3 5 0 1 3
11 0 18 1 1 3
12 1 12 0 1 1
13 2 16 1 1 1
14 0 18 0 1 1
15 0 23 1 3 3

(Continued)
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(Continued)

id event time tx num size

16 3 10 0 1 3
17 1 15 1 1 3
18 0 23 0 1 3
19 2 3 1 1 1
20 3 16 0 1 1
21 1 23 1 1 1
22 1 3 0 3 1
23 2 9 1 3 1
24 2 21 0 3 1
25 0 23 1 3 1
26 3 7 0 2 3
27 3 10 1 2 3
28 1 16 0 2 3
29 1 24 1 2 3
30 1 3 0 1 1
31 2 15 1 1 1
32 2 25 0 1 1
33 0 26 1 1 2
34 1 1 0 8 1
35 0 26 1 8 1
36 1 2 0 1 4
37 1 26 1 1 4
38 1 25 0 1 2
39 0 28 1 1 2
40 0 29 0 1 4
41 0 29 1 1 2
42 0 29 0 4 1
43 3 28 1 1 6
44 1 30 0 1 6
45 2 2 1 1 5
46 1 17 0 1 5
47 1 22 1 1 5
48 0 30 0 1 5
49 3 3 1 2 1
50 2 6 0 2 1
51 3 8 1 2 1
52 3 12 0 2 1
53 0 30 1 2 1

1. Suppose you wish to use these data to determine the ef-
fect of tx on survival time for the cause-specific event of a
local recurrence of bladder cancer. State a no-interaction
Cox PH model for assessing this relationship that adjusts
for the covariates num and size.
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2. When fitting the model given in Question 1, which sub-
jects are considered censored?

3. How would you modify your answers to Questions 1 and
2 if you were interested in the effect of tx on survival time
for the cause-specific event of finding metastatic bladder
cancer?

4. For the model considered in Question 1, briefly describe
how to carry out a sensitivity analysis to determine how
badly the results from fitting this model might be biased
if the assumption of independent competing risks is vi-
olated.

5. The following two tables provide information necessary
for calculating CIC curves for local recurrence of bladder
cancer (event = 1) separately for each treatment group.
The CIC formula used for both tables is given by the
expression

CIC1(tj) =
j∑

j′=1

Î1(t′j) =
j∑

j′=1

Ŝ(tj′−1)ĥ1(tj′)

where ĥ1(tj) = m1j/nj, m1j is the number of local recur-
rent failures at time tj, and S(tj−1) is the overall (event-
free) survival probability for failure from either of the
two competing risks at time tj−1.

tx = 1 (Treatment A)

tj nj d1j ĥ1(tj) Ŝ(tj−1) Î1(tj) CIC1(tj)

0 27 0 0 — — —
2 27 0 0 1 0 0
3 26 0 0 .9630 0 0
4 24 0 0 .8889 0 0
8 23 1 .0435 .8889 .0387 .0387
9 21 0 0 .8116 0 .0387

10 20 0 0 .7729 0 .0387
15 17 1 .0588 .7343 .0432 .0819
16 15 0 0 .6479 0 .0819
18 14 0 0 .6047 0 .0819
22 12 1 .0833 .6047 .0504 .1323
23 11 1 .0910 .5543 .0504 .1827
24 8 1 .1250 .5039 .0630 .2457
26 7 1 .1429 .4409 .0630 .3087
28 4 0 0 .3779 0 .3087
29 2 0 0 .2835 0 .3087
30 1 0 0 .2835 0 .3087
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tx = 1 (Placebo)

tj nj d1j ĥ1(tj) Ŝ(tj−1) Î1(tj) CIC1(tj)

0 26 0 0 — — —
1 26 1 .0400 1 .0400 .0400
2 24 1 .0417 .9615 .0400 .0800
3 23 2 .0870 .9215 .0801 .1601
5 21 0 0 .8413 0 .1601
6 20 0 0 .8013 0 .1601
7 18 0 0 .7212 0 .1601

10 16 0 0 .6811 0 .1601
12 15 1 .0667 .6385 .0426 .2027
14 13 0 0 .6835 0 .2027
16 12 1 .0833 .5534 .0461 .2488
17 10 1 .1000 .4612 .0461 .2949
18 9 0 0 .4150 0 .2949
21 8 0 0 .4150 0 .2949
23 7 0 0 .3632 0 .2949
25 6 1 .1667 .3632 .0605 .3554
29 4 0 0 .2421 0 .3554
30 2 1 0 .2421 0 .3554

a. Verify the CIC1 calculation provided at failure time
tj = 8 for persons in the treatment group (tx = 1); that
is, use the original data to compute ĥ1(tj), Ŝ(tj−1),
Î1(tj), and CIC1(tj), assuming that the calculations
made up to this failure time are correct.

b. Verify the CIC1 calculation provided at failure time
tj = 25 for persons in the placebo group (tx = 0).

c. Interpret the CIC1 values obtained for both the treat-
ment and placebo groups at tj = 30.

d. How can you calculate the CPC1 values for both treat-
ment and placebo groups at tj = 30?
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6. The following output was obtained using separate
models for each of the 3 event-types.

Event = 1

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 −0.6258 0.5445 0.2504 0.535
num 1 0.0243 0.1900 0.8983 1.025
size 1 0.0184 0.1668 0.9120 1.125

Event = 2

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 −0.0127 0.6761 0.9851 0.987
num 1 −0.1095 0.2281 0.6312 0.896
size 1 −0.6475 0.3898 0.0966 0.523

Event = 3

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 −0.3796 0.6770 0.5750 0.684
num 1 −0.1052 0.3135 0.7372 0.900
size 1 −0.0238 0.2177 0.9128 0.976

a. What is the effect of treatment on survival from hav-
ing a local recurrence of bladder cancer, and is it
significant?

b. What is the effect of treatment on survival from de-
veloping metastatic bladder cancer, and is it signifi-
cant?

c. What is the effect of treatment on survival from other
metastatic cancer, and is it significant?
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7. Below is the output from fitting a LM model to the
bladder cancer data.

Var DF Coef Std.Err. p > |z| Haz.ratio

txd2 1 0.6132 0.8681 0.4800 1.846
txd3 1 0.2463 0.8688 0.7768 1.279
numd2 1 −0.1337 0.2968 0.6523 0.875
numd2 1 −0.1295 0.3666 0.7240 0.879
sized2 1 −0.6660 0.4239 0.1162 0.514
sized3 1 −0.0423 0.2742 0.8775 0.959
tx 1 −0.6258 0.5445 0.2504 0.535
num 1 0.0243 0.1900 0.8983 1.025
size 1 0.0184 0.1668 0.9120 1.125

a. State the hazard model formula for the LM model
used for the above output.

b. Determine the estimated hazard ratios for the effect
of each of the 3 cause-specific events based on the
above output.

c. Verify that the estimated hazard ratios computed in
Part b are identical to the hazard ratios computed in
Question 6.

8. Below is the output from fitting a LMalt model to the
bladder cancer data.

Var DF Coef Std.Err. p > |z| Haz.ratio

txd1 1 −0.6258 0.5445 0.2504 0.535
txd2 1 −0.0127 0.6761 0.9851 0.987
txd3 1 −0.3796 0.6770 0.5750 0.684
numd1 1 0.0243 0.1900 0.8983 1.025
numd2 1 −0.1095 0.2281 0.6312 0.896
numd3 1 −0.1052 0.3135 0.7372 0.900
sized1 1 0.0184 0.1668 0.9120 1.125
sized2 1 −0.6475 0.3898 0.0966 0.523
sized3 1 −0.0238 0.2177 0.9128 0.976

a. State the hazard model formula for the LMalt model
used for the above output.

b. Determine the estimated hazard ratios for the effect
of each of the 3 cause-specific events based on the
above output.

c. Verify that the estimated hazard ratios computed in
Part b are identical to the hazard ratios computed in
Questions 6 and 7.
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9. State the formula for a no-interaction SC LM model for
these data.

10. Describe how you would test whether a no-interaction
SC LM model would be more appropriate than an inter-
action SC LM model.

Answers to
Practice
Exercises

1. F: Only one competing risk event can occur at a given time.

2. T

3. F: You can die only once.

4. T

5. F: Competing risks must be treated as censored observa-
tions, rather than ignored.

6. F: A patient who develops a local recurrence will be treated
as censored.

7. F: The statement would be true providing censoring is non-
informative.

8. T

9. F: A sensitivity analysis can never provide explicit evidence
about whether the independence assumption is satisfied;
it can only suggest how biased the results might be if the
assumption is not satisified.

10. T

11. T

12. F: The formula is correct only if there is one risk. See
Section V in the text for the general formula.

13. T

14. F: The correct statement should be: CPC gives the prob-
ability of experiencing an event c by time t, from risk c,
given that an individual has not experienced any of the
other competing risks by time t.
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15. F: the correct formula for CPC is: CPCc = CICc/(1 − CICc′ )
where CICc = .4 and CICc′ = CIC from risks other than c,
where the latter is not necessarily equal to .4.

16. T

17. T

18. T

19. T.

20. F: The correct LMU model is
h•(t,X) = h•

0(t) exp[γ1D + β•
1Rx + β•

2Age + δ•
21(D × Rx)

+ δ•
22(D × Age)]

21. The competing risks are (1) relapse of leukemia and (2)
nonrelapse death.

22. 20/100 = 0.2.

23. Both tables have treated the competing risks as if they were
censored observations.

24. The KM probabilities are different for the two hospitals
because the competing risks contribute a different pattern
of censorship in the two hospitals.

25. The CIC curves for each hospital are calculated as follows.

Hospital A

tj nj mj ĥca(tj) Ŝ(tj−1) Îca(tj) CIC(tj)

0 100 0 0 — — —
2 40 0 0 1 0 0
4 40 20 0.5 0.4 0.20 0.20

Hospital B

tj nj mj ĥca(tj) Ŝ(tj−1) Îca(tj) CIC(tj)

0 100 0 0 — — —
1 80 0 0 1 0 0
2 80 15 0.1875 0.8 0.15 0.15
3 65 0 0 0.65 0 0.15
4 25 5 0.20 0.25 0.05 0.20
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26. The CIC probabilities are the same at 4 years because
they give marginal probabilities that are not influenced
by the pattern of censorship of the competing risks that
are treated as censored. In hospital B, for example, the
marginal probability of 0.15 at year 2 is given by the pro-
portion of the initial risk set of 100 subjects that had a
relapse of leukemia by year 2, regardless of the number
of nonrelapse deaths prior to year 2. Similarly for hospi-
tal B, the marginal probability of .20 at year 4 adds to the
marginal probability at year 2 the proportion of the initial
risk set of 100 subjects that had a relapse between year 2
and year 4, regardless of the number of nonrelapse deaths
that occurred between year 2 and year 4.

27. hHI(t,X) = h0(t) exp[β1HIG + β2HITMS + β3HIAGE]

where HI denotes a hospital infection event

28. Patients who die after surgery without developing a hospi-
tal infection are censored. Also censored are any patients
who are either lost to follow-up or withdraw from the study,
although such patients are unlikely.

29. Augmented Data for LM Approach

Subj Stime Status D1 D2 G TMS AGE

i ti e1i 1 0 Gi TMSi AGEi

i ti e2i 0 0 Gi TMSi AGEi

where e1j = 1 if the ith subject develops a
hospital infection, 0 otherwise

e2j = 1 if ith subject dies after surgery,
0 otherwise

D1 = indicator for hospital infection event

D2 = indicator for death after surgery
event

30. h∗
g(t,X)
g = 1,2

= h∗
0g(t)exp[β1G + β2TMS + β3AGE

+ δ21D2G + δ22D2TMS + δ23D2AGE]

31. HRHI(RX = 1 vs. RX = 0) = exp[β1]
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32. Carry out a likelihood ratio test to compare the following
two models. Full (SC Interaction LM) model:
h∗

g(t,X)
g = 1,2

= h∗
0g(t)exp[β1G + β2TMS + β3AGE

+ δ21D2G + δ22D2TMS + δ23D2AGE]

Reduced (no-interaction SC LM) model:
h∗

g(t,X)
g = 1,2

= h∗
0g(t)exp[β1G + β2TMS + β3AGE]

LR test statistic= −2 ln LR − (−2 ln LF) is distributed χ2
3

under H0: no-interaction model

33. h′
g(t,X)
g = 1,2

= h′
0g(t)exp[β′

1D1G + β′
2D1TMS + β′

3D1AGE

+ δ′
21D2G + δ′

22D2TMS + δ′
23D2AGE]

34. HRHI(RX = 1 vs. RX = 0) = exp[β′
1]



Computer
Appendix:
Survival
Analysis
on the
Computer
In this appendix, we provide examples of computer programs
for carrying out the survival analyses described in this text.
This appendix does not give an exhaustive survey of all com-
puter packages currently available, but rather is intended to
describe the similarities and differences among three of the
most widely used packages. The software packages that we
describe are Stata (version 7.0), SAS (version 8.2), and SPSS
(version 11.5). A complete description of these packages is be-
yond the scope of this appendix. Readers are referred to the
built-in Help functions for each program for further informa-
tion.
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Datasets

Most of the computer syntax and output presented in this ap-
pendix are obtained from running step-by-step survival anal-
yses on the “addicts” dataset. The other dataset that is utilized
in this appendix is the “bladder cancer” dataset for analyses
of recurrent events. The addicts and bladder cancer data are
described below and can be downloaded from our Web site
at http://www.sph.emory.edu/∼dkleinb/surv2.htm. On this
Web site we also provide many of the other datasets that have
been used in the examples and exercises throughout this text.
The data on our Web site are provided in several forms: (1) as
Stata datasets (with a .dta extension), (2) as SAS version 8.2
datasets (with a .sas7bdat extension), (3) as SPSS datasets
(with a .sav extension), and (4) as text datasets (with a .dat
extension).

Addicts Dataset (addicts.dat)

In a 1991 Australian study by Caplehorn et al., two methadone
treatment clinics for heroin addicts were compared to assess
patient time remaining under methadone treatment. A pa-
tient’s survival time was determined as the time, in days, until
the person dropped out of the clinic or was censored. The two
clinics differed according to their live-in policies for patients.
The variables are defined as follows.

ID—Patient ID.
SURVT—The time (in days) until the patient dropped out of the

clinic or was censored.
STATUS—Indicates whether the patient dropped out of the clinic

(coded 1) or was censored (coded 0).
CLINIC—Indicates which methadone treatment clinic the pa-

tient attended (coded 1 or 2).
PRISON—Indicates whether the patient had a prison record

(coded 1) or not (coded 0).
DOSE—A continuous variable for the patient’s maximum

methadone dose (mg/day).

Bladder Cancer Dataset (bladder.dat)

The bladder cancer dataset contains recurrent event outcome
information for 86 cancer patients followed for the recurrence
of bladder cancer tumor after transurethral surgical excision
(Byar and Green, 1980). The exposure of interest is the effect
of the drug treatment of thiotepa. Control variables are the
initial number and initial size of tumors. The data layout is
suitable for a counting processes approach. The variables are
defined as follows.
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ID—Patient ID (may have multiple observations for the same
subject).

EVENT—Indicates whether the patient had a tumor (coded 1) or
not (coded 0).

INTERVAL—A counting number representing the order of the
time interval for a given subject (coded 1 for the subject’s first
time interval, 2 for a subject’s second time interval, etc.).

START—The starting time (in months) for each interval.
STOP—The time of event (in months) or censorship for each

interval.
TX—Treatment status (coded 1 for treatment with thiotepa and

0 for the placebo).
NUM—The initial number of tumor(s).
SIZE—The initial size (in centimeters) of the tumor.

Software

What follows is a detailed explanation of the code and output
necessary to perform the type of survival analyses described in
this text. The rest of this appendix is divided into three broad
sections, one for each of the following software packages,

A. Stata,
B. SAS, and
C. SPSS.

Each of these sections is self-contained, allowing the reader
to focus on the particular statistical package of his or her
interest.

A. Stata
Analyses using Stata are obtained by typing the appropriate
statistical commands in the Stata Command window or in the
Stata Do-file Editor window. The key commands used to per-
form the survival analyses are listed below. These commands
are case sensitive and lowercase letters should be used.

stset—Declares data in memory to be survival data. Used to
define the “time-to-event” variable, the “status” variable, and
other relevant survival variables. Other Stata commands be-
ginning with st utilize these defined variables.

sts list—Produces Kaplan–Meier (KM) or Cox adjusted survival
estimates in the output window. The default is KM survival
estimates.

sts graph—Produces plots of Kaplan–Meier (KM) survival es-
timates. This command can also be used to produce Cox ad-
justed survival plots.
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sts generate—Creates a variable in the working dataset that con-
tains Kaplan–Meier or Cox adjusted survival estimates.

sts test—Used to perform statistical tests for the equality of sur-
vival functions across strata.

stphplot—Produces plots of log–log survival against the log of
time for the assessment of the proportional hazards (PH) as-
sumption. The user can request KM log–log survival plots or
Cox adjusted log–log survival plots.

stcoxkm—produces KM survival plots and Cox adjusted survival
plots on the same graph.

stcox—Used to run a Cox proportional hazard model, a stratified
Cox model, or an extended Cox model (i.e., containing time-
varying covariates).

stphtest—Performs statistical tests on the PH assumption based
on Schoenfeld residuals. Use of this command requires that a
Cox model be previously run with the command stcox and the
schoenfeld( )option.

streg—Used to run parametric survival models.

Four windows will appear when Stata is opened. These win-
dows are labeled Stata Command, Stata Results, Review, and
Variables. The user can click on File → Open to select a work-
ing dataset for analysis. Once a dataset is selected, the names
of its variables appear in the Variables window. Commands
are entered in the Stata Command window. The output gen-
erated by commands appears in the Results window after the
return key is pressed. The Review window preserves a his-
tory of all the commands executed during the Stata session.
The commands in the Review window can be saved, copied, or
edited as the user desires. Commands can also be run from the
Review window by double-clicking on the command. Com-
mands can also be saved in a file by clicking on the log button
on the Stata tool bar.

Alternatively, commands can be typed or pasted into the Do-
file Editor. The Do-file Editor window is activated by clicking
on Window → Do-file Editor or by simply clicking on the
Do-file Editor button on the Stata tool bar. Commands are
executed from the Do-file Editor by clicking on Tools → Do.
The advantage of running commands from the Do-file Editor
is that commands need not be entered and executed one at a
time as they do from the Stata Command window. The Do-
file Editor serves a similar function to that of the program
editor in SAS. In fact, by typing #delim in the Do-file Editor
window, the semicolon becomes the delimiter for completing
Stata statements (as in SAS) rather than the default carriage
return.
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The survival analyses demonstrated in Stata are as follows.

1. Estimating survival functions (unadjusted) and compar-
ing them across strata;

2. Assessing the PH assumption using graphical approaches;
3. Running a Cox PH model;
4. Running a stratified Cox model;
5. Assessing the PH assumption with a statistical test;
6. Obtaining Cox adjusted survival curves;
7. Running an extended Cox model;
8. Running parametric models;
9. Running frailty models; and

10. Modeling recurrent events.

The first step is to activate the addicts dataset by clicking on
File → Open and selecting the Stata dataset, addicts.dta.
Once this is accomplished, you will see the command use
“addicts.dta”, clear in the review window and results win-
dow. This indicates that the addicts dataset is activated in
Stata’s memory.

To perform survival analyses, you must indicate which vari-
able is the “time-to-event” variable and which variable is the
“status” variable. Rather than program this in every survival
analysis command, Stata provides a way to program it once
with the stset command. All survival commands beginning
with st utilize the survival variables defined by stset as long
as the dataset remains in active memory. The code to define
the survival variables for the addicts data is as follows.

stset survt, failure(status ==1) id(id)

Following the word stset comes the name of the “time-to-
event” variable. Options for Stata commands follow a comma.
The first option used is to define the variable and value that in-
dicates an event (or failure) rather than a censorship. Without
this option, Stata assumes all observations had an event (i.e.,
no censorships). Notice two equal signs are used to express
equality. A single equal sign is used to designate assignment.
The next option defines the id variable as the variable, ID. This
is unnecessary with the addicts dataset because each observa-
tion represents a different patient (cluster). However, if there
were multiple observations and multiple events for a single
subject (cluster), Stata can provide robust variance estimates
appropriate for clustered data.
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The stset command will add four new variables to the dataset.
Stata interprets these variables as follows:

t—the “time-to-event” variable;
d—the “status variable” (coded 1 for an event, 0 for a censor-

ship);
t0—the beginning “time variable”. All observations start at time

0 by default; and
st—indicates which variables are used in the analysis. All obser-

vations are used (coded 1) by default.

To see the first 10 observations printed in the output window,
enter the command:

list in 1/10

The command stdes provides descriptive information (output
below) of survival time.

stdes

failure -d: status == 1
analysis time -t: survt

id: id

----------per subject----------| |
Category total mean min median max
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
no. of subjects 238
no. of records 238 1 1 1 1

(first) entry time 0 0 0 0
(final) exit time 402.5714 2 367.5 1076

subjects with gap 0
time on gap if gap 0 . . . .
time at risk 95812 402.5714 2 367.5 1076

failures 150 .6302521 0 1 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The commands strate and stir can be used to obtain incident
rate comparisons for different categories of specified vari-
ables. The strate command lists the incident rates by CLINIC
and the stir command gives rate ratios and rate differences.
Type the following commands one at a time (output omitted).

strate clinic
stir clinic



Stata Computer Appendix: Survival Analysis on the Computer 469

For the survival analyses that follow, it is assumed that the
command stset has been run for the addicts dataset, as
demonstrated on the previous page.

1. ESTIMATING SURVIVAL FUNCTIONS
(UNADJUSTED) AND COMPARING
THEM ACROSS STRATA

To obtain Kaplan–Meier survival estimates use the command
sts list. The code and output follow.

sts list

failure -d: status == 1
analysis time -t: survt

id: id

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 238 0 2 1.0000 . . .
7 236 1 0 0.9958 0.0042 0.9703 0.9994
13 235 1 0 0.9915 0.0060 0.9665 0.9979
17 234 1 0 0.9873 0.0073 0.9611 0.9959
19 233 1 0 0.9831 0.0084 0.9555 0.9936
26 232 1 0 0.9788 0.0094 0.9499 0.9911
28 231 0 2 0.9788 0.0094 0.9499 0.9911
29 229 1 0 0.9745 0.0103 0.9442 0.9885
30 228 1 0 0.9703 0.0111 0.9386 0.9857
33 227 1 0 0.9660 0.0118 0.9331 0.9828
. .
. .
. .

905 8 0 1 0.1362 0.0364 0.0748 0.2159
932 7 0 2 0.1362 0.0364 0.0748 0.2159
944 5 0 1 0.1362 0.0364 0.0748 0.2159
969 4 0 1 0.1362 0.0364 0.0748 0.2159
1021 3 0 1 0.1362 0.0364 0.0748 0.2159
1052 2 0 1 0.1362 0.0364 0.0748 0.2159
1076 1 0 1 0.1362 0.0364 0.0748 0.2159

If we wish to stratify by CLINIC and compare the survival
estimates side to side for specified time points, we use the
by( ) and compare( ) option. The code and output follow.
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sts list, by(clinic) compare at (0 20 to 1080)

failure -d: status == 1
analysis time -t: survt

id: id

Survivor Function
clinic 1 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
time 0 1.0000 1.0000

20 0.9815 0.9865
40 0.9502 0.9595
60 0.9189 0.9459
80 0.9000 0.9320
100 0.8746 0.9320
120 0.8681 0.9179
140 0.8422 0.9038
160 0.8093 0.8753
180 0.7690 0.8466
200 0.7420 0.8323
220 0.6942 0.8179

.

.

.
840 0.0725 0.5745
860 0.0543 0.5745
880 0.0543 0.5171
900 0.0181 0.5171
920 . 0.5171
940 . 0.5171
960 . 0.5171
980 . 0.5171
1000 . 0.5171
1020 . 0.5171
1040 . 0.5171
1060 . 0.5171
1080 . .

Notice that the survival rate for CLINIC = 2 is higher than
CLINIC = 1. Other survival times could have been requested
using the compare( ) option.

To graph the Kaplan–Meier survival function (against time),
use the code

sts graph
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The code and output that provide a graph of the Kaplan–Meier
survival function stratified by CLINIC follow.

sts graph, by(clinic)

clinic 2

clinic 1

0

0.00

0.25

0.50

0.75

1.00

500 1000

Kaplan-Meier survival estimates, by clinic

analysis time

The failure option graphs the failure function (the cumulative
risk) rather than the survival (zero to one rather than one to
zero). The code follows (output omitted).

sts graph, by(clinic) failure

The code to run the log rank test on the variable CLINIC (and
output) follows.

sts test clinic

failure -d: status == 1
analysis time -t: survt

id: id

Log-rank test for equality of survivor functions

Events Events
clinic observed expected
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 122 90.91
2 28 59.09
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Total 150 150.00

chi2(1) = 27.89
Pr>chi2 = 0.0000
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The Wilcoxon, Tarone–Ware, Peto, and Flemington–
Harrington tests can also be requested. These tests are
variations of the log rank test but weight each observation
differently. The Wilcoxon test weights the jth failure time by
nj (the number still at risk). The Tarone–Ware test weights
the jth failure time by

√
n j . The Peto test weights the jth

failure time by the survival estimate s̃(t j ) calculated over
all groups combined. This survival estimate s̃(t j ) is similar
but not exactly equal to the Kaplan–Meier survival estimate.
The Flemington–Harrington test uses the Kaplan–Meier
survival estimate ŝ(t) over all groups to calculate its weights
for the jth failure time ŝ(t j−1)p[1 − ŝ(t j−1)]q , so it takes two
arguments (p and q). The code follows (output omitted).

sts test clinic, wilcoxon
sts test clinic, tware
sts test clinic, peto
sts test clinic, fh(1,3)

Notice that the default test for the sts test command is the log
rank test. The choice of which weighting of the test statistic to
use (e.g., log rank or Wilcoxon) depends on which test is be-
lieved to provide the greatest statistical power, which in turn
depends on how it is believed the null hypothesis is violated.
However, one should make an a priori decision on which sta-
tistical test to use rather than fish for a desired p-value.

A stratified log rank test for CLINIC (stratified by PRISON)
can be run with the strata option. With the stratified approach,
the observed minus expected number of events is summed
over all failure times for each group within each stratum
and then summed over all strata. The code follows (output
omitted).

sts test clinic, strata(prison)

The sts generate command can be used to create a new vari-
able in the working dataset containing the KM survival esti-
mates. The following code defines a new variable called SKM
(the variable name is the user’s choice) that contains KM sur-
vival estimates stratified by CLINIC.

sts generate skm=s, by(clinic)

The ltable command produces life tables. Life tables are an
alternative approach to Kaplan–Meier that are particularly
useful if you do not have individual level data. The code and
output that follow provide life table survival estimates, strat-
ified by CLINIC, at the time points (in days) specified by the
interval( ) option.
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ltable survt status,by (clinic) interval(60 150 200 280 365 730 1095)

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
clinic = 1
0 . 163 13 4 0.9193 0.0215 0.8650 0.9523
60 150 146 14 6 0.8293 0.0300 0.7609 0.8796
150 200 126 13 3 0.7427 0.0352 0.6661 0.8043
200 280 110 17 2 0.6268 0.0393 0.5446 0.6984
280 365 91 10 6 0.5556 0.0408 0.4720 0.6313
365 730 75 41 15 0.2181 0.0367 0.1509 0.2934
730 1095 19 14 5 0.0330 0.0200 0.0080 0.0902
clinic = 2
0 . 75 4 2 0.9459 0.0263 0.8624 0.9794
60 150 69 5 3 0.8759 0.0388 0.7749 0.9334
150 200 61 3 0 0.8328 0.0441 0.7242 0.9015
200 280 58 5 1 0.7604 0.0508 0.6429 0.8438
280 365 52 3 2 0.7157 0.0540 0.5943 0.8065
365 730 47 7 23 0.5745 0.0645 0.4385 0.6890
730 1095 17 1 16 0.5107 0.0831 0.3395 0.6584

2. ASSESSING THE PH ASSUMPTION USING
GRAPHICAL APPROACHES

Several graphical approaches for the assessment of the PH
assumption for the variable CLINIC are demonstrated:

1. Log–log Kaplan–Meier survival estimates (stratified by
CLINIC) plotted against time (or against the log of time);

2. Log–log Cox adjusted survival estimates (stratified by
CLINIC) plotted against time; and

3. Kaplan–Meier survival estimates and Cox adjusted survival
estimates plotted on the same graph.

All three approaches are somewhat subjective yet, it is hoped,
informative. The first two approaches are based on whether
the log–log survival curves are parallel for different levels of
CLINIC. The third approach is to determine if the COX ad-
justed survival curve (not stratified) is close to the KM curve.
In other words, are predicted values from the PH model (from
COX) close to the “observed” values using KM?

The first two approaches use the stphplot command whereas
the third approach uses the stcoxkm command. The code and
output for the log–log Kaplan–Meier survival plots follow.
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stphplot, by(clinic) nonegative
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The left side of the graph seems jumpy for CLINIC = 1 but it
only represents a few events. It also looks as if there is some
separation between the plots at the later times (right side).
The nonegative option in the code requests log(−log) curves
rather than the default −log(−log) curves. The choice is ar-
bitrary. Without the option the curves would go downward
rather than upward (left to right).

Stata (as well as SAS) plots log(survival time) rather than sur-
vival time on the horizontal axis by default. As far as check-
ing the parallel assumption, it does not matter if log(survival
time) or survival time is on the horizontal axis. However,
if the log–log survival curves look like straight lines with
log(survival time) on the horizontal axis, then there is evi-
dence that the “time-to-event” variable follows a Weibull dis-
tribution. If the slope of the line equals one, then there is
evidence that the survival time variable follows an exponen-
tial distribution, a special case of the Weibull distribution. For
these situations, a parametric survival model can be used.

It may be visually more informative to graph the log–log sur-
vival curves against survival time (rather than log survival
time). The nolntime option can be used to put survival time
on the horizontal axis. The code and output follow.
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stphplot, by(clinic) nonegative nolntime

clinic = 1 clinic = 2
1.38907
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analysis time

The graph suggests that the curves begin to diverge over time.

The stphplot command can also be used to obtain log–log
Cox adjusted survival estimates. The code follows.

stphplot, strata(clinic) adjust(prison dose) nonegative nolntime

The log–log curves are adjusted for PRISON and DOSE using
a stratified COX model on the variable CLINIC. The mean
values of PRISON and DOSE are used for the adjustment.
The output follows.

clinic = 1 clinic = 2
1.65856
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analysis time

The Cox adjusted curves look very similar to the KM curves.
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The stcoxkm command is used to compare Kaplan–Meier
survival estimates and Cox adjusted survival estimates plotted
on the same graph. The code and output follow.

stcoxkm, by(clinic)

Observed: clinic = 1

Predicted: clinic = 1

Observed: clinic = 2

Predicted: clinic = 2
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analysis time

The KM and adjusted survival curves are very close together
for CLINIC = 1 and less so for CLINIC = 2. These graphical
approaches suggest there is some violation with the PH as-
sumption. The predicted values are Cox adjusted for CLINIC,
and therefore assume the PH assumption. Notice that the pre-
dicted survival curves are not parallel by CLINIC even though
we are adjusting for CLINIC. It is the log–log survival curves,
rather than the survival curves, that are forced to be parallel
by Cox adjustment.

The same graphical analyses can be performed with PRISON
and DOSE. However, DOSE would have to be categorized
since it is a continuous variable.

3. RUNNING A COX PH MODEL

For a Cox PH model, the key assumption is that the hazard
is proportional across different patterns of covariates. The
first model that is demonstrated contains all three covariates:
PRISON, DOSE, and CLINIC. In this model, we are assuming
the same baseline hazard for all possible patterns of these co-
variates. In other words, we are accepting the PH assumption
for each covariate (perhaps incorrectly). The code and output
follow.
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stcox prison clinic dose, nohr

failure -d: status == 1
analysis time -t: survt

id: id

Iteration 0: log likelihood = -705.6619
Iteration 1: log likelihood = -674.54907
Iteration 2: log likelihood = -673.407
Iteration 3: log likelihood = -673.40242
Iteration 4: log likelihood = -673.40242
Refining estimates:
Iteration 0: log likelihood = -673.40242

Cox regression -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 64.52
Log likelihood = -673.40242 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .3265108 .1672211 1.95 0.051 -.0012366 .6542581
clinic -1.00887 .2148709 -4.70 0.000 -1.430009 -.5877304
dose -.0353962 .0063795 -5.55 0.000 -.0478997 -.0228926

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The output indicates that it took five iterations for the log
likelihood to converge at −673.40242. The iteration history
typically appears at the top of Stata model output, however,
the iteration history will subsequently be omitted. The final ta-
ble lists the regression coefficients, their standard errors, and
a Wald test statistic (z) for each covariate, with corresponding
p-value and 95% confidence interval.

The nohr option in the stcox command requests the regres-
sion coefficients rather than the default exponentiated coef-
ficients (hazard ratios). If you want the exponentiated coeffi-
cients, omit the nohr option. The code and output follow.
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stcox prison clinic dose

Cox regression -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 64.52
Log likelihood = -673.40242 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Haz. Ratio Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison 1.386123 .231789 1.95 0.051 .9987642 1.923715
clinic .3646309 .0783486 -4.70 0.000 .2393068 .5555868
dose .965223 .0061576 -5.55 0.000 .9532294 .9773675

This table contains the hazard ratios, its standard errors, and
corresponding confidence intervals. Notice that you do not
need to supply the “time-to event” variable or the status vari-
able when using the stcox command. The stcox command
uses the information supplied from the stset command. A
Cox model can also be run using the cox command, which
does not rely on the stset command having previously been
run. The code follows.

cox survt prison clinic dose, dead(status)

Notice that with the cox command, we have to list the variable
SURVT. The dead() option is used to indicate that the variable
STATUS distinguishes events from censorship. The variable
used with the dead() option needs to be coded nonzero for
events and zero for censorships. The output from the cox
command follows.

Cox regression -- Breslow method for ties
Entry time 0 Number of obs = 238

LR chi2(3) = 64.52
Prob > chi2 = 0.0000

Log likelihood = -673.40242 Pseudo R2 = 0.0457

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
survt
status Coef. Std. Err. z p>|z| [95% Conf. Interval]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .3265108 .1672211 1.95 0.051 -.0012366 .6542581
clinic -1.00887 .2148709 -4.70 0.000 -1.430009 -.5877304
dose -.0353962 .0063795 -5.55 0.000 -.0478997 -.0228926

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The output is identical to that obtained from the stcox com-
mand except that the regression coefficients are given by de-
fault. The hr option for the cox command supplies the expo-
nentiated coefficients.

Notice in the previous output that the default method of han-
dling ties (i.e., when multiple events happen at the same time)
is the Breslow method. If you wish to use more exact methods
you can use the exactp option (for the exact partial likelihood)
or the exactm option (for the exact marginal likelihood) in the
stcox or cox command. The exact methods are computation-
ally more intensive and typically have a slight impact on the
parameter estimates. However, if there are a lot of events that
occur at the same time then exact methods are preferred. The
code and output follow.

stcox prison clinic dose,nohr exactm

Cox regression -- exact marginal likelihood

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 64.56
Log likelihood = -666.3274 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .326581 .1672306 1.95 0.051 -.0011849 .6543469
clinic -1.009906 .2148906 -4.70 0.000 -1.431084 -.5887285
dose -.0353694 .0063789 -5.54 0.000 -.0478718 -.0228669

Suppose you are interested in running a Cox model with two
interaction terms with PRISON. The generate command can
be used to define new variables. The variables CLIN PR and
CLIN DO are product terms that are defined from CLINIC ×
PRISON and CLINIC × DOSE. The code follows.

generate clin pr=clinic∗prison
generate clin do=clinic∗dose

Type describe or list to see that the new variables are in the
working dataset.
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The following code runs the Cox model with the two interac-
tion terms.

stcox prison clinic dose clin pr clin do, nohr

Cox regression -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(5) = 68.12
Log likelihood = -671.59969 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Coef. Std. Err. z P>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison 1.191998 .5413685 2.20 0.028 .1309348 2.253061
clinic .1746985 .893116 0.20 0.845 -1.575777 1.925174
dose -.0193175 .01935 -1.00 0.318 -.0572428 .0186079

clin-pr -.7379931 .4314868 -1.71 0.087 -1.583692 .1077055
clin-do -.0138608 .0143275 -0.97 0.333 -.0419422 .0142206

The lrtest command can be used to perform likelihood ratio
tests. For example, to perform a likelihood ratio test on the
two interaction terms CLIN PR and CLIN DO in the preced-
ing model, we can save the −2 log likelihood statistic of the
full model in the computer’s memory by typing the following
command.

lrtest, saving(0)

Now the reduced model (without the interaction terms) can
be run (output omitted) by typing:

stcox prison clinic dose

After the reduced model is run, the following command pro-
vides the results of the likelihood ratio test comparing the full
model (with the interaction terms) to the reduced model.

lrtest
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The resulting output follows.

Cox: likelihood-ratio test chi2(2) = 3.61
Prob > chi2 = 0.1648

The p-value of 0.1648 is not significant at the alpha = 0.05
level.

4. RUNNING A STRATIFIED COX MODEL

If the proportional hazard assumption is not met for the vari-
able CLINIC, but is met for the variables PRISON and DOSE,
then a stratified Cox analysis can be performed. The stcox
command can be used to run a stratified Cox model. The
following code (with output) runs a Cox model stratified on
CLINIC.

stcox prison dose, strata(clinic)

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138
dose .9654655 .0062418 -5.44 0.000 .953309 .977777

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Stratified by clinic

The strata() option allows up to five stratified variables.

A stratified Cox model can be run including the two interac-
tion terms. Recall that the generate command created these
variables in the previous section. This model allows for the
effect of PRISON and DOSE to differ for different values of
CLINIC. The code and output follow.
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stcox prison dose clin pr clin do, strata(clinic) nohr

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(4) = 35.81
Log likelihood = -596.77891 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison 1.087282 .5386163 2.02 0.044 .0316135 2.142951
dose -.0348039 .0197969 -1.76 0.079 -.0736051 .0039973

clin-pr -.584771 .4281291 -1.37 0.172 -1.423889 .2543465
clin-do -.0010622 .014569 -0.07 0.942 -.0296169 .0274925

Stratified by clinic

Suppose we wish to estimate the hazard ratio for PRISON =
1 vs. PRISON = 0 for CLINIC = 2. This hazard ratio can be
estimated by exponentiating the coefficient for prison plus
2 times the coefficient for the clinic–prison interaction term.
This expression is obtained by substituting the appropriate
values into the hazard in both the numerator (for PRISON =
1) and denominator (for PRISON = 0) (see below).

HR = h0(t) exp[1β1 + β2DOSE + (2)(1)β3 + β4CLIN DO]
h0(t) exp[0β1 + β2DOSE + (2)(0)β3 + β4CLIN DO]

= exp(β1 + 2β3)

The lincom command can be used to exponentiate linear
combinations of parameters. Run this command directly af-
ter running the model to estimate the HR for PRISON where
CLINIC = 2. The code and output follow.

lincom prison+2∗clin pr, hr

(1) prison + 2.0 clin-pr = 0.0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Haz. Ratio Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(1) .9210324 .3539571 -0.21 0.831 .4336648 1.956121
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Models can also be run on a subset portion of the data using
the if statement. The following code (with output) runs a Cox
model on the data where CLINIC = 2.

stcox prison dose if clinic==2

Cox regression -- Breslow method for ties

No. of subjects = 75 Number of obs = 75
No. of failures = 28
Time at risk = 36254

LR chi2(2) = 9.70
Log likelihood = -104.37135 Prob > chi2 = 0.0078

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t
-d Haz. Ratio Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .9210324 .3539571 -0.21 0.831 .4336648 1.956121
dose .9637452 .0118962 -2.99 0.003 .9407088 .9873457

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The hazard ratio estimates for PRISON = 1 vs. PRISON = 0
(for CLINIC = 2) are exactly the same using the stratified Cox
approach with product terms and the subset data approach
(0.9210324).

5. ASSESSING THE PH ASSUMPTION USING
A STATISTICAL TEST

The stphtest command can be used to perform a statistical
test of the PH assumption. A statistical test gives objective
criteria for assessing the PH assumption compared to using
the graphical approach. This does not mean that this statisti-
cal test is better than the graphical approach. It is just more
objective. In fact, the graphical approach is generally more
informative for descriptively characterizing the form of a PH
violation.

The command stphtest outputs a PH global test for all the
covariates simultaneously and can also be used to obtain a
test for each covariate separately with the detail option. To
run these tests, you must obtain Schoenfeld residuals for the
global test, and Schoenfeld scaled residuals for separate tests
with each covariate. The idea behind the PH test is that if
the PH assumption is satisfied, then the residuals should not
be correlated with survival time (or ranked survival time). On
the other hand, if the residuals tend to be positive for subjects
who become events at a relatively early time and negative
for subjects who become events at a relatively late time (or
vice versa), then there is evidence that the hazard ratio is not
constant over time (i.e., PH assumption is violated).
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Before the stphtest can be implemented, the stcox com-
mand needs to be run to obtain the Schoenfeld residuals
(with the schoenfeld() option) and the scaled Schoenfeld
residuals (with the scaledsch() option). In the parentheses
are the names of newly defined variables; schoen∗ creates
SCHOEN1, SCHOEN2, and SCHOEN3 whereas scaled∗ cre-
ates SCALED1, SCALED2, and SCALED3. These variables
contain the residuals for PRISON, DOSE, and CLINIC, re-
spectively (the order that the variables were entered in the
model). The user is free to type any variable name in the paren-
theses. The Schoenfeld residuals are used for the global test
and the scaled Schoenfeld residuals are used for the testing
of the PH assumption for individual variables.

stcox prison dose clinic, schoenfeld(schoen∗) scaledsch(scaled∗)

Once the residuals are defined, the stphtest command can be
run. The code and output follow.

stphtest, rank detail

Test of proportional hazards assumption
Time: Rank(t)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

rho chi2 df Prob>chi2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison -0.04645 0.32 1 0.5689
dose 0.08975 1.08 1 0.2996
clinic -0.24927 10.44 1 0.0012
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
global test 12.36 3 0.0062
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The tests suggest that the PH assumption is violated for
CLINIC with the p-value at 0.0012. The tests do not suggest
violation of the PH assumption for PRISON or DOSE.

The plot() option of the stphtest command can be used to
produce a plot of the scaled Schoenfeld residuals for CLINIC
against survival time ranking. If the PH assumption is met, the
fitted curve should look horizontal because the scaled Schoen-
feld residuals would be independent of survival time. The code
and graph follow.

stphtest,rank plot(clinic)
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The fitted curve slopes slightly downward (not horizontally).

6. OBTAINING COX ADJUSTED SURVIVAL CURVES

Adjusted survival curves can be obtained with the sts graph
command. Adjusted survival curves depend on the pattern
of covariates. For example, the adjusted survival estimates
for a subject with PRISON = 1, CLINIC = 1, and DOSE =
40 are generally different than for a subject with PRISON =
0, CLINIC = 2, and DOSE = 70. The sts graph command
produces adjusted baseline survival curves. The following
code produces an adjusted survival plot with PRISON = 0,
CLINIC = 0, and DOSE = 0 (output omitted).

sts graph, adjustfor(prison dose clinic)

It is probably of more interest to create adjusted plots for rea-
sonable patterns of covariates (CLINIC = 0 is not even a valid
value). Suppose we are interested in graphing the adjusted
survival curve for PRISON = 0, CLINIC = 2, and DOSE =
70. We can create new variables with the generate command
that can be used with the sts graph command.

generate clinic2=clinic-2
generate dose70=dose-70

These variables (PRISON, CLINIC2, and DOSE70) produce
the desired pattern of covariate when each is set to zero. The
following code produces the desired results.

sts graph, adjustfor(prison dose70 clinic2)
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Adjusted stratified Cox survival curves can be obtained with
the strata() option. The following code creates two survival
curves stratified by clinic (CLINIC = 1, PRISON = 0, and
DOSE = 70) and (CLINIC = 2, PRISON = 0, and DOSE =
70).

sts graph, strata(clinic) adjustfor(prison dose70)

Survivor functions, by clinic
adjusted for prison dose70
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The adjusted curves suggest there is a strong effect from
CLINIC on survival.
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Suppose the interest is in comparing adjusted survival plots
of PRISON = 1 to PRISON = 0 stratified by CLINIC. In this
setting, the sts graph command cannot be used directly be-
cause we cannot simultaneously define both levels of prison
(PRISON = 1 and PRISON = 0) as the baseline level (recall
sts graph plots only the baseline survival function). How-
ever, survival estimates can be obtained using the sts gener-
ate command twice; once where PRISON = 0 is defined as
baseline and once where PRISON = 1 is defined as baseline.
The following code creates variables containing the desired
adjusted survival estimates.

generate prison1=prison-1
sts generate scox0=s, strata(clinic) adjustfor(prison dose70)
sts generate scox1=s, strata(clinic) adjustfor(prison1 dose70)

The variables SCOX1 and SCOX0 contain the survival esti-
mates for PRISON = 1 and PRISON = 0, respectively, adjust-
ing for dose and stratifying by clinic. The graph command is
used to plot these estimates. If you are using a higher version
of Stata than Stata 7.0 (e.g., Stata 8.0), then you should re-
place the graph command with the graph7 command. The
code and output follow.

graph scox0 scox1 survt, twoway symbol([clinic] [clinic]) xlabel(365,730,1095)

1

.009935

365 730 1095

survival time in days

S(t+0), adjusted S(t+0), adjusted

We can also graph PRISON = 1 and PRISON = 0 with the
data subset where CLINIC = 1. The option twoway requests
a two-way scatterplot. The options symbol, xlabel, and title
request the symbols, axis labels, and title, respectively.
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graph7 scox0 scox1 survt if clinic==1, twoway symbol(ox) xlabel(365,730,1095)
t1(“symbols O for prison=0, × for prison=1”) title(“subsetted by clinic==1”)

1

.009935

365 730 1095

survival time in days
subset by clinic==1

symbols   O for prison=0, × for prison=1

7. RUNNING AN EXTENDED COX MODEL

If the PH assumption is not satisfied, a possible strategy is to
run a stratified Cox model. Another strategy is to run a Cox
model with time-varying covariates (an extended Cox model).
The challenge of running an extended Cox model is to choose
the appropriate function of survival time to include in the
model.

Suppose we want to include a time-dependent covariate
DOSE times the log of time. This product term could be appro-
priate if the hazard ratio comparing any two levels of DOSE
monotonically increases (or decreases) over time. The tvc op-
tion() of the stcox command can be used to declare DOSE a
time-varying covariate that will be multiplied by a function of
time. The specification of that function of time is stated in the
texp option with the variable t representing time. The code
and output for a model containing the time-varying covariate,
DOSE × ln( t), follow.



Stata Computer Appendix: Survival Analysis on the Computer 489

stcox prison clinic dose, tvc(dose) texp( ln( t)) nohr

Cox regression -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(4) = 66.29
Log likelihood = -672.51694 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rh

prison .3404817 .1674672 2.03 0.042 .012252 .6687113
clinic -1.018682 .215385 -4.73 0.000 -1.440829 -.5965352
dose -.0824307 .0359866 -2.29 0.022 -.1529631 -.0118982

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
t

dose .0085751 .0064554 1.33 0.184 -.0040772 .0212274
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
note: second equation contains variables that continuously vary

with respect to time; variables interact with current
values of ln(-t).

The parameter estimate for the time-dependent covariate
DOSE × ln( t) is .0085751, however, it is not statistically sig-
nificant with a Wald test p-value of 0.184.

A Heaviside function can also be used. The following code
runs a model with a time-dependent variable equal to CLINIC
if time is greater than or equal to 365 days and 0 other-
wise.

stcox prison dose clinic, tvc(clinic) texp(-t >=365) nohr

Stata recognizes the expression ( t >= 365) as taking the value
1 if survival time is ≥365 days and 0 otherwise. The output
follows.
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Cox regression -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(4) = 74.17
Log likelihood = -668.57443 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rh

prison .377704 .1684024 2.24 0.025 .0476414 .7077666
dose -.0355116 .0064354 -5.52 0.000 -.0481247 -.0228985

clinic -.4595628 .2552911 -1.80 0.072 -.959924 .0407985
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
t

clinic -1.368665 .4613948 -2.97 0.003 -2.272982 -.464348
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
note: second equation contains variables that continuously vary

with respect to time; variables interact with current
values of -t>=365.

Unfortunately, the texp option can only be used once in the
stcox command. This makes it more difficult to run the equiv-
alent model with two Heaviside functions. However, it can be
accomplished using the stsplit command, which adds extra
observations to the working dataset. The following code cre-
ates a variable called V1 and adds new observations to the
dataset.

stsplit v1, at(365)

After the above stsplit command is executed, any subject fol-
lowed more than 365 days is represented by two observations
rather than one. For example, the first subject (ID = 1) had
an event on the 428th day; the first observation for that sub-
ject shows no event between 0 and 365 days whereas the sec-
ond observation shows an event on the 428th day. The newly
defined variable v1 has the value 365 for observations with
survival time exceeding or equal to 365 and 0 otherwise. The
following code lists the first 10 observations for the requested
variables (output follows).
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list id t0 t d clinic v1 in 1/10

id -t0 -t -d clinic v1
1. 1 0 365 0 1 0
2. 1 365 428 1 1 365
3. 2 0 275 1 1 0
4. 3 0 262 1 1 0
5. 4 0 183 1 1 0
6. 5 0 259 1 1 0
7. 6 0 365 0 1 0
8. 6 365 714 1 1 365
9. 7 0 365 0 1 0
10. 7 365 438 1 1 365

With the data in this form, two Heaviside functions can actu-
ally be defined in the data using the following code.

generate hv2=clinic∗(v1/365)
generate hv1=clinic∗(1-(v1/365))

The following code and output list a sample of the observa-
tions (in 159/167) with the observation number suppressed
(the noobs option).

list id t0 t clinic v1 hv1 hv2 in 159/167, noobs

id -t0 -t clinic v1 hv1 hv2
100 0 365 1 0 1 0
100 365 749 1 365 0 1
101 0 150 1 0 1 0
102 0 365 1 0 1 0
102 365 465 1 365 0 1
103 0 365 2 0 2 0
103 365 708 2 365 0 2
104 0 365 2 0 2 0
104 365 713 2 365 0 2

With the two Heaviside functions defined in the split data, a
time-dependent model using these functions can be run with
the following code (the output follows).
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stcox prison clinic dose hv1 hv2, nohr

No. of subjects = 238 Number of obs = 360
No. of failures = 150
Time at risk = 95812

LR chi2(4) = 74.17
Log likelihood = -668.57443 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .377704 .1684024 2.24 0.025 .0476414 .7077666
dose -.0355116 .0064354 -5.52 0.000 -.0481247 -.0228985
hv1 -.4595628 .2552911 -1.80 0.072 -.959924 .0407985
hv2 -1.828228 .385946 -4.74 0.000 -2.584668 -1.071788

The stsplit command is complicated but it offers a powerful
approach for manipulating the data to accommodate time-
varying analyses.

If you wish to return the data to their previous form, drop the
variables that were created from the split and then use the
stjoin command:

drop v1 hv1 hv2
stjoin

It is possible to split the data at every single failure time, but
this uses a large amount of memory. However, if there is only
one time-varying covariate in the model, the simplest way
to run an extended Cox model is by using the tvc and texp
options with the stcox command.

One should not confuse an individual’s survival time variable
(the outcome variable) with the variable used to define the
time-dependent variable ( t in Stata). The individual’s survival
time variable is a time-independent variable. The time of the
individual’s event (or censorship) does not change. A time-
dependent variable, on the other hand, is defined so that it
can change its values over time.

8. RUNNING PARAMETRIC MODELS

The Cox PH model is the most widely used model in survival
analysis. A key reason why it is so popular is that the dis-
tribution of the survival time variable need not be specified.
However, if it is believed that survival time follows a partic-
ular distribution, then that information can be utilized in a
parametric modeling of survival data.
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Many parametric models are accelerated failure time (AFT)
models. Whereas the key assumption of a PH model is that
hazard ratios are constant over time, the key assumption for
an AFT model is that survival time accelerates (or deceler-
ates) by a constant factor when comparing different levels of
covariates.

The most common distribution for parametric modeling of
survival data is the Weibull distribution. The Weibull distri-
bution has the desirable property that if the AFT assump-
tion holds, then the PH assumption also holds. The exponen-
tial distribution is a special case of the Weibull distribution.
The key property for the exponential distribution is that the
hazard is constant over time (not just the hazard ratio). The
Weibull and exponential model can be run as a PH model
(the default) or an AFT model.

A graphical method for checking the validity of a Weibull as-
sumption is to examine Kaplan–Meier log–log survival curves
against log survival time. This is accomplished with the sts
graph command (see Section 2 of this appendix). If the plots
are straight lines, then there is evidence that the distribution
of survival times follows a Weibull distribution. If the slope of
the line equals one, then the evidence suggests that survival
time follows an exponential distribution.

The streg command is used to run parametric models. Even
though the log–log survival curves obtained using the addicts
dataset are not straight lines, the data are used for illustration.
First a parametric model using the exponential distribution
is demonstrated. The code and output follow.

streg prison dose clinic, dist(exponential) nohr

Exponential regression -- log relative-hazard form

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 49.91
Log likelihood = -270.47929 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .2526491 .1648862 1.53 0.125 -.070522 .5758201
dose -.0289167 .0061445 -4.71 0.000 -.0409596 -.0168738

clinic -.8805819 .210626 -4.18 0.000 -1.293401 -.4677625
-cons -3.684341 .4307163 -8.55 0.000 -4.528529 -2.840152

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The distribution is specified with the dist() option. The stcurv
command can be used following the streg command to ob-
tain fitted survival, hazard, or cumulative hazard curves. The
following code obtains the estimated hazard function for
PRISON = 0, DOSE = 40, and CLINIC = 1.

stcurv, hazard at (prison=0 dose=40 clinic=1)

2 1076

analysis time
Exponential regression
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The graph illustrates the fact that the hazard is constant over
time if survival time follows an exponential distribution.

Next a Weibull distribution is run using the streg command.

streg prison dose clinic, dist(weibull) nohr

Weibull regression -- log relative-hazard form

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 60.89
Log likelihood = -260.98467 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t Coef. Std. Err. z p>|z| [95% Conf. Interval]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison .3144143 .1659462 1.89 0.058 -.0108342 .6396628
dose -.0334675 .006255 -5.35 0.000 -.0457272 -.0212079

clinic -.9715245 .2122826 -4.58 0.000 -1.387591 -.5554582
-cons -5.624436 .6588041 -8.54 0.000 -6.915668 -4.333203

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p .3149526 .0675583 4.66 0.000 .1825408 .4473644

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
p 1.370194 .092568 1.200263 1.564184

1/p .7298235 .0493056 .6393109 .8331507
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Notice that the Weibull output has a parameter p that the ex-
ponential distribution does not have. The hazard function for
a Weibull distribution is λptp−1. If p = 1 then the Weibull dis-
tribution is also an exponential distribution (h(t) =λ). Hazard
ratio parameters are given by default for the Weibull distri-
bution. If you want the parameterization for an AFT model,
then use the time option.

The code and output for a Weibull AFT model follow.

streg prison dose clinic,dist(weibull) time

Weibull regression -- accelerated failure-time form

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 60.89
Log likelihood = -260.98467 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison -.2294669 .1207889 -1.90 0.057 -.4662088 .0072749
dose .0244254 .0045898 5.32 0.000 .0154295 .0334213

clinic .7090414 .1572246 4.51 0.000 .4008867 1.017196
-cons 4.104845 .3280583 12.51 0.000 3.461863 4.747828

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p .3149526 .0675583 4.66 0.000 .1825408 .4473644

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
p 1.370194 .092568 1.200263 1.564184

1/p .7298235 .0493056 .6393109 .8331507

The relationship between the hazard ratio parameter βj and
the AFT parameter αj is βj = −αj p. For example, using the
coefficient estimates for PRISON in the Weibull PH and AFT
models yields the relationship 0.3144 = (−0.2295)(1.37).

The stcurv can again be used following the streg command
to obtain fitted survival, hazard, or cumulative hazard curves.
The following code obtains the estimated hazard function for
PRISON = 0, DOSE = 40, and CLINIC = 1.

stcurv, hazard at (prison=0 dose=40 clinic=1)
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1076

analysis time
Weibull regression

The plot of the hazard is monotonically increasing. With a
Weibull distribution, the hazard is constrained such that it
cannot increase and then decrease. This is not the case with
the log-logistic distribution as demonstrated in the next exam-
ple. The log-logistic model is not a PH model, so the default
model for the streg command is an AFT model. The code and
output follow.

streg prison dose clinic, dist(loglogistic)

Log-logistic regression -- accelerated failure-time form

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 52.18
Log likelihood = -270.42329 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prison -.2912719 .1439646 -2.02 0.043 -.5734373 -.0091065
dose .0316133 .0055192 5.73 0.000 .0207959 .0424307

clinic .5805977 .1715695 3.38 0.001 .2443276 .9168677
-cons 3.563268 .3894467 9.15 0.000 2.799967 4.32657

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-gam -.5331424 .0686297 -7.77 0.000 -.6676541 -.3986306
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
gamma .5867583 .040269 .5129104 .6712386

Note that Stata calls the shape parameter gamma for a log-
logistic model. The code to produce the graph of the haz-
ard function for PRISON = 0, DOSE = 40, and CLINIC = 1
follows.

stcurv, hazard at (prison=0 dose=40 clinic=1)
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The hazard function (in contrast to the Weibull hazard func-
tion) first increases and then decreases.

The corresponding survival curve for the log-logistic distribu-
tion can also be obtained with the stcurve command.

stcurv, survival at (prison=0 dose=40 clinic=1)
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.064154

.999677

analysis time
Log-logistic regression

p
ri

so
n

=
0 

d
os

e=
40

 c
li

n
ic

=
1

S
u

rv
iv

al

If the AFT assumption holds for a log-logistic model, then the
proportional odds assumption holds for the survival function
(although the PH assumption would not hold). The propor-
tional odds assumption can be evaluated by plotting the log
odds of survival (using KM estimates) against the log of sur-
vival time. If the plots are straight lines for each pattern of
covariates, then the log-logistic distribution is reasonable. If
the straight lines are also parallel, then the proportional odds
and AFT assumptions also hold. The following code will plot
the estimated log odds of survival against the log of time by
CLINIC (output omitted).



498 Computer Appendix: Survival Analysis on the Computer Stata

sts generate skm=s,by (clinic)
generate logodds=ln(skm/(1-skm))
generate logt=ln(survt)
graph7 logodds logt,twoway symbol([clinic] [clinic])

Another context for thinking about the proportional odds as-
sumption is that the odds ratio estimated by a logistic re-
gression does not depend on the length of the follow-up. For
example, if a follow-up study was extended from three to five
years then the underlying odds ratio comparing two patterns
of covariates would not change. If the proportional odds as-
sumption is not true, then the odds ratio is specific to the
length of follow-up.

Both the log-logistic and Weibull models contain an extra
shape parameter that is typically assumed constant. This as-
sumption is necessary for the PH or AFT assumption to hold
for these models. Stata provides a way of modeling the shape
parameter as a function of predictor variables by use of the
ancillary option in the streg command (see Chapter 7 un-
der the heading, “Other Parametric Models”). The following
code runs a log-logistic model in which the shape parameter
gamma is modeled as a function of CLINIC and λ is modeled
as a function of PRISON and DOSE.

streg prison dose, dist(loglogistic) ancillary(clinic)

The output follows.

Log-logistic regression -- accelerated failure-time form

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 38.87
Log likelihood = -272.65273 Prob > chi2 = 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t
prison -.3275695 .1405119 -2.33 0.020 -.6029677 -.0521713
dose .0328517 .0054275 6.05 0.000 .022214 .0434893
-cons 4.183173 .3311064 12.63 0.000 3.534216 4.83213

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ln-gam

clinic .4558089 .1734819 2.63 0.009 .1157906 .7958273
-cons -1.094496 .2212143 -4.95 0.000 -1.528068 -.6609238

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Notice there is a parameter estimate for CLINIC as well as
an intercept ( cons) under the heading ln gam (the log of
gamma). With this model, the estimate for gamma depends on
whether CLINIC = 1 or CLINIC = 2. There is no easy interpre-
tation for the predictor variables in this type of model, which
is why it is not commonly used. However, for any specified
value of PRISON, DOSE, and CLINIC, the hazard and sur-
vival functions can be estimated by substituting the parame-
ter estimates into the expressions for the log-logistic hazard
and survival functions.

Other distributions supported by streg are the generalized
gamma, the lognormal, and the Gompertz distributions.

9. RUNNING FRAILTY MODELS

Frailty models contain an extra random component designed
to account for individual level differences in the hazard oth-
erwise unaccounted for by the model. The frailty α is a multi-
plicative effect on the hazard assumed to follow some distri-
bution. The hazard function conditional on the frailty can be
expressed as h(t|α) = α[h(t)].

Stata offers two choices for the distribution of the frailty: the
gamma and the inverse-Gaussian, both of mean 1 and vari-
ance theta. The variance (theta) is a parameter estimated by
the model. If theta = 0, then there is no frailty.

For the first example, a Weibull PH model is run with
PRISON, DOSE, and CLINIC as predictors. A gamma dis-
tribution is assumed for the frailty component. The code
follows.

streg dose prison clinic, dist(weibull) frailty(gamma) nohr

The frailty() option requests that a frailty model be run. The
output follows.
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Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(4) = 60.89
Log likelihood = -260.98467 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t Coef. Std. Err. z p>|z| [95% Conf. Interval]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dose -.0334635 .0062553 -5.35 0.000 -.0457237 -.0212034

prison .3143786 .165953 1.89 0.058 -.0108833 .6396405
clinic -.9714998 .2122909 -4.58 0.000 -1.387582 -.5554173
-cons -5.624342 .6588994 -8.54 0.000 -6.915761 -4.332923

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p .3149036 .0675772 4.66 0.000 .1824548 .4473525

/ln-the -15.37947 722.4246 -0.02 0.983 -1431.306 1400.547
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p 1.370127 .0925893 1.20016 1.564166
1/p .7298592 .0493218 .6393185 .8332223

theta 2.09e-07 .0001512 0 .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Likelihood ratio test of theta = 0: chibar2(01) = 0.00
Prob>=chibar2 = 1.000

Notice that there is one additional parameter (theta) com-
pared to the model run in the previous section. The estimate
for theta is 2.09 times 10−7 or 0.000000209 which is essen-
tially zero. A likelihood ratio test for the inclusion of theta is
provided at the bottom of the output and yields a chi-square
value of 0.00 and a p-value of 1.000. The frailty has no effect
on the model and need not be included.

The next model is the same as the previous one except that
CLINIC is not included. One might expect a frailty component
to play a larger role if an important covariate, such as CLINIC,
is not included in the model. The code and output follow.
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streg dose prison, dist(weibull) frailty(gamma) nohr

Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 36.00
Log likelihood = -273.42782 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t Coef. Std. Err. z p>|z| [95% Conf. Interval]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dose -.0358231 .010734 -3.34 0.001 -.0568614 -.0147849

prison .2234556 .2141028 1.04 0.297 -.1961783 .6430894
-cons -6.457393 .6558594 -9.85 0.000 -7.742854 -5.171932

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p .2922832 .1217597 2.40 0.016 .0536385 .5309278

/ln-the -2.849726 5.880123 -0.48 0.628 -14.37456 8.675104
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p 1.339482 .163095 1.055103 1.700509
1/p .7465571 .0909006 .5880591 .9477747

theta .0578602 .340225 5.72e-07 5855.31
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Likelihood ratio test of theta = 0: chibar2(01) = 0.03
Prob>=chibar2 = 0.432

The variance (theta) of the frailty is estimated at 0.0578602.
Although this estimate is not exactly zero as in the previous
example, the p-value for the likelihood ratio test for theta is
nonsignificant at 0.432. So the addition of frailty did not ac-
count for CLINIC being omitted from the model.

Next the same model is run except that the inverse-Gaussian
distribution is used for the frailty rather than the gamma dis-
tribution. The code and output follow.
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streg dose prison, dist(weibull) frailty(invgaussian) nohr

Weibull regression -- log relative-hazard form
Inverse-Gaussian frailty

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 35.99
Log likelihood = -273.43201 Prob > chi2 = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-t Coef. Std. Err. z p>|z| [95% Conf. Interval]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dose -.0353908 .0096247 -3.68 0.000 -.0542549 -.0165268

prison .2166456 .1988761 1.09 0.276 -.1731445 .6064356
-cons -6.448779 .6494397 -9.93 0.000 -7.721658 -5.175901

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p .2875567 .1122988 2.56 0.010 .0674551 .5076583

/ln-the -3.137696 7.347349 -0.43 0.669 -17.53824 11.26284
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p 1.333166 .1497129 1.069782 1.661396
1/p .7500941 .0842347 .6019034 .9347697

theta .0433827 .3187475 2.42e-08 77873.78
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Likelihood ratio test of theta = 0: chibar2(01) = 0.02
Prob>=chibar2 = 0.443

The p-value for the likelihood ratio test for theta is 0.443 (at
the bottom of the output). The results in this example are very
similar whether assuming the inverse-Gaussian or the gamma
distribution for the frailty component.

An example of shared frailty applied to recurrent event data
is shown in the next section.

10. MODELING RECURRENT EVENTS

The modeling of recurrent events is illustrated with the blad-
der cancer dataset (bladder.dta) described at the start of this
appendix. Recurrent events are represented in the data with
multiple observations for subjects having multiple events. The
data layout for the bladder cancer dataset is suitable for a
counting process approach with time intervals defined for
each observation (see Chapter 8). The following code prints
the 12th through 20th observations, which contain informa-
tion for four subjects. The code and output follow.
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list in 12/20

id event interval start stop tx num size
12. 10 1 1 0 12 0 1 1
13. 10 1 2 12 16 0 1 1
14. 10 0 3 16 18 0 1 1
15. 11 0 1 0 23 0 3 3
16. 12 1 1 0 10 0 1 3
17. 12 1 2 10 15 0 1 3
18. 12 0 3 15 23 0 1 3
19. 13 1 1 0 3 0 1 1
20. 13 1 2 3 16 0 1 1

There are three observations for ID = 10, one observation for
ID = 11, three observations for ID = 12, and two observations
for ID = 13. The variables START and STOP represent the
time interval for the risk period specific to that observation.
The variable EVENT indicates whether an event (coded 1)
occurred. The first three observations indicate that the subject
with ID = 10 had an event at 12 months, another event at 16
months, and was censored at 18 months.

Before using Stata’s survival commands, the stset command
must be used to define the key survival variables. The code
follows.

stset stop, failure(event==1) id(id) time0(start) exit(time .)

We have previously used the stset command on the addicts
dataset, but more options from stset are included here. The
id() option defines the subject variable (i.e., the cluster vari-
able), the time0() option defines the variable that begins the
time interval, and the exit(time .) option tells Stata that there
is no imposed limit on the length of follow-up time for a given
subject (e.g., subjects are not out of the risk set after their
first event). With the stset command, Stata creates the vari-
ables t0, t, and d, which Stata automatically recognizes
as survival variables representing the time interval and event
status. Actually the time0( ) option could have been omitted
from this stset command and by default Stata would have
created the starting time variable t0 in the correct counting
process format as long as the id() option was used (otherwise
t0 would default to zero). The following code (and output)

lists the 12th through 20th observation with the newly created
variables.
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list id t0 t d tx in 12/20

id -t0 -t -d tx
12. 10 0 12 1 0
13. 10 12 16 1 0
14. 10 16 18 0 0
15. 11 0 23 0 0
16. 12 0 10 1 0
17. 12 10 15 1 0
18. 12 15 23 0 0
19. 13 0 3 1 0
20. 13 3 16 1 0

A Cox model with recurrent events using the counting process
approach can now be run with the stcox command. The pre-
dictors are treatment status (TX), initial number of tumors
(NUM), and the initial size of tumors (SIZE). The robust op-
tion requests robust standard errors for the coefficient esti-
mates. Omit the nohr option if you want the exponentiated
coefficients. The code and output follow.

stcox tx num size, nohr robust

Cox regression –– Breslow method for ties

No. of subjects = 85 Number of obs = 190
No. of failures = 112
Time at risk = 2711

Wald chi2(3) = 11.25
Log likelihood = -460.07958 Prob > chi2 = 0.0105

(standard errors adjusted for clustering on id)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Robust
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
tx -.4070966 .2432658 -1.67 0.094 -.8838889 .0696956
num .1606478 .0572305 2.81 0.005 .0484781 .2728174
size -.0400877 .0726459 -0.55 0.581 -.182471 .1022957
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The interpretation of these parameter estimates is discussed
in Chapter 8.
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A stratified Cox model can also be run using the data in this
format with the variable INTERVAL as the stratified variable.
The stratified variable indicates whether subjects were at risk
for their 1st, 2nd, 3rd, or 4th event. This approach is called
conditional 1 in Chapter 8 and is used if the investigator
wants to distinguish the order in which recurrent events oc-
cur. The code and output follow.

stcox tx num size, nohr robust strata(interval)

stratified Cox regr. –– Breslow method for ties

No. of subjects = 85 Number of obs = 190
No. of failures = 112
Time at risk = 2711

Wald chi2(3) = 7.11
Log likelihood = -319.85912 Prob > chi2 = 0.0685

(standard errors adjusted for clustering on id)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Robust
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
tx -.3342955 .1982339 -1.69 0.092 -.7228268 .0542359
num .1156526 .0502089 2.30 0.021 .017245 .2140603
size -.0080508 .0604807 -0.13 0.894 -.1265908 .1104892
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Stratified by interval

Interaction terms between the treatment variable (TX) and
the stratified variable could be created to examine whether
the effect of treatment differed for the 1st, 2nd, 3rd, or 4th
event. (Note that in this dataset subjects have a maximum of
4 events).

Another stratified approach (called conditional 2) is a slight
variation of the conditional 1 approach. The difference is in
the way the time intervals for the recurrent events are defined.
There is no difference in the time intervals when subjects are
at risk for their first event. However, with the conditional 2
approach, the starting time at risk gets reset to zero for each
subsequent event. The following code creates data suitable
for using the conditional 2 approach.

generate stop2 = t - t0
stset stop2, failure(event==1) exit(time .)
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The generate command defines a new variable called STOP2
representing the length of the time interval for each observa-
tion. The stset command is used with STOP2 as the outcome
variable ( t). By default Stata sets the variable t0 to zero.
The following code (and output) lists the 12th through 20th
observations for selected variables.

list id t0 t d tx in 12/20

id -t0 -t -d tx
12. 10 0 12 1 0
13. 10 0 4 1 0
14. 10 0 2 0 0
15. 11 0 23 0 0
16. 12 0 10 1 0
17. 12 0 5 1 0
18. 12 0 8 0 0
19. 13 0 3 1 0
20. 13 0 13 1 0

Notice that the id() option was not used with the stset com-
mand for the conditional 2 approach. This means that Stata
does not know that multiple observations correspond to the
same subject. However the cluster() option can be used di-
rectly in the stcox command to request that the analysis be
clustered by ID (i.e., by subject). The following code runs a
stratified Cox model using the conditional 2 approach with the
cluster() and robust options. The code and output follow.

stcox tx num size, nohr robust strata(interval) cluster(id)

Stratified Cox regr. –– Breslow method for ties

No. of subjects = 190 Number of obs = 190
No. of failures = 112
Time at risk = 2711

Wald chi2(3) = 11.99
Log likelihood = -363.16022 Prob > chi2 = 0.0074

(standard errors adjusted for clustering on id)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Robust
-d Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
tx -.2695213 .2093108 -1.29 0.198 -.6797628 .1407203
num .1535334 .0491803 3.12 0.002 .0571418 .2499249
size .0068402 .0625862 0.11 0.913 -.1158265 .129507
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Stratified by interval
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The results using the conditional 1 and conditional 2 ap-
proaches vary slightly.

Next we demonstrate how a shared frailty model can be ap-
plied to recurrent event data. Frailty is included in recurrent
event analyses to account for variability due to unobserved
subject specific factors that may lead to within-subject corre-
lation.

Before running the model, we rerun the stset command
shown earlier in this section to get the data back to the form
suitable for a counting process approach. The code follows.

stset stop, failure(event==1) id(id) time0(start) exit(time .)

Next a parametric Weibull model is run with a gamma dis-
tributed shared frailty component using the streg command.
We use the same three predictors for comparability with the
other models presented in this section. The code follows.

streg tx num size,dist(weibull) frailty(gamma) shared(id) nohr

The dist() option requests the distribution for the parametric
model. The frailty() option requests the distribution for the
frailty and the shared() option defines the cluster variable,
ID. For this model, observations from the same subject share
the same frailty. The output follows.

Weibull regression –– log relative-hazard form
Gamma shared frailty

No. of subjects = 85 Number of obs = 190
No. of failures = 112
Time at risk = 2711

LR chi2(3) = 8.04
Log likelihood = -184.73658 Prob > chi2 = 0.0453

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-t Coef. Std. Err. z p>|z| [95% Conf. Interval]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
tx -.4583219 .2677275 -1.71 0.087 -.9830582 .0664143
num .1847305 .0724134 2.55 0.011 .0428028 .3266581
size -.0314314 .0911134 -0.34 0.730 -.2100104 .1471476
-cons -2.952397 .4174276 -7.07 0.000 -3.77054 -2.134254

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ln-p -.1193215 .0898301 -1.33 0.184 -.2953852 .0567421

/ln-the -.7252604 .5163027 -1.40 0.160 -1.737195 .2866742
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p .8875224 .0797262 .7442449 1.058383
1/p 1.126732 .1012144 .9448377 1.343644

theta .4841985 .249993 .1760134 1.33199
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Likelihood ratio test of theta=0: chibar2(01) = 7.34
Prob>=chibar2 = 0.003
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The model output is discussed in Chapter 8.

The counting process data layout with multiple observations
per subject need not only apply to recurrent event data but
can also be used for a more conventional survival analysis in
which each subject is limited to one event. A subject with four
observations may be censored for the first three observations
before getting the event in the time interval represented by the
fourth observation. This data layout is particularly suitable
for representing time-varying exposures, which may change
values over different intervals of time (see the stsplit com-
mand in Section 7 of this appendix).

B. SAS
Analyses are carried out in SAS by using the appropriate SAS
procedure on a SAS dataset. The key SAS procedures for per-
forming survival analyses are as follows.

PROC LIFETEST. This procedure is used to obtain Kaplan–
Meier survival estimates and plots. It can also be used to output
life table estimates and plots. It will generate output for the
log rank and Wilcoxon test statistics if stratifying by a covari-
ate. A new SAS dataset containing survival estimates can be
requested.

PROC PHREG. This procedure is used to run the Cox propor-
tional hazards model, a stratified Cox model, and an extended
Cox model with time-varying covariates. It can also be used to
create a SAS dataset containing adjusted survival estimates.
These adjusted survival estimates can then be plotted using
PROC GPLOT.

PROC LIFEREG. This procedure is used to run parametric ac-
celerated failure time (AFT) models.

Analyses on the addicts dataset are used to illustrate these pro-
cedures. The addicts dataset was obtained from a 1991 Aus-
tralian study by Caplehorn et al., and contains information
on 238 heroin addicts. The study compared two methadone
treatment clinics to assess patient time remaining under
methadone treatment. The two clinics differed according to
live-in policies for patients. A patient’s survival time was de-
termined as the time (in days) until the person dropped out
of the clinic or was censored. The variables are defined at the
start of this appendix.
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All of the SAS programming code is written in capital letters
for readability. However, SAS is not case sensitive. If a pro-
gram is written with lowercase letters, SAS reads them as up-
percase. The number of spaces between words (if more than
one) has no effect on the program. Each SAS programming
statement ends with a semicolon.

The addicts dataset is stored as a permanent SAS dataset
called addicts.sas7bdat. A LIBNAME statement is needed
to indicate the path to the location of the SAS dataset. In our
examples, we assume the file is located on the A drive (i.e., on
a disk). The LIBNAME statement includes a reference name
as well as the path. We call the reference name REF. The code
is as follows.

LIBNAME REF ‘A:\’;

The user is free to define his or her own reference name. The
path to the location of the file is given between the quotation
marks. The general form of the code is

LIBNAME Your reference name ‘Your path to file location’;

PROC CONTENTS, PROC PRINT, PROC UNIVARIATE,
PROC FREQ, and PROC MEANS can be used to list or de-
scribe the data. SAS code can be run in one batch or high-
lighted and submitted one procedure at a time. Code can be
submitted by clicking on the submit button on the toolbar
in the editor window. The code for using these procedures
follows (output omitted).

PROC CONTENTS DATA=REF.ADDICTS;RUN;
PROC PRINT DATA=REF.ADDICTS;RUN;
PROC UNIVARIATE DATA=REF.ADDICTS;VAR SURVT;RUN;
PROC FREQ DATA=REF.ADDICTS;TABLES CLINIC PRISON;RUN;
PROC MEANS DATA=REF.ADDICTS;VAR SURVT;CLAS CLINIC;RUN;

Notice that each SAS statement ends with a semicolon. If each
procedure is submitted one at a time then each procedure
must end with a RUN statement. Otherwise one RUN state-
ment at the end of the last procedure is sufficient. With the
LIBNAME statement, SAS recognizes a two-level file name:
the reference name and the file name without an extension.
For our example, the SAS file name is REF.ADDICTS. Alter-
natively, a temporary SAS dataset could be created and used
for these procedures.
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Text that you do not wish SAS to process should be written as
a comment:

/∗ A comment begins with a forward slash followed
by a star and ends with a star followed by a
forward slash. ∗/

∗A comment can also be created by beginning with a
star and ending with a semicolon;

The survival analyses demonstrated in SAS are:

1. Demonstrating PROC LIFETEST to obtain Kaplan–Meier
and life table survival estimates (and plots);

2. Running a Cox PH model with PROC PHREG;
3. Running a stratified Cox model;
4. Assessing the PH assumption with a statistical test;
5. Obtaining Cox adjusted survival curves;
6. Running an extended Cox model (i.e., containing time-

varying covariates);
7. Running parametric models with PROC LIFEREG; and
8. Modeling recurrent events.

1. DEMONSTRATING PROC LIFETEST TO OBTAIN
KAPLAN–MEIER AND LIFE TABLE SURVIVAL
ESTIMATES (AND PLOTS)

PROC LIFETEST produces Kaplan–Meier survival estimates
with the METHOD=KM option. The PLOTS=(S) option plots
the estimated survival function. The TIME statement defines
the time-to-event variable (SURVT) and the value for censor-
ship (STATUS = 0). The code follows (output omitted).

PROC LIFETEST DATA=REF.ADDICTS METHOD=KM PLOTS=(S);
TIME SURVT∗STATUS(0);
RUN;

Use a STRATA statement in PROC LIFETEST to compare sur-
vival estimates for different groups (e.g., strata clinic). The
PLOTS=(S,LLS) option produces log–log curves as well as sur-
vival curves. If the proportional hazard assumption is met the
log–log survival curves will be parallel. The STRATA statement
also provides the log rank test and Wilcoxon test statistics. The
code follows.
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PROC LIFETEST DATA=REF.ADDICTS METHOD=KM PLOTS=(S,LLS);
TIME SURVT∗STATUS(0);
STRATA CLINIC;
RUN;

PROC LIFETEST yields the following edited output.

The LIFETEST Procedure (stratified)

Stratum 1: CLINIC = 1

Product-Limit Survival Estimates
Survival
Standard Number Number

SURVT Survival Failure Error Failed Left

0.00 1.0000 0 0 0 163
2.00∗ . . . 0 162
7.00 0.9938 0.00617 0.00615 1 161
17.00 0.9877 0.0123 0.00868 2 160
. . . . . .
. . . . . .
836.00 0.0869 0.9131 0.0295 118 6
837.00 0.0725 0.9275 0.0279 119 5

Stratum 2: CLINIC = 2

Product-Limit Survival Estimates
Survival
Standard Number Number

SURVT Survival Failure Error Failed Left

0.00 1.0000 0 0 0 75
2.00∗ . . . 0 74
13.00 0.9865 0.0135 0.0134 1 73
26.00 0.9730 0.0270 0.0189 2 72
. . . . . .
. . . . . .

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 27.8927 1 <.0001
Wilcoxon 11.6268 1 0.0007
-2Log(LR) 26.0236 1 <.0001
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Both the log rank and Wilcoxon test yield highly significant
chi-square test statistics. The Wilcoxon test is a variation of
the log rank test weighting the observed minus expected score
of the jth failure time by nj (the number still at risk at the jth
failure time).

The requested log–log plots from PROC LIFETEST follow.
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SAS (as well as Stata) plots log(survival time) rather than sur-
vival time on the horizontal axis by default for log–log curves.
As far as checking the parallel assumption, it does not matter
if log(survival time) or survival time is on the horizontal axis.
However, if the log–log survival curves look like straight lines
with log(survival time) on the horizontal axis, then there is
evidence that the “time-to-event” variable follows a Weibull
distribution. If the slope of the line equals one, then there is
evidence that the survival time variable follows an exponen-
tial distribution, a special case of the Weibull distribution. For
these situations, a parametric survival model can be used.

You can gain more control over what and how variables are
plotted, by creating a dataset that contains the survival esti-
mates. Use the OUTSURV = option in the PROC LIFETEST
statement to create a SAS data containing the KM survival
estimates. The option OUTSURV = DOG creates a dataset
called dog (make up your own name) containing the survival
estimates in a variable called SURVIVAL. The code follows.

PROC LIFETEST DATA=REF.ADDICTS METHOD=KM OUTSURV=DOG;
TIME SURVT∗STATUS(0);
STRATA CLINIC;
RUN;
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Data dog contains the survival estimates but not the
log(–(log)) of the survival estimates. Data cat is created in
the following code from data dog (using the statement SET
DOG) and defines a new log–log variable called LLS.

DATA CAT;
SET DOG;
LLS=LOG(-LOG(SURVIVAL));
RUN;

In SAS, the LOG function returns the natural log, not the log
base 10.

PROC PRINT prints the data in the output window.

PROC PRINT DATA=CAT; RUN;

The first 10 observations from PROC PRINT are listed below.

Obs CLINIC SURVT -CENSOR- SURVIVAL LLS

1 1 0 0 1.00000 .
2 1 2 1 1.00000 .
3 1 7 0 0.99383 -5.08450
4 1 17 0 0.98765 -4.38824
5 1 19 0 0.98148 -3.97965
6 1 28 1 0.98148 -3.97965
7 1 28 1 0.98148 -3.97965
8 1 29 0 0.97523 -3.68561
9 1 30 0 0.96898 -3.45736
10 1 33 0 0.96273 -3.27056

The PLOT LLS∗SURVT=CLINIC statement plots the variable
LLS (the log–log survival variables) on the vertical axis and
SURVT on the horizontal axis, stratified by CLINIC. The SYM-
BOL option can be used to choose plotting colors for each
level of clinic. The code and output for plotting the log–log
curves by CLINIC follow.

SYMBOL COLOR=BLUE;
SYMBOL2 COLOR=RED;

PROC GPLOT DATA=CAT;
PLOT LLS*SURVT=CLINIC;
RUN;
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The plot has survival time (in days) rather than the default
log(survival time). The log–log survival plots look parallel for
CLINIC the first 365 days but then seem to diverge. This in-
formation can be utilized when developing an approach to
modeling CLINIC with a time-dependent variable in an ex-
tended Cox model.

You can also obtain survival estimates using life tables. This
method is useful if you do not have individual level survival
information but rather have group survival information for
specified time intervals. The user determines the time inter-
vals using the INTERVALS=option. The code follows (output
omitted).

PROC LIFETEST DATA=REF.ADDICTS
METHOD=LT INTERVALS= 50 100 150
200 TO 1000 BY 100 PLOTS=(S);
TIME SURVT*STATUS(0);
RUN;

2. RUNNING A COX PROPORTIONAL HAZARD
MODEL WITH PROC PHREG

PROC PHREG is used to request a Cox proportional hazards
model. The code follows.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)= PRISON DOSE CLINIC;
RUN;
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The code SURVT*STATUS(0) in the MODEL statement
specifies the time-to-event variable (SURVT) and the value
for censorship (STATUS = 0). Three predictors are included
in the model: PRISON, DOSE, and CLINIC. The PH assump-
tion is assumed to follow for each of these predictors (perhaps
incorrectly). The output produced by PROC PHREG follows.

The PHREG Procedure

Model Information

Data Set REF.ADDICTS
Dependent Variable SURVT survival time in days
Censoring Variable STATUS status (0=censored, 1=endpoint)
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values
Percent

Total Event Censored Censored

238 150 88 36.97

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 1411.324 1346.805
AIC 1411.324 1352.805
SBC 1411.324 1361.837

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio Variable Label

PRISON 1 0.32650 0.16722 3.8123 0.0509 1.386 0=none, 1=prison
record

DOSE 1 -0.03540 0.00638 30.7844 <.0001 0.965 methadone dose
(mg/day)

CLINIC 1 -1.00876 0.21486 22.0419 <.0001 0.365 Coded 1 or 2

The table above lists the parameter estimates for the regres-
sion coefficients, their standard errors, a Wald chi-square test
statistic for each predictor, and corresponding p-value. The
column labeled HAZARD RATIO gives the estimated hazard
ratio per one-unit change in each predictor by exponentiating
the estimated regression coefficients.
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You can use the TIES=EXACT option in the model statement
rather than run the default TIES=BRESLOW option that was
used in the previous model. The TIES=EXACT option is a
computationally intensive method to handle events that occur
at the same time. If many events occur simultaneously in the
data then the TIES=EXACT option is preferred. Otherwise,
the difference between this option and the default is slight.
The option RL in the MODEL statement of PROC PHREG
provides 95% confidence intervals for the hazard ratio esti-
mates.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)= PRISON DOSE CLINIC/TIES=EXACT RL;
RUN;

The output is shown below.

The PHREG Procedure

Model Information

Data Set REF.ADDICTS
Dependent Variable SURVT survival time in days
Censoring Variable STATUS status (0=censored, 1=endpoint)
Censoring Value(s) 0
Ties Handling EXACT

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

PRISON 1 0.32657 0.16723 3.8135 0.0508 1.386 0.999 1.924
DOSE 1 -0.03537 0.00638 30.7432 <.0001 0.965 0.953 0.977
CLINIC 1 -1.00980 0.21488 22.0832 <.0001 0.364 0.239 0.555

The parameter estimates and their standard errors vary only
slightly from the previous model without the TIES=EXACT
option. Notice the type of ties handling approach is listed in
the table called MODEL INFORMATION in the output.

Suppose we wish to assess interaction between PRISON and
CLINIC and between PRISON and DOSE. We can define two
interaction terms in a new temporary SAS dataset (called ad-
dicts2) and then run a model containing those terms. Prod-
uct terms for CLINIC times PRISON (called CLIN PR) and
CLINIC time DOSE (called CLIN DO) are defined in the fol-
lowing data step.
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DATA ADDICTS2;
SET REF.ADDICTS;
CLIN-PR=CLINIC*PRISON;
CLIN-DO=CLINIC*DOSE;
RUN;

The interaction terms (called CLIN PR and CLIN DO) are
added to the model.

PROC PHREG DATA=ADDICTS2;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC CLIN-PR CLIN-DO;
RUN;

The PROC PHREG output follows.

The PHREG Procedure

Model Information

Data Set WORK.ADDICTS2
Dependent Variable SURVT survival time in days
Censoring Variable STATUS status (0=censored, 1=endpoint)
Censoring Value(s) 0
Ties Handling BRESLOW

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 1411.324 1343.199
AIC 1411.324 1353.199
SBC 1411.324 1368.253

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 1.19200 0.54137 4.8480 0.0277 3.294
DOSE 1 -0.01932 0.01935 0.9967 0.3181 0.981
CLINIC 1 0.17469 0.89312 0.0383 0.8449 1.191
CLIN-PR 1 -0.73799 0.43149 2.9253 0.0872 0.478
CLIN-DO 1 -0.01386 0.01433 0.9359 0.3333 0.986
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The estimates of the hazard ratios (left column) may be de-
ceptive when product terms are in the model. For example,
by exponentiating the estimated coefficient for PRISON at
exp(1.19200) = 3.284, we obtain the estimated hazard ratio
for PRISON = 1 vs. PRISON = 0 where DOSE = 0 and
CLINIC = 0. This is a meaningless hazard ratio because
CLINIC is coded 1 or 2 and DOSE is always greater than zero
(all patients are on methadone).

The Wald chi-square p-values for the two product terms are
0.0872 for CLIN PR and 0.3333 for CLIN DO. Alternatively,
a likelihood ratio test can simultaneously test both product
terms by subtracting the −2 log likelihood statistic for the full
model (with the two product terms) from the reduced model
(without the product terms). The −2 log likelihood statistic
can be found on the output in the table called MODEL FIT
STATISTICS and under the column called WITH COVARI-
ATES. The −2 log likelihood statistic is 1343.199 for the full
model and 1346.805 for the reduced model. The test is a 2-
degree of freedom test because 2 product terms are simulta-
neously tested.

The PROBCHI function in SAS can be used to obtain p-values
for chi-square tests. The code follows.

DATA TEST;
REDUCED = 1346.805;
FULL = 1343.199;
DF = 2;
P-VALUE = 1 - PROBCHI(REDUCED-FULL,DF);
RUN;

PROC PRINT DATA=TEST;RUN;

Note that you must write 1 minus the PROBCHI function to
obtain the area under the right side of the chi-square prob-
ability density function. The output from the PROC PRINT
follows.

Obs REDUCED FULL DF P-VALUE

1 1346.81 1343.20 2 0.16480

The p-value for the likelihood ratio test for both product terms
is 0.16480.
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3. RUNNING A STRATIFIED COX MODEL

Suppose we believe that the variable CLINIC violates the pro-
portional hazards assumption but the variables PRISON and
DOSE follow the PH assumption within each level of CLINIC.
A stratified Cox model on the variable CLINIC can be run with
PROC PHREG using the STRATA CLINIC statement.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE;
STRATA CLINIC;
RUN;

The output of the parameter estimates follows.

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 0.38877 0.16892 5.2974 0.0214 1.475
DOSE 1 -0.03514 0.00647 29.5471 <.0001 0.965

Notice there is no parameter estimate for CLINIC be-
cause CLINIC is the stratified variable. The hazard ratio for
PRISON = 1 vs. PRISON = 0 is estimated at 1.475. This haz-
ard ratio is assumed not to depend on CLINIC because an
interaction term between PRISON and CLINIC was not in-
cluded in the model.

Suppose we wish to assess interaction between PRISON and
CLINIC as well as DOSE and CLINIC in a Cox model stratified
by CLINIC. We can define interaction terms in a new SAS
dataset (called addicts2) and then run a model containing
these terms. Notice that when we stratify by CLINIC we do
not put the variable CLINIC in the model statement. However,
the interaction terms CLIN PR and CLIN DO are put in the
model statement and CLINIC is put in the strata statement.

DATA ADDICTS2;
SET REF.ADDICTS;
CLIN-PR=CLINIC*PRISON;
CLIN-DO=CLINIC*DOSE;
RUN;
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PROC PHREG DATA=ADDICTS2;
MODEL SURVT*STATUS(0)=PRISON DOSE CLIN-PR CLIN-DO;
STRATA CLINIC;
RUN;

The output of the parameter estimates follows.

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 1.08716 0.53861 4.0741 0.0435 2.966
DOSE 1 -0.03482 0.01980 3.0930 0.0786 0.966
CLIN-PR 1 -0.58467 0.42813 1.8650 0.1721 0.557
CLIN-DO 1 -0.00105 0.01457 0.0052 0.9427 0.999

Note with the interaction model that the hazard ratio for
PRISON = 1 vs. PRISON = 0 for CLINIC = 1 controlling for
DOSE is exp(β1 + β3), and the hazard ratio for PRISON =
1 vs. PRISON = 0 for CLINIC = 2 controlling for DOSE is
exp(β1 + 2β3). This latter calculation is obtained by substi-
tuting the appropriate values into the hazard in both the nu-
merator (for PRISON = 1) and denominator (for PRISON =
0) (see below).

HR = h0(t) exp[1β1 + β2DOSE + (2)(1)β3 + β4CLIN DO]
h0(t) exp[0β1 + β2DOSE + (2)(0)β3 + β4CLIN DO]

= exp(β1 + 2β3)

By substituting in the parameter estimates we obtain
an estimated hazard ratio for PRISON at exp(1.08716 +
2(−0.58467) = 0.921 among those at CLINIC = 2.

An alternative approach allowing for interaction with CLINIC
and the other covariates is obtained by running two models:
one subset on the observations where CLINIC = 1 and the
other subset on the observations where CLINIC = 2. The code
and output follow.

PROC PHREG DATA=ADDICTS2;
MODEL SURVT*STATUS(0)=PRISON DOSE;
WHERE CLINIC=1;
TITLE COX MODEL RUN ONLY ON DATA WHERE CLINIC=1;
RUN;
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A WHERE statement in a SAS procedure limits the num-
ber of observations for analyses. A TITLE statement can
also be added to the procedure. The output containing
the parameter estimates subset on the observations where
CLINIC = 1 follows.

COX MODEL RUN ONLY ON DATA WHERE CLINIC=1
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 0.50249 0.18869 7.0918 0.0077 1.653
DOSE 1 -0.03586 0.00774 21.4761 <.0001 0.965

Similarly, the code and output follow containing the param-
eter estimates subset on the observations where CLINIC = 2.

PROC PHREG DATA=ADDICTS2;
MODEL SURVT*STATUS(0)=PRISON DOSE;
WHERE CLINIC=2;
TITLE COX MODEL RUN ONLY ON DATA WHERE CLINIC=2;
RUN;

COX MODEL RUN ONLY ON DATA WHERE CLINIC=2
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio Variable Label

PRISON 1 -0.08226 0.38430 0.0458 0.8305 0.921 0=none, 1=prison
record

DOSE 1 -0.03693 0.01234 8.9500 0.0028 0.964 methadone dose
(mg/day)

The estimated hazard ratio for PRISON = 1 vs. PRISON = 0
is 0.921 among CLINIC = 2 controlling for DOSE. This result
is consistent with the stratified Cox model previously run in
which all the product terms with CLINIC were included in
the model.
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4. ASSESSING THE PH ASSUMPTION WITH
A STATISTICAL TEST

The following SAS program makes use of the addicts dataset
to demonstrate how a statistical test of the proportional haz-
ard assumption is performed for a given covariate (Harrel and
Lee, 1986). This is accomplished by finding the correlation be-
tween the Schoenfeld residuals for a particular covariate and
the ranking of individual failure times. If the proportional
hazard assumption is met then the correlation should be near
zero.

The p-value for testing this correlation can be obtained from
PROC CORR (or PROC REG). The Schoenfeld residuals for
a given model can be saved in a SAS dataset using PROC
PHREG. The ranking of events by failure time can be saved
in a SAS dataset using PROC RANKED. The null hypothesis
is that the PH assumption is not violated.

First run the full model. The output statement creates a
SAS dataset, the OUT=option defines an output dataset, and
the RESSCH=statement is followed by user-defined variable
names so that the output dataset contains the Schoenfeld
residuals. The order of the names corresponds to the order
of the independent variables in the model statement. The ac-
tual variable names are arbitrary. The name we chose for the
dataset is RESID and the names we chose for the variables
containing the Schoenfeld residuals for CLINIC, PRISON,
and DOSE are RCLINIC, RPRISON, and RDOSE. The code
follows.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=CLINIC PRISON DOSE;
OUTPUT OUT=RESID RESSCH=RCLINIC RPRISON RDOSE;
RUN;

PROC PRINT DATA=RESID;RUN;
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The first 10 observations of the PROC PRINT are shown be-
low. The three columns on the right are the variables contain-
ing the Schoenfeld residuals.

Obs SURVT STATUS CLINIC PRISON DOSE RCLINIC RPRISON RDOSE

1 428 1 1 0 50 -0.18715 -0.40641 -8.2100
2 275 1 1 1 55 -0.15841 0.55485 -2.6277
3 262 1 1 0 55 -0.16453 -0.45197 -2.5635
4 183 1 1 0 30 -0.14577 -0.48727 -26.0823
5 259 1 1 1 65 -0.16306 0.54313 7.3701
6 714 1 1 0 55 -0.25853 -0.50074 -8.5347
7 438 1 1 1 65 -0.19292 0.58106 6.6072
8 796 0 1 1 60 . . .
9 892 1 1 0 50 -0.34478 -0.22372 -15.9088
10 393 1 1 1 65 -0.17712 0.57376 6.6886

Next, create a SAS dataset that deletes censored observations
(i.e., only contains observations that fail).

DATA EVENTS;
SET RESID;
IF STATUS=1;
RUN;

Use PROC RANK to create a dataset containing a variable
that ranks the order of failure times. The user supplies the
name of the output data set using the OUT= option. The vari-
able to be ranked is SURVT (the survival time variable). The
RANKS statement precedes a user-defined variable name for
the rankings of failure times. The user-defined names are ar-
bitrary. The name we chose for this variable is TIMERANK.
The code follows.

PROC RANK DATA=EVENTS OUT=RANKED TIES=MEAN;
VAR SURVT;
RANKS TIMERANK;
RUN;

PROC PRINT DATA=RANKED;RUN;
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PROC CORR is used to get the correlations between the
ranked failure time variable (called TIMERANK in this exam-
ple) and the variables containing the Schoenfeld residuals of
CLINIC, PRISON, AND DOSE (called RCLINIC, RPRISON,
AND RDOSE respectively, in this example). The NOSIMPLE
option suppresses the printing of summary statistics. If the
proportional hazard assumption is met for a particular co-
variate, then the correlation should be near zero. The p-value
obtained from PROC CORR which tests whether this correla-
tion is zero is the p-value for testing the proportional hazard
assumption. The code follows.

PROC CORR DATA=RANKED NOSIMPLE;
VAR RCLINIC RPRISON RDOSE;
WITH TIMERANK;
RUN;

The PROC CORR output follows.

The CORR Procedure

Pearson Correlation Coefficients, N = 150
Prob > |r | under H0: Rho=0

RCLINIC RPRISON RDOSE

TIMERANK -0.26153 -0.07970 0.07733
Rank for Variable SURVT 0.0012 0.3323 0.3469

The sample correlations with their corresponding p-values
printed underneath are shown above. The p-values for
CLINIC, PRISON, and DOSE are 0.0012, 0.3323, and 0.3469,
respectively, suggesting that the PH assumption is violated for
CLINIC, but reasonable for PRISON and DOSE.

The same p-values can be obtained by running linear regres-
sions with each predictor (one at a time) using PROC REG
and examining the p-values for the regression coefficients.
The code below will produce output containing the p-value
for CLINIC.

PROC REG DATA=RANKED;
MODEL TIMERANK=RCLINIC;
RUN;
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The output produced by PROC REG follows.

The REG Procedure

Parameter Estimates

Parameter Standard
Variable Estimate Error t Value Pr > |t |

Intercept 75.49955 3.43535 21.98 <.0001
RCLINIC -28.38848 8.61194 -3.30 0.0012

The p-value for CLINIC (0.0012) is shown in the column on
the right and matches the p-value that was obtained using
PROC CORR.

5. OBTAINING COX ADJUSTED SURVIVAL CURVES

We can use the BASELINE statement in PROC PHREG to
create an output dataset containing Cox adjusted survival es-
timates for a specified pattern of covariates. The particular
pattern of covariates of interest must first be created in a SAS
dataset that is subsequently used as the input dataset for the
COVARIATES=option in the BASELINE statement of PROC
PHREG. Each pattern of covariates yields a different sur-
vival curve (assuming nonzero effects). Adjusted log(− log)
survival plots can also be obtained for assessing the PH as-
sumption. This is illustrated with three examples.

Ex1—Run a PH model using PRISON, DOSE, and CLINIC and
obtain adjusted survival curves where PRISON = 0, DOSE =
70, and CLINIC = 2.

Ex2—Run a stratified Cox model (by CLINIC). Obtain two ad-
justed survival curves using the mean value of PRISON and
DOSE for CLINIC = 1 and CLINIC = 2. Use the log–log curves
to assess the PH assumption for CLINIC adjusted for PRISON
and DOSE.

Ex3—Run a stratified Cox model (by CLINIC) and obtain ad-
justed survival curves for PRISON = 0, DOSE = 70, and for
PRISON = 1, DOSE = 70. This yields four survival curves in
all, two for CLINIC = 1 and two for CLINIC = 2.
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Basically there are these steps:

1. Create the input dataset containing the pattern (values) of
covariates used for the adjusted survival curves.

2. Run a Cox model with PROC PHREG using the BASELINE
statement to input the dataset from Step (1) and output a
dataset containing the adjusted survival estimates.

3. Plot the adjusted survival estimates from the output dataset
created in Step (2).

For Ex1 we create an input dataset (called IN1) with one ob-
servation where PRISON = 0, DOSE = 70, and CLINIC =
2. We then run a model and create an output dataset (called
OUT1) containing a variable with the adjusted survival esti-
mates (called S1). Finally, the adjusted survival curve is plot-
ted using PROC GPLOT. The code follows.

DATA IN1;
INPUT PRISON DOSE CLINIC;
CARDS;
0 70 2
;

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC;
BASELINE COVARIATES=IN1 OUT=OUT1 SURVIVAL=S1/NOMEAN;
RUN;

PROC GPLOT DATA=OUT1;
PLOT S1*SURVT;
TITLE Adjusted survival for prison=0, dose=70, clinic=2;
RUN;

The BASELINE statement in PROC PHREG specifies the in-
put dataset, the output dataset, and the name of the variable
containing the adjusted survival estimates. The NOMEAN op-
tion suppresses the survival estimates using the mean values
of PRISON, DOSE, and CLINIC. The next example (Ex2) does
not use the NOMEAN option.
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The output for PROC GPLOT follows.
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For Ex2 we wish to create and output a dataset (called OUT2)
that contains the adjusted survival estimates from a Cox
model stratified by CLINIC using the mean values of PRISON
and DOSE An input dataset need not be specified because by
default the mean values of PRISON and DOSE will be used if
the NOMEAN option is not used in the BASELINE statement.
The code follows.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0) = PRISON DOSE CLINIC;
BASELINE OUT=OUT2 SURVIVAL=S2 LOGLOGS=LS2;
RUN;

PROC GPLOT DATA=OUT2;
PLOT S2*SURVT=CLINIC;
TITLE adjusted survival stratified by clinic;
RUN;

PROC GPLOT DATA=OUT2;
PLOT LS2*SURVT=CLINIC;
TITLE log–log curves stratified by clinic, adjusted for
prison, dose;
RUN;
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The code PLOT LS2∗SURVT=CLINIC in the second PROC
GPLOT will plot LS2 on the vertical axis, SURVT on the hori-
zontal axis, stratified by CLINIC on the same graph. The vari-
able LS2 was created in the BASELINE statement of PROC
PHREG and contains the adjusted log–log survival estimates.
The PROC GPLOT output for the log–log survival curves strat-
ified by CLINIC adjusted for PRISON and DOSE follows.
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The adjusted log–log plots look similar to the unadjusted log–
log Kaplan–Meier plots shown earlier in that the plots look
reasonably parallel before 365 days but then diverge suggest-
ing that the PH assumption is violated after 1 year.

For Ex3, a stratified Cox (by CLINIC) is run and adjusted
curves are obtained for PRISON = 1 and PRISON = 0 holding
DOSE = 70. An input dataset (called IN3) is created with two
observations for both levels of PRISON with DOSE = 70. An
output dataset (called OUT3) is created with the BASELINE
statement that contains a variable (called S3) of survival es-
timates for all four curves (two for each stratum of CLINIC).
The code follows.
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DATA IN3;
INPUT PRISON DOSE;
CARDS;
1 70
0 70
;

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)= PRISON DOSE;
STRATA CLINIC;
BASELINE COVARIATES=IN3 OUT=OUT4 SURVIVAL=S3/NOMEAN;
RUN;

PROC GPLOT DATA=OUT3;
PLOT S3*SURVT=CLINIC;
TITLE adjusted survival stratified by clinic for both levels
of prison;
RUN;

The PROC GPLOT output follows.
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For the above graph, the PH assumption is not assumed for
CLINIC because that is the stratified variable. However, the
PH assumption is assumed for PRISON within each stratum
of CLINIC (i.e., CLINIC = 1 and CLINIC = 2).
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6. RUNNING AN EXTENDED COX MODEL

Models containing time-dependent variables are run using
PROC PHREG. Time-dependent variables are created with
programming statements within the PROC PHREG proce-
dure. Sometimes users incorrectly define time-dependent
variables in the data step. This leads to wrong estimates be-
cause the time variable used in the data step (SURVT) is ac-
tually time-independent and therefore different than the time
variable (also called SURVT) used to define time-dependent
variables in the PROC PHREG statement. See the discussion
on the extended Cox likelihood in Chapter 6 for further clari-
fication of this issue.

We have evaluated the PH assumption for the variable CLINIC
by plotting KM log–log curves and Cox adjusted log–log curves
stratified by CLINIC and checking whether the curves were
parallel. We could do similar analyses with the variables
PRISON and DOSE although with DOSE we would need to
categorize the continuous variable before comparing plots for
different strata of DOSE.

If it is expected that the hazard ratio for the effect of DOSE
increases (or decreases) monotonically with time we could
add a continuous time-varying product term with DOSE and
some function of time. The model defined below contains a
time-varying variable (LOGTDOSE) defined as the product of
DOSE and the natural log of time (SURVT). In some sense a
violation of the proportional hazard assumption for a partic-
ular variable means that there is an interaction between that
variable and time. Note that the variable LOGTDOSE is de-
fined within the PHREG procedure and not in the data step.
The code follows.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON CLINIC DOSE LOGTDOSE;
LOGTDOSE=DOSE*LOG(SURVT);
RUN;
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The output produced by PROC PHREG follows.

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 0.34047 0.16747 4.1333 0.0420 1.406
CLINIC 1 -1.01857 0.21538 22.3655 <.0001 0.361
DOSE 1 -0.08243 0.03599 5.2468 0.0220 0.921
LOGTDOSE 1 0.00858 0.00646 1.7646 0.1841 1.009

The Wald test for the time-dependent variable LOGTDOSE
yields a p-value of 0.1841. A nonsignificant p-value does not
necessarily mean that the PH assumption is reasonable for
DOSE. Perhaps a different defined time-dependent variable
would have been significant (e.g., DOSE × (TIME − 100)).
Also the sample size of the study is a key determinant of the
power to reject the null, which in this case means rejection of
the PH assumption.

Next we consider time-dependent variables for CLINIC. The
next two models use Heaviside functions that allow a different
hazard ratio for CLINIC before and after 365 days. The first
model uses two Heaviside functions in the model (HV1 and
HV2) but not CLINIC. The second model uses one Heaviside
function (HV) but also includes CLINIC in the model. These
two models yield the same hazard ratio estimates for CLINIC
but are coded differently. The code follows.

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE HV1 HV2;
IF SURVT < 365 THEN HV1 = CLINIC; ELSE HV1 = 0;
IF SURVT >= 365 THEN HV2 = CLINIC; ELSE HV2 = 0;
RUN;

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=CLINIC PRISON DOSE HV;
IF SURVT >= 365 THEN HV = CLINIC; ELSE HV = 0;
RUN;
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The output for the model with two Heaviside functions
follows.

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

PRISON 1 0.37770 0.16840 5.0304 0.0249 1.459
DOSE 1 -0.03551 0.00644 30.4503 <.0001 0.965
HV1 1 -0.45956 0.25529 3.2405 0.0718 0.632
HV2 1 -1.82823 0.38595 22.4392 <.0001 0.161

The parameter estimates for HV1 and HV2 can be used di-
rectly to obtain the estimated hazard ratio for CLINIC = 2
vs. CLINIC = 1 before and after 365 days. The estimated haz-
ard ratio for CLINIC at 100 days is exp(−0.45956) = 0.632
and the estimated hazard ratio for CLINIC at 400 days is
exp(−1.82823) = 0.161.

The output for the model with one Heaviside function follows.

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

CLINIC 1 -0.45956 0.25529 3.2405 0.0718 0.632
PRISON 1 0.37770 0.16840 5.0304 0.0249 1.459
DOSE 1 -0.03551 0.00644 30.4503 <.0001 0.965
HV 1 -1.36866 0.46139 8.7993 0.0030 0.254

Notice the variable CLINIC is included in this model and
the coefficient for the time-dependent Heaviside function
HV does not contribute to the estimated hazard ratio un-
til day 365. The estimated hazard ratio for CLINIC at 100
days is exp(−0.45956) = 0.632 and the estimated hazard ratio
for CLINIC at 400 days is exp((−0.45956) + (−1.36866)) =
0.161. These results are consistent with the estimates ob-
tained from the model with two Heaviside functions. A Wald
test for the variable HV shows a statistically significant p-
value of 0.003 suggesting a violation of the PH assumption
for CLINIC.
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Suppose it is believed that the hazard ratio for CLINIC = 2 vs.
CLINIC = 1 is constant over the first year but then monoton-
ically increases (or decreases) after the first year. The follow-
ing code defines a model allowing for a time-varying covariate
called CLINTIME (defined in the code) which contributes to
the hazard ratio for CLINIC after 365 days. The code follows
(output omitted).

PROC PHREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=CLINIC PRISON DOSE CLINTIME;
IF SURVT < 365 THEN CLINTIME=0;
ELSE IF SURVT >= 365 THEN CLINTIME = CLINIC*(SURVT-365);
RUN;

7. RUNNING PARAMETRIC MODELS
WITH PROC LIFEREG

PROC LIFEREG runs parametric accelerated failure time
(AFT) models rather than proportional hazards (PH) mod-
els. Whereas the key assumption of a PH model is that haz-
ard ratios are constant over time, the key assumption for an
AFT model is that survival time accelerates (or decelerates)
by a constant factor when comparing different levels of
covariates.

The most common distribution for parametric modeling of
survival data is the Weibull distribution. The hazard function
for a Weibull distribution is λptp−1. If p = 1 then the Weibull
distribution is also an exponential distribution. The Weibull
distribution has a desirable property in that if the AFT as-
sumption holds then the PH assumption also holds. The ex-
ponential distribution is a special case of the Weibull distri-
bution. The key property for the exponential distribution is
that the hazard is constant over time (h(t) = λ). In SAS, the
Weibull and exponential model are run only as AFT models.

The Weibull distribution has the property that the log–log
of the survival function is linear with the log of time. PROC
LIFETEST can be used to plot Kaplan–Meier log–log curves
against the log of time. If the curves are approximately
straight lines (and parallel) then the assumption is reason-
able. Furthermore, if the straight lines have a slope of 1, then
the exponential distribution is appropriate. The code below
produces log–log curves stratified by CLINIC and PRISON
that can be used to check the validity of the Weibull assump-
tion for those variables.
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PROC LIFETEST DATA=REF.ADDICTS METHOD=KM PLOTS=(LLS);
TIME SURVT*STATUS(0);
STRATA CLINIC PRISON;
RUN;

The log–log survival plots produced by PROC LIFETEST
follow.
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The log–log curves do not look straight but for illustration we
proceed as if the Weibull assumption were appropriate. First
an exponential model is run with PROC LIFEREG. In this
model the Weibull shape parameter (p) is forced to equal 1,
which forces the hazard to be constant.

PROC LIFEREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC/DIST=EXPONENTIAL;
RUN;

The DIST=EXPONENTIAL option in the MODEL statement
requests the exponential distribution. The output of parame-
ter estimates obtained from PROC LIFEREG follows.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.6843 0.4307 2.8402 4.5285 73.17 <.0001
PRISON 1 -0.2526 0.1649 -0.5758 0.0705 2.35 0.1255
DOSE 1 0.0289 0.0061 0.0169 0.0410 22.15 <.0001
CLINIC 1 0.8806 0.2106 0.4678 1.2934 17.48 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000
Weibull Shape 0 1.0000 0.0000 1.0000 1.0000
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The exponential model assumes a constant hazard. This is in-
dicated in the output by the value of the Weibull shape pa-
rameter (1.0000). The output can be used to calculate the
estimated hazard for any subject given a pattern of covari-
ates. For example, a subject with PRISON = 0, DOSE = 50,
and CLINIC = 2 has an estimated hazard of exp(−(3.6843 +
50(0.0289) + 2(0.8806)) = .001. Note that SAS gives the pa-
rameter estimates for the AFT form of the exponential model.
Multiply the estimated coefficients by negative one to get esti-
mates consistent with the PH parameterization of the model
(see Chapter 7).

Next a Weibull AFT model is run with PROC LIFEREG.

PROC LIFEREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC/DIST=WEIBULL;
RUN;

The DIST=WEIBULL option in the MODEL statement re-
quests the Weibull distribution. The output for the parameter
estimates follows.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 4.1048 0.3281 3.4619 4.7478 156.56 <.0001
PRISON 1 -0.2295 0.1208 -0.4662 0.0073 3.61 0.0575
DOSE 1 0.0244 0.0046 0.0154 0.0334 28.32 <.0001
CLINIC 1 0.7090 0.1572 0.4009 1.0172 20.34 <.0001
Scale 1 0.7298 0.0493 0.6393 0.8332
Weibull Shape 1 1.3702 0.0926 1.2003 1.5642

The Weibull shape parameter is estimated at 1.3702. SAS calls
the reciprocal of the Weibull shape parameter, the Scale pa-
rameter, estimated at 0.7298. The acceleration factor compar-
ing CLINIC = 2 to CLINIC = 1 is estimated at exp(0.7090) =
2.03. So the estimated median survival time (time off heroin)
is double for patients enrolled in CLINIC = 2 compared to
CLINIC = 1.

To obtain the hazard ratio parameters from the Weibull AFT
model, multiply the Weibull shape parameter by the negative
of the AFT parameter (see Chapter 7). For example, the HR
estimate for CLINIC = 2 vs. CLINIC = 1 controlling for the
other covariates is exp(1.3702(−0.7090)) = 0.38.
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Next a log-logistic AFT model is run with PROC LIFEREG.

PROC LIFEREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC/DIST=LLOGISTIC;
RUN;

The output of the log-logistic parameter estimates follows.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr >ChiSq

Intercept 1 3.5633 0.3894 2.8000 4.3266 83.71 <.0001
PRISON 1 -0.2913 0.1440 -0.5734 -0.0091 4.09 0.0431
DOSE 1 0.0316 0.0055 0.0208 0.0424 32.81 <.0001
CLINIC 1 0.5806 0.1716 0.2443 0.9169 11.45 0.0007
Scale 1 0.5868 0.0403 0.5129 0.6712

From this output, the acceleration factor comparing
CLINIC = 2 to CLINIC = 1 is estimated as exp(0.5806) =
1.79. If the AFT assumption holds for a log-logistic model,
then the proportional odds assumption holds for the survival
function (although the PH assumption will not hold). The pro-
portional odds assumption can be evaluated by plotting the
log odds of survival (using KM estimates) against the log of
survival time. If the plots are straight lines for each pattern of
covariates then the log-logistic distribution is reasonable. If
the straight lines are also parallel then the proportional odds
and AFT assumptions also hold.

A SAS dataset containing the KM survival estimates can be
created using PROC LIFETEST (see Section 1 of this ap-
pendix). Once this variable is created, a dataset containing
variables for the estimated log odds of survival and the log of
survival time can also be created. PROC GPLOT can then be
used to plot the log odds of survival against survival time.

Another context for thinking about the proportional odds as-
sumption is that the odds ratio estimated by a logistic re-
gression does not depend on the length of the follow-up. For
example, if a follow-up study were extended from three to five
years then the underlying odds ratio comparing two patterns
of covariates would not change. If the proportional odds as-
sumption is not true, then the odds ratio is specific to the
length of follow-up.
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An AFT model is a multiplicative model with respect to sur-
vival time or equivalently an additive model with respect to the
log of time. In the previous example, the median survival time
was estimated as 1.79 times longer for CLINIC = 2 compared
to CLINIC = 1. In that example survival time was assumed
to follow a log-logistic distribution or equivalently the log of
survival time was assumed to follow a logistic distribution.

SAS allows additive failure time models to be run (see
Chapter 7 under the heading “Other Parametric Models”). The
NOLOG option in the MODEL statement of PROC LIFEREG
suppresses the default log link function which means that
time, rather than log(time), is modeled as a linear function
of the regression parameters. The following code requests an
additive failure time model in which time follows a logistic
(not log-logistic) distribution.

PROC LIFEREG DATA=REF.ADDICTS;
MODEL SURVT*STATUS(0)=PRISON DOSE CLINIC/DIST=LLOGISTIC NOLOG;
RUN;

Even though the option DIST=LLOGISTIC appears to re-
quest that survival time follow a log-logistic distribution, the
NOLOG option actually means that survival time is assumed
to follow a logistic distribution. (Note that the NOLOG op-
tion in Stata means something completely different using the
streg command: that the iteration log file not be shown in
the output.) The output from the additive failure time model
follows.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -358.482 114.0161 -581.949 -135.014 9.89 0.0017
PRISON 1 -89.7816 42.9645 -173.990 -5.5727 4.37 0.0366
DOSE 1 10.3893 1.6244 7.2055 13.5731 40.91 <.0001
CLINIC 1 214.2525 53.1204 110.1385 318.3665 16.27 <.0001
Scale 1 172.4039 11.3817 151.4792 196.2191
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The parameter estimate for CLINIC is 214.2525. The inter-
pretation for this estimate is that the median survival time
(or time to any fixed value of S(t)) is estimated at 214 days
more for CLINIC = 2 compared to CLINIC = 1. In other
words, you add 214 days to the estimated median survival
time for CLINIC = 1 to get the estimated median survival
time for CLINIC = 2. This contrasts with the previous AFT
model in which you multiply estimated median survival time
for CLINIC = 1 by 1.79 to get the estimated median survival
time for CLINIC = 2. The additive model can be viewed as a
shifting of survival time whereas the AFT model can be viewed
as a scaling of survival time.

If survival time follows a logistic distribution and the ad-
ditive failure time assumption holds, then the proportional
odds assumption also holds. The logistic assumption can be
evaluated by plotting the log odds of survival (using KM es-
timates) against time (rather than against the log of time as
analogously used for the evaluation of the log-logistic assump-
tion). If the plots are straight lines for each pattern of covari-
ates then the logistic distribution is reasonable. If the straight
lines are also parallel then the proportional odds and additive
failure time assumptions hold.

Other distributions supported by PROC LIFEREG are
the generalized gamma (DIST=GAMMA) and lognormal
(DIST=LNORMAL) distributions. If the NOLOG option is
specified with the DIST=LNORMAL option in the model state-
ment, then survival time is assumed to follow a normal dis-
tribution. SAS version 8.2 does not support frailty survival
models.

8. MODELING RECURRENT EVENTS

The modeling of recurrent events is illustrated with the blad-
der cancer dataset (bladder.sas7bdat) described at the start
of this appendix. Recurrent events are represented in the
data with multiple observations for subjects having multiple
events. The data layout for the bladder cancer dataset is suit-
able for a counting process approach with time intervals de-
fined for each observation (see Chapter 8). The following code
prints the 12th through 20th observation, which contains in-
formation for four subjects. The code follows.

PROC PRINT DATA=REF.BLADDER (FIRSTOBS= 12 OBS=20);
RUN;
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The output follows.

OBS ID EVENT INTERVAL START STOP TX NUM SIZE
12 10 1 1 0 12 0 1 1
13 10 1 2 12 16 0 1 1
14 10 0 3 16 18 0 1 1
15 11 0 1 0 23 0 3 3
16 12 1 1 0 10 0 1 3
17 12 1 2 10 15 0 1 3
18 12 0 3 15 23 0 1 3
19 13 1 1 0 3 0 1 1
20 13 1 2 3 16 0 1 1

There are three observations for ID = 10, one observation for
ID = 11, three observations for ID = 12, and two observations
for ID = 13. The variables START and STOP represent the
time interval for the risk period specific to that observation.
The variable EVENT indicates whether an event (coded 1)
occurred. The first three observations indicate that the subject
with ID = 10 had an event at 12 months, another event at
16 months, and was censored at 18 months.

PROC PHREG can be used for survival data using a count-
ing processes data layout. The following code runs a model
with the predictors, treatment status (TX), initial number of
tumors (NUM), and the initial size of tumors (SIZE) included
in the model.

PROC PHREG DATA=BLADDER COVS(AGGREGATE);
MODEL (START,STOP)*EVENT(0)=TX NUM SIZE;
ID ID;
RUN;

The code (START,STOP)∗EVENT(0) in the MODEL state-
ment indicates that the time intervals for each observation
are defined by the variables START and STOP and that
EVENT = 0 denotes a censored observation. The ID state-
ment defines ID as the variable representing subject. The
COVS(AGGREGATE) option in the PROC PHREG statement
requests robust standard errors for the parameter estimates.
The output generated by PROC PHREG follows.
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The PHREG Procedure

Model Information

Data Set WORK.BLADDER
Dependent Variable START
Dependent Variable STOP
Censoring Variable EVENT
Censoring Value(s) 0
Ties Handling BRESLOW

Analysis of Maximum Likelihood Estimates

Parameter Standard StdErr Hazard
Variable Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

TX -0.40710 0.24183 1.209 2.8338 0.0923 0.666
NUM 0.16065 0.05689 1.185 7.9735 0.0047 1.174
SIZE -0.04009 0.07222 1.028 0.3081 0.5788 0.961

Coefficient estimates are provided with robust standard er-
rors. The column under the heading StdErrRatio provides
the ratio of the robust to the nonrobust standard errors.
For example, the standard error for the coefficient for TX
(0.24183) is 1.209 greater than the standard error would be
if we had not requested robust standard errors (i.e., omit the
COVS(AGGREGATE) option). The robust standard errors are
estimated slightly differently compared to the corresponding
model in Stata.

A stratified Cox model can also be run using the data in this
format with the variable INTERVAL as the stratified variable.
The stratified variable indicates whether the subject was at
risk for a 1st, 2nd, 3rd, or 4th event. This approach is called
conditional 1 in Chapter 8 and is used if the investigator
wants to distinguish the order in which recurrent events oc-
cur. The code for a stratified Cox follows.

PROC PHREG DATA=BLADDER COVS(AGGREGATE);
MODEL (START,STOP)*EVENT(0)=TX NUM SIZE;
ID ID;
STRATA INTERVAL;
RUN;
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The only additional code from the previous model is the
STRATA statement indicating that the variable INTERVAL is
the stratified variable. The output containing the parameter
estimates follows.

Analysis of Maximum Likelihood Estimates

Parameter Standard StdErr Hazard
Variable Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

TX -0.33430 0.19706 0.912 2.8777 0.0898 0.716
NUM 0.11565 0.04991 0.930 5.3690 0.0205 1.123
SIZE -0.00805 0.06012 0.827 0.0179 0.8935 0.992

Interaction terms between the treatment variable (TX) and
the stratified variable could be created to examine whether
the effect of treatment differed for the 1st, 2nd, 3rd, or 4th
event.

Another stratified approach (called conditional 2) is a slight
variation of the conditional 1 approach. The difference is in
the way the time intervals for the recurrent events are defined.
There is no difference in the time intervals when subjects are
at risk for their first event. However, with the conditional 2
approach, the starting time at risk gets reset to zero for each
subsequent event. The following code creates data suitable
for using the conditional 2 approach.

DATA BLADDER2;
SET REF.BLADDER;
START2=0;
STOP2=STOP-START;
RUN;

The new dataset (BLADDER2) copies the data from
REF.BLADDER and creates two new variables for the time
interval: START2, which is always set to zero and STOP2,
which is the length of the time interval (i.e., STOP – START).
The following code uses these newly created variables to run
the conditional 2 approach with PROC PHREG.

PROC PHREG DATA=BLADDER2 COVS(AGGREGATE);
MODEL (START2,STOP2)*EVENT(0)=TX NUM SIZE;
ID ID;
STRATA INTERVAL;
RUN;
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The output follows.

Parameter Standard StdErr Hazard
Variable Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

TX -0.26952 0.20808 1.002 1.6778 0.1952 0.764
NUM 0.15353 0.04889 0.938 9.8620 0.0017 1.166
SIZE 0.00684 0.06222 0.889 0.0121 0.9125 1.007

The results using the conditional 1 and conditional 2 ap-
proaches vary slightly.

The counting process data layout with multiple observations
per subject need not only apply to recurrent event data but
can also be used for more conventional survival analyses in
which each subject is limited to one event. A subject with four
observations may be censored for the first three observations
before getting the event in the time interval represented by the
fourth observation. This data layout is particularly suitable
for representing time-varying exposures (i.e., exposures that
change values over different intervals of time).

C. SPSS
Analyses are carried out in SPSS by using the appropriate
SPSS procedure on an SPSS dataset. Most users select pro-
cedures by pointing and clicking the mouse through a series
of menus and dialog boxes. The code, or command syntax,
generated by these steps can be viewed and edited.

Analyses on the addicts dataset are used to illustrate these
procedures. The addicts dataset was obtained from a 1991
Australian study by Caplehorn et al., and contains infor-
mation on 238 heroin addicts. The study compared two
methadone treatment clinics to assess patient time remaining
under methadone treatment. The two clinics differed accord-
ing to live-in policies for patients. A patient’s survival time was
determined as the time (in days) until the person dropped out
of the clinic or was censored. The variables are defined at the
start of this appendix.
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After getting into SPSS, open the dataset addicts.sav. The
data should appear on your screen. This is now your work-
ing dataset. To obtain a basic descriptive analysis of the
outcome variable (SURVT) click on Analyze → Descriptive
Statistics → Descriptive from the drop-down menus to reach
the dialog box to specify the analytic variables. Select the sur-
vival time variable (SURVT) from the list of variables and
enter it into the Variable box. Click on OK to view the out-
put. Alternatively you can click on Paste (rather than OK) to
obtain the corresponding SPSS syntax. The syntax can then
be submitted (by clicking the button under Run), edited, or
saved for another session. The syntax created is as follows
(output omitted).

DESCRIPTIVES
VARIABLES=survt
/STATISTICS=MEAN STDDEV MIN MAX

There are some analyses that SPSS only performs by submit-
ting syntax rather than using the point and click approach
(e.g., running an extended Cox model with two time-varying
covariates). Each time the point and click approach is pre-
sented the corresponding syntax will also be presented.

To obtain more detailed descriptive statistics on survival time
stratified by CLINIC, click on Analyze → Descriptive Statis-
tics → Explore from the drop-down menus. Select SURVT
from the list of variables and enter it into the Dependent List
and then select CLINIC and enter it into the Factor List. Click
on OK to see the output. The syntax created from clicking on
Paste (rather than OK) is as follows (output omitted).

EXAMINE
VARIABLES=survt BY clinic
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL

Survival analyses can be performed in SPSS by selecting An-
alyze → Survival. There are then four choices for selection:
Life Tables, Kaplan–Meier, Cox Regression, and Cox w/ Time-
Dep Cov. The key SPSS procedures for survival analysis are
the KM and COXREG procedures.
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The survival analyses demonstrated in SPSS are:

1. Estimating survival functions (unadjusted) and comparing
them across strata;

2. Assessing the PH assumption using Kaplan–Meier log–log
survival curves;

3. Running a Cox PH model;
4. Running a stratified Cox model and obtaining Cox adjusted

log–log curves;
5. Assessing the PH assumption with a statistical test; and
6. Running an extended Cox model.

SPSS version 11.5 does not provide commands to run para-
metric survival models, frailty models, or models using a
counting processes data layout for recurrent events.

1. ESTIMATING SURVIVAL FUNCTIONS
(UNADJUSTED) AND COMPARING
THEM ACROSS STRATA

To obtain Kaplan–Meier survival estimates, select Analyze →
Survival → Kaplan–Meier. Select the survival time variable
(SURVT) from the variable list and enter it into the Time box,
then select the variable STATUS and enter it into the Status
box. You will then see a question mark in parentheses after
the status variable indicating that the value of the event needs
to be entered. Click the Define Event button and insert the
value 1 in the box because the variable STATUS is coded 1
for events and 0 for censorships. Click on Continue and then
OK to view the output. The syntax, obtained from clicking on
Paste (rather than OK), is as follows (output omitted).

KM
survt /STATUS=status(1)
/PRINT TABLE MEAN

The stream of output of these KM estimates is quite long and
does not all initially appear in the output window (called the
SPSS viewer). In order to make it easier to view the output,
try right-clicking inside the output and then select SPSS Rtf
Document Object → Open to open up a text output window.
The output is easier to view and can also be edited from this
window.
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To obtain KM survival estimates and plots by CLINIC as well
as log rank (and other) test statistics, select Analyze → Sur-
vival → Kaplan–Meier and then select SURVT as the time-
to-event variable and STATUS as the status variable as de-
scribed above. Enter CLINIC into the Factor box and click
the Compare Factor button. You have a choice of three test
statistics for testing the equality of survival functions across
CLINIC. Select all three (log rank, Breslow, and Tarone–Ware)
for comparison and click Continue. Click the Options button
to request plots. There are four choices (unfortunately log–
log survival plots are not included). Select Survival to obtain
KM plots by clinic. Click Continue and then OK to view the
output. To edit (and better view) the output, right-click on the
output and then select SPSS Rtf Document Object → Open
in order to open up a text output window.

The syntax follows.

KM
survt BY clinic /STATUS=status(1)
/PRINT TABLE MEAN
/PLOT SURVIVAL
/TEST LOGRANK BRESLOW TARONE
/COMPARE OVERALL POOLED

The output containing the KM estimates for the first four
event-times from CLINIC = 1 and CLINIC = 2 as well for
the log rank, Breslow, and Tarone–Ware tests follows.

Survival Analysis for SURVT Survival time (days)

Factor CLINIC = 1.00

Time Status Cumulative Standard Cumulative Number
Survival Error Events Remaining

2.00 censored 0 162
7.00 endpoint .9938 .0062 1 161
17.00 endpoint .9877 .0087 2 160
19.00 endpoint .9815 .0106 3 159
28.00 censored 3 158
28.00 censored 3 157
29.00 endpoint .9752 .0122 4 156

.

.
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Factor CLINIC = 2.00

Time Status Cumulative Standard Cumulative Number
Survival Error Events Remaining

2.00 censored 0 74
13.00 endpoint .9865 .0134 1 73
26.00 endpoint .9730 .0189 2 72
35.00 endpoint .9595 .0229 3 71
41.00 endpoint .9459 .0263 4 70

.

.

Test Statistics for Equality of Survival Distributions for CLINIC

Statistic df Significance

Log Rank 27.89 1 .0000
Breslow 11.63 1 .0007
Tarone-Ware 17.60 1 .0000

Note that what SPSS calls the Breslow test statistic is
equivalent to what Stata (and SAS) call the Wilcoxon test
statistic.

Life table estimates can be obtained by selecting Analyze →
Survival → Life Tables. The time-to-event and status variables
are defined similarly to those described above for Kaplan–
Meier estimates. However, with life tables, SPSS presents a
Display Time Intervals box. This allows the user to define the
time intervals used for the life table analysis. For example, 0
to 1000 by 100 would define 10 time intervals of equal length.
Life table plots can similarly be requested as described above
for the KM plots.

2. ASSESSING THE PH ASSUMPTION USING
KAPLAN–MEIER LOG–LOG SURVIVAL CURVES

SPSS does not provide unadjusted KM log–log curves by di-
rectly using the point and click approach with the KM com-
mand. SPSS does provide adjusted log–log curves from run-
ning a stratified Cox model (described later in the stratified
Cox section). A log–log curve equivalent to the unadjusted KM
log–log curve can be obtained in SPSS by running a stratified
Cox without including any covariates in the model. In this
section, however, we illustrate how new variables can be de-
fined in the working dataset and then used to plot unadjusted
log–log KM plots.
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First a variable is created containing the KM survival esti-
mates. Then another new variable is created containing the
log–log of the survival estimates. Finally the log–log survival
estimates are plotted against survival time to see if the curves
for CLINIC = 1 and CLINIC = 2 are parallel. Each step can
be done with the point-and-click approach or by typing in the
code directly.

A variable containing the survival estimates can be created
by selecting Analyze → Survival → Kaplan–Meier and then
selecting SURVT as the time-to-event variable, STATUS as the
status variable, and CLINIC as the factor variable as described
above. Then click the Save button. This opens a dialog box
called Kaplan–Meier Save New Variables. Check Survival and
click on Continue and then on Paste. The code that is created
is as follows.

KM
survt BY clinic /STATUS=status(1)
/PRINT TABLE MEAN
/SAVE SURVIVAL

By submitting this code, a new variable containing the KM
estimates called sur 1 is created. To create a new variable
called lls containing the log(− log) of sur 1 submit the fol-
lowing code.

COMPUTE lls = LN(-LN (sur-1)) .
EXECUTE

The above code could also be generated by selecting Trans-
form → Compute and defining the new variable in the dialog
box. To plot lls against survival time submit the code:

GRAPH
/SCATTERPLOT(BIVAR)=survt WITH lls BY clinic
/MISSING=LISTWISE

This final piece of code could also be run by selecting
Graphs → Scatter and then clicking on Simple and then De-
fine in the Scatterplot dialogue box. Select LLS for the Y-axis,
SURVT for the X-axis, and CLINIC in the Set Marker By box.
Clicking on paste creates the code or clicking OK submits the
program. A plot of LLS against log(SURVT) could similarly
be created. Parallel curves support the PH assumption for
CLINIC.
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3. RUNNING A COX PH MODEL

A Cox PH model can be run by selecting Analyze → Sur-
vival → Cox Regression. Select the survival time variable
(SURVT) from the variable list and enter it into the Time box,
then select the variable STATUS and enter it into the Status
box. You will then see a question mark in parentheses after the
status variable indicating that the value of the event needs to
be entered. Click the Define Event button and insert the value
1 in the box because the variable STATUS is coded 1 for events
and 0 for censorships. Click on Continue and select PRISON,
DOSE, and CLINIC from the variable list and enter them into
the Covariates box. You can click on Plots or Options to ex-
plore some of the options (e.g., 95% CI for exp(β)). Click OK
to view the output or click on Paste to see the code. The code
follows.

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison dose clinic
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)

Note that the proportional hazards assumption is assumed to
hold for all three covariates using this Cox model (the output
follows).

Omnibus Tests of Model Coefficientsa,b

Change From Change From
Overall (score) Previous Step Previous Block−2Log

Likelihood Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.

1346.805 56.273 3 .000 64.519 3 .000 64.519 3 .000

a Beginning Block Number 0, initial Log Likelihood function: −2 Log likelihood: 1411.324
b Beginning Block Number 1. Method = Enter

Variables in the Equation

B SE Wald df Sig. Exp(B)

PRISON .327 .167 3.813 1 .051 1.386
DOSE −.035 .006 30.785 1 .000 .965
CLINIC −1.009 .215 22.045 1 .000 .365
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4. RUNNING A STRATIFIED COX MODEL AND
OBTAINING COX ADJUSTED LOG–LOG CURVES

A stratified Cox model is run by selecting Analyze → Sur-
vival → Cox Regression. Select the survival time variable
(SURVT) from the variable list and enter it into the Time box.
Select the variable STATUS and enter it into the Status box
and then define the value of the event as 1. Put the variables
PRISON and DOSE in the Covariates box and the variable
CLINIC in the Strata box. The Cox model will be stratified
by CLINIC. Click the Plots button and check Log minus log
as the plot type and then click on Continue. Click on OK to
view the output or click on Paste to see the code. The code
follows.

COXREG
survt /STATUS=status(1) /STRATA=clinic
/METHOD=ENTER prison dose
/PLOT LML
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)

The output containing the parameter estimates and the ad-
justed log–log plots follows.

Variables in the Equation

B SE Wald df Sig. Exp(B)

PRISON .389 .169 5.298 1 .021 1.475
DOSE −.035 .006 29.552 1 .000 .965
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Notice that there are parameter estimates for PRISON and
DOSE but not CLINIC because CLINIC is the stratified vari-
able. The Cox adjusted log–log plots are fitted using the mean
values of PRISON and DOSE and are used to evaluate the PH
assumption for CLINIC.

Suppose rather than using the mean value of DOSE for the ad-
justed log–log plots, you wish to obtain adjusted plots in which
DOSE = 70. Run the same code as before, up to clicking on
the Plots button and checking Log minus log as the plot type.
Now click on DOSE(Mean) in the window called Covariate
Values Plotted at. Type in the value 70 in the box underneath
called Change Value and click on the button called Change.
Now the variable in the window should be called DOSE(70)
rather than DOSE(Mean). Click on Continue and then OK to
view the output.

5. ASSESSING THE PH ASSUMPTION WITH
A STATISTICAL TEST

SPSS does not easily accommodate a statistical test on the
proportional hazards assumption using the Schoenfeld resid-
uals. However, it can be programmed using several steps. The
steps are as follows.

1. Run a Cox PH model to obtain the Schoenfeld residuals for
all the covariates. These residuals are saved as new vari-
ables in the working dataset.

2. Delete observations that were censored.
3. Create a variable that contains the ranked order of survival

time. For example, the subject who had the fourth event
gets a value of 4 for this variable.

4. Run correlations on the survival rankings with the Schoen-
feld residuals.

5. The p-value for testing whether the correlation is zero be-
tween the ranked survival time and the covariate’s Schoen-
feld residuals is the p-value for the statistical test that the
PH assumption is violated. The null hypothesis is that the
PH assumption is not violated.

First, run a Cox PH model with CLINIC, PRISON, and DOSE.
Click on the Save button before submitting the model. A dia-
log box appears that is called Cox Regression: Save New Vari-
ables. Check Partial Residuals (under Diagnostics) and click
on Continue. This creates three new variables in the working
dataset called pr1 1, pr2 1, and pr3 1, which are the partial
residuals for CLINIC, PRISON, and DOSE, respectively. Click
OK to run the model (or Paste to generate the code).
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Next, delete all censored observations (i.e., only keep observa-
tions in which STATUS = 1). To do this, select Data → Select
Cases. Then check If condition is satisfied, and then click on If.
Type status=1 in the dialog box and click on Continue. Check
Deleted in the box called Unselected Cases Are. Click OK and
only observations with events will be kept in the dataset.

Create the variable that contains the ranking of survival times
by selecting Transform → Ranked Cases. Select the survival
time variable (SURVT) in the Variables box. Click on Rank
Types, check Ranks, and click on Continue and then click on
Ties, check Mean, and click Continue. Click OK and a new
variable (called rsurvt) will be created containing the ranked
survival time.

Finally, obtain correlations (and their p-values) between the
ranked survival and the Schoenfeld residuals. Select Ana-
lyze → Correlate. → Bivariate. Move the ranked survival time
variable as well as the three partial residual variables into the
variable box. Check Pearson (for Pearson correlations) and
Two-tailed for a two-tail test of significance and click OK to
see the output. The code that is generated from these steps
follows.

COXREG
survt /STATUS=status(1)
/METHOD=ENTER clinic prison dose
/SAVE= PRESID
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)

FILTER OFF.
USE ALL.
SELECT IF(status=1).
EXECUTE

RANK
VARIABLES=survt (A) /RANK /PRINT=YES
/TIES=MEAN

CORRELATIONS
/VARIABLES=rsurvt pr1-1 pr2-1 pr3-1
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE
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The output containing the correlations follows.

Correlations

Partial Partial Partial
RANK of Residual Residual Residual
SURVT for CLINIC for PRISON for DOSE

RANK of Pearson Correlation 1 −.262∗∗ −.080 .077
SURVT Sig. (2-tailed) — .001 .332 .347

N 150 150 150 150
Partial Pearson Correlation −.262∗∗ 1 .010 .023

residual for Sig. (2-tailed) .001 — .904 .776
CLINIC N 150 150 150 150

Partial Pearson Correlation −.080 .010 1 .171∗
residual for Sig. (2-tailed) .332 .904 — .037
PRISON N 150 150 150 150

Partial Pearson Correlation −.077 .023 .171∗ 1
residual Sig. (2-tailed) .347 .776 .037 —
for DO N 150 150 150 150

∗∗ Correlation is significant at the 0.01 level (2-tailed).
∗ Correlation is significant at the 0.05 level (2-tailed).

The p-values for the correlations are the p-values for the PH
test. In the output, examine the row labeled RANK of SURVT
Sig(2-tailed). Notice that the null hypothesis is rejected for
CLINIC (p = 0.001) but not for PRISON (p = 0.332 ) or DOSE
(p = 0.347).

6. RUNNING AN EXTENDED COX MODEL

An extended Cox model with exactly one time-dependent co-
variate can be run using the point and click approach. Sup-
pose we want to include a time-dependent covariate DOSE
times the log of survival time. This product term could be
appropriate if the hazard ratio comparing any two levels of
DOSE monotonically increases (or decreases) over time. Se-
lect Analyze → Survival → Cox w/ Time-Dep Cov. This opens
a dialog box called Expression for T COV . The user defines a
time-dependent variable (called T COV ) in this box. A vari-
able T is included in the variable list. This is the variable
that represents time-varying survival (as opposed to SURVT
which is an individual’s fixed time of event). We wish to de-
fine T COV to be the log of T times DOSE. Enter the expres-
sion LN(T )∗DOSE into the dialog box and click on the Model
button. Now run a Cox model that includes the covariates:
PRISON, CLINIC, DOSE, and T COV . The code generated is
as follows.
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TIME PROGRAM.
COMPUTE T-COV-= LN(T-) ∗ dose

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison clinic dose T-COV-
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)

The output containing the parameter estimates follows.

Variables in the Equation

B SE Wald df Sig. Exp(B)

PRISON .340 .167 4.134 1 .042 1.406
CLINIC −1.019 .215 22.369 1 .000 .361
DOSE −.082 .036 5.247 1 .022 .921
T-COV- .009 .006 1.765 1 .184 1.009

The variable T COV represents the time-dependent variable
included in the model, which in this example is DOSE times
the log of survival time.

A Heaviside function for CLINIC can similarly be created. We
can define a time-dependent variable equal to CLINIC if time
is greater than or equal to 365 days and 0 otherwise. Select
Analyze → Survival → Cox w/ Time-Dep Cov. Define T COV
to be (T ≥ 365)∗CLINIC. After clicking on the Model button,
run a Cox model that includes PRISON, DOSE, CLINIC, and
T COV . The code generated is as follows.

TIME PROGRAM.
COMPUTE T-COV-= (T->= 365)∗ clinic

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison dose clinic T-COV-
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)

Note that SPSS recognizes the expression (T >= 365) as tak-
ing the value 1 if survival time is ≥ 365 days and 0 otherwise.
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The output follows.

Variables in the Equation

B SE Wald df Sig. Exp(B)

PRISON .378 .168 5.030 1 .025 1.459
CLINIC −.460 .255 3.241 1 .072 .632
DOSE −.036 .006 30.450 1 .000 .965
T-COV- −1.369 .461 8.799 1 .003 .254

Notice the variable CLINIC is included in this model and
the time-dependent Heaviside function T COV does not con-
tribute to the estimated hazard ratio until day 365. The esti-
mated hazard ratio for CLINIC at 100 days is exp(−0.460) =
0.632 and the estimated hazard ratio for CLINIC at 400 days
is exp((−0.460) + (−1.369)) = 0.161.

It may be of interest to define two Heaviside functions (with
CLINIC) and not include CLINIC in the model. This is essen-
tially the same model as the one described above with one
Heaviside function. However, the coding of two Heaviside
functions makes it somewhat computationally more conve-
nient for estimating the two hazard ratios for CLINIC (HR
for <365 days and HR for ≥365 days). Unfortunately, SPSS
allows just one time-dependent variable (i.e., T COV ) using
the point and click approach. However, by examining the code
created for the single Heaviside function, there is only a slight
adjustment needed to create code for two Heaviside functions.
The following code creates two Heaviside functions (called
HV1 and HV2) and runs a model containing PRISON, DOSE,
HV1, and HV2.

TIME PROGRAM.
COMPUTE hv2= (T->= 365)∗ clinic
COMPUTE hv1= (T-< 365)∗ clinic

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison dose hv1 hv2
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20)
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The output follows.

Variables in the Equation

B SE Wald df Sig. Exp(B)

PRISON .378 .168 5.030 1 .025 1.459
DOSE −.036 .006 30.450 1 .000 .965
HV1 −.460 .255 3.241 1 .072 .632
HV2 −1.828 .386 22.439 1 .000 .161

The parameter estimates for HV1 and HV2 can be used di-
rectly to obtain the estimated hazard ratio for CLINIC = 2
vs. CLINIC = 1 before and after 365 days. The estimated
hazard ratio for CLINIC at 100 days is exp(−0.460) = 0.632
and the estimated hazard ratio for CLINIC at 400 days is
exp(−1.828) = 0.161. These results are consistent with the
estimates obtained from the previous model with one Heavi-
side function.
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Chapter 1 True-False Questions

1. T
2. T
3. T
4. F: Step function.
5. F: Ranges between 0 and 1.
6. T
7. T
8. T
9. T

10. F: Median survival time is longer for group 1 than for
group 2.

11. F: Six weeks or greater.
12. F: The risk set at 7 weeks contains 15 persons.
13. F: Hazard ratio.
14. T
15. T
16. h(t) gives the instantaneous potential per unit time for the

event to occur given that the individual has survived up to
time t; h(t) is greater than or equal to 0; h(t) has no upper
bound.

17. Hazard functions

� give insight about conditional failure rates;� help to identify specific model forms (e.g., exponen-
tial, Weibull);� are used to specify mathematical models for survival
analysis.

18. Three goals of survival analysis are:

� to estimate and interpret survivor and/or hazard
functions;� to compare survivor and/or hazard functions;� to assess the relationship of explanatory variables to
survival time.
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19.
t( j ) mj q j R(t( j ))

Group 1: 0 0 0 25 persons survive ≥ 0 years
1.8 1 0 25 persons survive ≥ 1.8 years
2.2 1 0 24 persons survive ≥ 2.2 years
2.5 1 0 23 persons survive ≥ 2.5 years
2.6 1 0 22 persons survive ≥ 2.6 years
3.0 1 0 21 persons survive ≥ 3.0 years
3.5 1 0 20 persons survive ≥ 3.5 years
3.8 1 0 19 persons survive ≥ 3.8 years
5.3 1 0 18 persons survive ≥ 5.3 years
5.4 1 0 17 persons survive ≥ 5.4 years
5.7 1 0 16 persons survive ≥ 5.7 years
6.6 1 0 15 persons survive ≥ 6.6 years
8.2 1 0 14 persons survive ≥ 8.2 years
8.7 1 0 13 persons survive ≥ 8.7 years
9.2 2 0 12 persons survive ≥ 9.2 years
9.8 1 0 10 persons survive ≥ 9.8 years

10.0 1 0 9 persons survive ≥ 10.0 years
10.2 1 0 8 persons survive ≥ 10.2 years
10.7 1 0 7 persons survive ≥ 10.7 years
11.0 1 0 6 persons survive ≥ 11.0 years
11.1 1 0 5 persons survive ≥ 11.1 years
11.7 1 3 4 persons survive ≥ 11.7 years

20. a. Group 1 has a better survival prognosis than group 2
because group 1 has a higher average survival time
and a correspondingly lower average hazard rate than
group 2.

b. The average survival time and average hazard rates give
overall descriptive statistics. The survivor curves allow
one to make comparisons over time.

Chapter 2 1. a. KM plots and the log rank statistic for the cell type
1 variable in the vets.data dataset are shown below.
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Events Events
Group observed expected

1 102 93.45
2 26 34.55

Total 128 128.00

Log rank = chi2(2) = 3.02
p-value = Pr > chi2 = 0.0822

The KM curves indicate that persons with large cell type
have a consistently better prognosis than persons with
other cell types, although the two curves are essentially
the same very early on and after 250 days. The log rank
test is not significant at the .05 level, which gives some-
what equivocal findings.

b. KM plots and the log rank statistic for the four cate-
gories of cell type are shown below.
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The KM curves suggest that persons with adeno or small
cell types have a poorer survival prognosis than persons
with large or squamous cell types. Moreover, there does
not appear to be a meaningful difference between adeno
or small cell types. Also, persons with squamous cell
type seem to have, on the whole, a better prognosis than
persons with large cell type.
Computer results from Stata giving log rank statistics
are now shown.

Events Events
Group observed expected

1 26 34.55
2 26 15.69
3 45 30.10
4 31 47.65

Total 128 128.00

Log rank = chi2(2) = 25.40
P-value = Pr > chi2 = 0.0000
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The log-rank test yields highly significant p-values, in-
dicating that there is some overall difference between
all four curves; that is, the null hypothesis that the four
curves have a common survival curve is rejected.

2. a. KM plots for the two clinics are shown below. These
plots indicate that patients in clinic 2 have a consis-
tently better prognosis for remaining under treatment
than do patients in clinic 1. Moreover, it appears that
the difference between the two clinics is small before
one year of follow-up but diverges after one year of
follow-up.
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b. The log rank statistic (27.893) and Wilcoxon statistic
(11.63) are both significant well below the .01 level, in-
dicating that the survival curves for the two clinics are
significantly different. The log rank statistic is never-
theless much larger than the Wilcoxon statistic, which
makes sense because the log rank statistic emphasizes
the later survival experience, where the two survival
curves are far apart, whereas the Wilcoxon statistic em-
phasizes earlier survival experience, where the two sur-
vival curves are closer together.

c. If methadone dose is categorized into high (70+),
medium (55–70) and low (<55), we obtain the KM
curves shown below.
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The KM curves indicate that persons with high doses have
a consistently better survival prognosis (i.e., maintenance)
than persons with medium or low doses. The latter two
groups are not very different from each other, although the
medium dose group has a somewhat better prognosis up
to the first 400 days of follow-up.
The log rank test statistic is shown below for the above
categorization scheme.

Events Events
Group observed expected

0 45 30.93
1 74 54.09
2 31 64.99

Total 150 150.00

Log rank = chi2(2) = 33.02
P-value = Pr>chi2 = 0.0000

The test statistic is highly significant, indicating that these
three curves are not equivalent.

Chapter 3 1. a. h(t,X) = h0(t) exp[β1T 1 + β2T2 + β3PS + β4DC
+ β5BF + β6(T1 × PS) + β7(T2 × PS)
+ β8(T1 × DC) + β9(T2 × DC)
+ β10(T1 × BF) + β11(T2 × BF)]

b. Intervention A: X∗ = (1, 0, PS, DC, BF, PS, 0, DC, 0,
BF, 0)
Intervention C: X = (−1, −1, PS, DC, BF, −PS, −PS,
−DC, −DC, −BF, −BF)

HR = h(t,X∗)
h(t,X)

= exp[2β1 + β2 + 2β6PS + β7PS

+ 2β8DC + β9DC + 2β10BF

+ β11BF]

c. H0 : β6 = β7 = β8 = β9 = β10 = β11 = 0 in the full
model.
Likelihood ratio test statistic: −2 ln L̂ R − (−2 ln L̂ F ),
which is approximately χ2

6 under H0, where R denotes
the reduced model (containing no product terms) un-
der H0, and F denotes the full model (given in Part 1a
above)

d. The two models being compared are:
Full model (F ): h(t,X) = h0(t)exp[β1T1 + β2T2
+ β3PS + β4DC + β5BF]
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Reduced model (R): h(t,X) = h0(t)exp[β3PS
+ β4DC + β5BF]
H0: β1 = β2 = 0 in the full model
Likelihood ratio test statistic: −2 ln L̂ R − (−2 ln L̂ F ),
which is approximately χ2

2 under H0.
e.

Intervention A :

Ŝ(t,X) = [Ŝ0(t)]exp[β̂1+(PS)β̂3+(DC)β̂4+(BF)β̂5]

Intervention B :

Ŝ(t,X) = [Ŝ0(t)]exp[β̂2+(PS)β̂3+(DC)β̂4+(BF)β̂5]

Intervention C :

Ŝ(t,X) = [Ŝ0(t)]exp[−β̂1−β̂2+(PS)β̂3+(DC)β̂4+(BF)β̂5]

2. a. h(t,X) = h0(t)exp[β1 CHR + β2 AGE + β3(CHR ×
AGE)]

b. H0: β3 = 0
LR statistic = 264.90 − 264.70 = 0.21; χ2 with 1 d.f.
under H0; not significant.
Wald statistic gives a chi-square value of .01, also not
significant. Conclusions about interaction: the model
should not contain an interaction term.

c. When AGE is controlled (using the gold standard model
2), the hazard ratio for the effect of CHR is exp(.8051) =
2.24, whereas when AGE is not controlled, the haz-
ard ratio for the effect of CHR (using Model 1) is
exp(.8595) = 2.36. Thus, the hazard ratios are not ap-
preciably different, so AGE is not a confounder.
Regarding precision, the 95% confidence interval for
the effect of CHR in the gold standard model (Model
2) is given by exp[.8051 ± 1.96(.3252)] = (1.183, 4.231)
whereas the corresponding 95% confidence interval
in the model without AGE (Model 1) is given by
exp[.8595 ± 1.96(.3116)] = (1.282, 4.350). Both confi-
dence intervals have about the same width, with the
latter interval being slightly wider. Thus, controlling for
AGE has little effect on the final point and interval esti-
mates of interest.

d. If the hazard functions cross for the two levels of the
CHR variable, this would mean that none of the models
provided is appropriate, because each model assumes
that the proportional hazards assumption is met for
each predictor in the model. If hazard functions cross
for CHR, however, the proportional hazards assumption
cannot be satisfied for this variable.
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e. For CHR = 1: Ŝ(t,X) = [Ŝ0(t)]exp[0.8051+0.0856(AGE)]

For CHR = 0: Ŝ(t,X) = [Ŝ0(t)]exp[0.0856(AGE)]

f. Using Model 1, which is the best model, there is evi-
dence of a moderate effect of CHR on survival time,
because the hazard ratio is about 2.4 with a 95% con-
fidence interval between 1.3 and 4.4, and the Wald text
for significance of this variable is significant below the
.01 level.

3. a. Full model (F = Model 1): h(t,X) = h0(t) exp[β1 Rx
+ β2Sex + β3 log WBC + β4(Rx × Sex)
+ β5(Rx × log WBC)]
Reduced model (R = model 4):
h(t,X) = h0(t) exp[β1 Rx + β2Sex + β3 log WBC]
H0: β4 = β5 = 0
LR statistic = 144.218 − 139.030 = 5.19; χ2 with 2 d.f.
under H0; not significant at 0.05, though significant at
0.10. The chunk test indicates some (though mild) evi-
dence of interaction.

b. Using either a Wald test (p-value = .776) or a LR test,
the product term Rx × log WBC is clearly not signifi-
cant, and thus should be dropped from Model 1. Thus,
Model 2 is preferred to Model 1.

c. Using Model 2, the hazard ratio for the effect of
Rx is given by: HR = (h(t,X∗))/(h(t,X)) = exp[0.405
+ 2.013 Sex]

d. Males (Sex = 0): ĤR = exp[0.405] = 1.499
Females (Sex = 1) : ĤR = exp[0.405 + 2.013(1)] =
11.223

e. Model 2 is preferred to Model 3 if one decides that
the coefficients for the variables Rx and Rx × Sex are
meaningfully different for the two models. It appears
that such corresponding coefficients (0.405 vs. 0.587
and 2.013 vs. 1.906) are different. The estimated haz-
ard ratios for Model 3 are 1.799 (males) and 12.098 (fe-
males), which are different, but not very different from
the estimates computed in Part 3d for Model 2. If it is
decided that there is a meaningful difference here, then
we would conclude that log WBC is a confounder; oth-
erwise log WBC is not a confounder. Note that the log
WBC variable is significant in Model 2 (P = .000), but
this addresses precision and not confounding. When in
doubt, as in this case, the safest thing to do (for validity
reasons) is to control for log WBC.

f. Model 2 appears to be best, because there is signifi-
cant interaction of Rx × Sex (P = .023) and because
log WBC is a likely confounder (from Part e).
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Chapter 4 1. The P (PH) values in the printout provide GOF statistics
for each variable adjusted for the other variables in the
model. These P (PH) values indicate that the clinic variable
does not satisfy the PH assumption (P << .01), whereas
the prison and dose variables satisfy the PH assumption
(P > .10).

2. The log–log plots shown are parallel. However, the reason
why they are parallel is because the clinic variable has been
included in the model, and log–log curves for any variable
in a PH model must always be parallel. If, instead, the clinic
variable had been stratified (i.e., not included in the model),
then the log–log plots comparing the two clinics adjusted
for the prison and dose variables might not be parallel.

3. The log–log plots obtained when the clinic variable is
stratified (i.e., using a stratified Cox PH model) are not par-
allel. They intersect early on in follow-up and diverge from
each other later in follow-up. These plots therefore indi-
cate that the PH assumption is not satisfied for the clinic
variable.

4. Both graphs of log–log plots for the prison variable show
curves that intersect and then diverge from each other and
then intersect again. Thus, the plots on each graph appear
to be quite nonparallel, indicating that the PH assumption
is not satisfied for the prison variable. Note, however, that
on each graph, the plots are quite close to each other, so
that one might conclude that, allowing for random varia-
tion, the two plots are essentially coincident; with this latter
point of view, one would conclude that the PH assumption
is satisfied for the prison variable.

5. The conclusion of nonparallel log–log plots in Question 4
gives a different result about the PH assumption for the
prison variable than determined from the GOF tests pro-
vided in Question 1. That is, the log–log plots suggest that
the prison variable does not satisfy the PH assumption,
whereas the GOF test suggests that the prison variable sat-
isfies the assumption. Note, however, if the point of view
is taken that the two plots are close enough to suggest co-
incidence, the graphical conclusion would be the same as
the GOF conclusion. Although the final decision is some-
what equivocal here, we prefer to conclude that the PH
assumption is satisfied for the prison variable because this
is strongly indicated from the GOF test and questionably
counterindicated by the log–log curves.



566 Test Answers

6. Because maximum methadone dose is a continuous vari-
able, we must categorize this variable into two or more
groups in order to graphically evaluate whether it satisfies
the PH assumption. Assume that we have categorized this
variable into two groups, say, low versus high. Then, ob-
served survival plots can be obtained as KM curves for low
and high groups separately. To obtain expected plots, we
can fit a Cox model containing the dose variable and then
substitute suitably chosen values for dose into the formula
for the estimated survival curve. Typically, the values sub-
stituted would be either the mean or median (maximum)
dose in each group.
After obtaining observed and expected plots for low and
high dose groups, we would conclude that the PH assump-
tion is satisfied if corresponding observed and expected
plots are not widely discrepant from each other. If a notice-
able discrepancy is found for at least one pair of observed
versus expected plots, we conclude that the PH assumption
is not satisfied.

7. h(t,X) = h0(t)exp[β1 clinic + β2 prison + β3 dose
+ δ1 (clinic × g (t)) + δ2 (prison × g (t))
+ δ3 (dose × g (t))]

where g (t) is some function of time. The null hypothe-
sis is given by H0: δ1 = δ2 = δ3 = 0. The test statistic is
a likelihood ratio statistic of the form LR = −2 ln L R −
(−2 ln L F ) where R denotes the reduced (PH) model ob-
tained when all δs are 0, and F denotes the full model
given above. Under H0, the LR statistic is approximately
chi-square with 3 d.f.

8. Drawbacks of the extended Cox model approach:

� Not always clear how to specify g (t); different
choices may give different conclusions;� Different modeling strategies to choose from, for ex-
ample, might consider g (t) to be a polynomial in t
and do a backward elimination to eliminate non-
significant higher-order terms; alternatively, might
consider g (t) to be linear in t without evaluating
higher-order terms.
Different strategies may yield different conclusions.



Test Answers 567

9. h(t,X) = h0(t)exp[β1 clinic + β2 prison + β3 dose
+ δ1(clinic × g (t))] where g (t) is some function of time.
The null hypothesis is given by H0: δ1 = 0, and the test
statistic is either a Wald statistic or a likelihood ratio
statistic. The LR statistic would be of the form LR = −2
ln L R − (−2 ln L F ), where R denotes the reduced (PH)
model obtained when δ1 = 0, and F denotes the full model
given above. Either statistic is approximately chi-square
with 1 d.f. under the null hypothesis.

10. t > 365 days: HR = exp[β1 + δ1]
t ≤ 365 days: HR = exp[β1]
If δ1 is not equal to zero, then the model does not sat-
isfy the PH assumption for the clinic variable. Thus, a test
of H0: δ1 = 0 evaluates the PH assumption; a significant
result would indicate that the PH assumption is violated.
Note that if δ1 is not equal to zero, then the model assumes
that the hazard ratio is not constant over time by giving
a different hazard ratio value depending on whether t is
greater than 365 days or t is less than or equal to 365 days.

Chapter 5 1. By fitting a stratified Cox (SC) model that stratifies on clinic,
we can compare adjusted survival curves for each clinic,
adjusted for the prison and dose variables. This will allow
us to visually describe the extent of clinic differences on
survival over time. However, a drawback to stratifying on
clinic is that it will not be possible to obtain an estimate of
the hazard ratio for the effect of clinic, because clinic will
not be included in the model.

2. The adjusted survival surves indicate that clinic 2 has a bet-
ter survival prognosis than clinic 1 consistently over time.
Moreover, it seems that the difference between the effects
of clinic 2 and clinic 1 increases over time.

3. hg (t,X) = h0g (t)exp[β1 prison + β2 dose], g = 1, 2
This is a no-interaction model because the regression coef-
ficients for prison and dose are the same for each stratum.

4. Effect of prison, adjusted for clinic and dose: ĤR =
1.475, 95% CI: (1.059, 2.054). It appears that having a
prison record gives a 1.475 increased hazard for failure
than not having a prison record. The p-value is 0.021, which
is significant at the 0.05 level.

5. Version 1: hg (t,X) = h0g (t)exp[β1g prison + β2g dose],
g = 1, 2
Version 2: hg (t,X) = h0g (t)exp[β1 prison + β2 dose
+ β3 (clinic × prison) + β4 (clinic × dose)], g = 1, 2
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6. g = 1 (clinic 1) :
h1(t,X) = h01(t)exp[(0.502)prison + (−0.036)dose]
g = 2 (clinic 2) :
h2(t,X) = h02(t)exp[(−0.083)prison + (−0.037)dose]

7. The adjusted survival curves stratified by clinic are virtu-
ally identical for the no-interaction and interaction models.
Consequently, both graphs (no-interaction versus interac-
tion) indicate the same conclusion that clinic 2 has con-
sistently larger survival (i.e., retention) probabilities than
clinic 1 as time increases.

8. H0: β3 = β4 = 0 in the version 2 model (i.e., the no-
interaction assumption is satisfied). LR = −2 ln L R −
(−2 ln L F ) where R denotes the reduced (no-interaction)
model and F denotes the full (interaction) model. Under
the null hypothesis, LR is approximately a chi-square with
2 degrees of freedom.
Computed LR = 1195.428 − 1193.558 = 1.87; p-value =
0.395; thus, the null hypothesis is not rejected and we con-
clude that the no-interaction model is preferable to the in-
teraction model.

Chapter 6 1. For the chemo data, the −log–log KM curves intersect at
around 600 days; thus the curves are not parallel, and this
suggests that the treatment variable does not satisfy the PH
assumption.

2. The P (PH) value for the Tx variable is 0, indicating that the
PH assumption is not satisfied for the treatment variable
based on this goodness-of-fit test.

3. h(t,X) = h0(t)exp[β1(T x)g1(t) + β2(T x)g2(t)

+ β3(T x)g3(t)]

where

g1(t) =
{

1 if 0 ≤ t < 250 days
0 if otherwise

g2(t) =
{

1 if 250 ≤ t < 500 days
0 if otherwise

g3(t) =
{

1 if t ≥ 500 days
0 if otherwise

4. Based on the printout the hazard ratio estimates and
corresponding p-values and 95% confidence intervals are
given as follows for each time interval:
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[95% Conf.
Haz. Ratio p > |z| Interval]

0 ≤ t < 250 days: 0.221 0.001 0.089 0.545
250 ≤ t < 500 days: 1.629 0.278 0.675 3.934
t ≥ 500 days: 1.441 0.411 0.604 3.440

The results show a significant effect of treatment below
250 days and a nonsignificant effect of treatment in each
of the two intervals after 250 days. Because the coding
for treatment was 1 = chemotherapy plus radiation versus
2 = chemotherapy alone, the results indicate that the haz-
ard for chemotherapy plus radiation is 1/0.221 = 4.52
times the hazard for chemotherapy alone. The hazard ratio
inverts to a value less than 1 (in favor of chemotherapy plus
radiation after 250 days), but this result is nonsignificant.
Note that for the significant effect of 1/0.221 = 4.52 be-
low 250 days, the 95% confidence interval ranges between
1/0.545 = 1.83 and 1/0.089 = 11.24 when inverted, which
is a very wide interval.

5. Model with two Heaviside functions:

h(t,X) = h0(t)exp[β1(Tx)g1(t) + β2(Tx)g2(t)]

where

g1(t) =
{

1 if 0 ≤ t < 250 days
0 if otherwise

g2(t) =
{

1 if t ≥ 250 days
0 if otherwise

Model with one Heaviside function:

h(t,X) = h0(t)exp[β1(Tx) + β2(Tx)g1(t)]

where g1(t) is defined above.
6. The results for two time intervals give hazard ratios that

are on the opposite side of the null value (i.e., 1). Below 250
days, the use of chemotherapy plus radiation is, as in the
previous analysis, 4.52 times the hazard when chemother-
apy is used alone. This result is significant and the same
confidence interval is obtained as before. Above 250 days,
the use of chemotherapy alone has 1.532 times the hazard
of chemotherapy plus radiation, but this result is nonsignif-
icant.
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Chapter 7 1. F: They are multiplicative models, although additive on the
log scale.

2. T
3. T
4. F: If the AFT assumption holds in a log-logistic model, the

proportional odds assumption holds.
5. F: An acceleration factor greater than one suggests the ex-

posure is beneficial to survival.
6. T
7. T
8. T
9. F: ln(T) follows an extreme value minimum distribution.

10. F: The subject is right-censored.
11.

γ = exp[α0 + α1(2) + α2PRISON + α3DOSE + α4PRISDOSE]
exp[α0 + α1(1) + α2PRISON + α3DOSE + α4PRISDOSE]

= exp(α1)

γ̂ = exp(0.698) = 2.01

95% CI = exp[0.698 ± 1.96(0.158)] = (1.47, 2.74)

The point estimate for the acceleration factor (2.01) sug-
gests that the survival time (time off heroin) is double for
those enrolled in CLINIC = 2 compared to CLINIC = 1. The
95% confidence interval does not include the null value of
1.0 indicating a statistically significant preventive effect for
CLINIC = 2 compared to CLINIC = 1.

12.
HR = exp[β0 + β1(2) + β2PRISON + β3DOSE + β4PRISDOSE]

exp[β0 + β1(1) + β2PRISON + β3DOSE + β4PRISDOSE]

= exp(β1)

ĤR = exp(−0.957) = 0.38

95% CI = exp[−0.957 ± 1.96(0.213)] = (0.25, 0.58)

The point estimate of 0.38 suggests the hazard of going
back on heroin is reduced by a factor of 0.38 for those
enrolled in CLINIC = 2 compared to CLINIC = 1. Or from
the other perspective: the estimated hazard is elevated for
those in CLINIC = 1 by a factor of exp(+0.957) = 2.60.

13. β1 = −α1 p for CLINIC, so β̂1 = −(0.698)(1.370467) =
−0.957, which matches the output for the PH form of the
model.
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14. The product term PRISDOSE is included in the model as
a potential confounder of the effect of CLINIC on survival.
It is not an effect modifier because under this model the
hazard ratio or acceleration factor for CLINIC does not
depend on the value of PRISDOSE. The PRISDOSE term
would cancel in the estimation of the hazard ratio or ac-
celeration factor (see Questions 11 and 12). On the other
hand, a product term involving CLINIC would be a poten-
tial effect modifier.

15. Using the AFT form of the model:

1

λ1/p
= exp[α0 + α1CLINIC + α2PRISON + α3DOSE

+ α4PRISDOSE]
Median survival time for CLINIC = 2, PRISON = 1, DOSE
= 50, PRISDOSE = 100:

t = [− ln S(t)]1/p × 1

λ1/p
= [− ln(0.5)]1/p

× exp[β0 + 2β1 + β2 + 50β3 + 100β4]

t̂ (median) = 403.66 days (obtained by substituting param-
eter estimates from output).

16. Using the same approach as the previous question:
Median survival time for CLINIC = 1, PRISON = 1,
DOSE = 50, PRISDOSE = 100:

t = [−ln(0.5)]1/p × exp[β0 + 1β1 + β2 + 50β3 + 100β4]

t̂ (median) = 200.85 days.
17. The ratio of the median survival times is 403.66/200.85 =

2.01. This is the estimated acceleration factor for CLINIC =
2 vs. CLINIC = 1 calculated in Question 11. Note that if we
used any survival probability (i.e., any quantile of survival
time), not just S(t) = 0.5 (the median), we would have ob-
tained the same ratio.

18. The addition of the frailty component did not change any
of the other parameter estimates nor did it change the log
likelihood of −260.74854.

19. If the variance of the frailty is zero (theta = 0), then the
frailty has no effect on the model. A variance of zero means
the frailty (α) is constant at 1. Frailty is defined as a mul-
tiplicative random effect on the hazard h(t|α) = αh(t). If
α = 1 then h(t|α) = h(t), and there is no frailty.
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Chapter 8 1. Cox PH Model for CP approach to Defibrillator Study:

h(t,X) = h0(t)exp[β tx + γ smoking]

where tx = 1 if treatment A, 0 if treatment B,
smoking status = 1 if ever smoked, 0 if never smoked

2. Using the CP approach, there is no significant effect of treat-
ment status adjusted for smoking. The estimated hazard
ratio for the effect of treatment is 1.09, the corresponding
P-value is 0.42, and a 95% CI for the hazard ratio is (0.88,
1.33).

3. No-interaction SC model for marginal approach:

hg(t,X) = h0g(t)exp[β tx + γ smoking], g = 1, 2, 3

Interaction SC model for marginal approach:

hg(t,X) = h0g(t)exp[βg tx + γg smoking], g = 1, 2, 3

4. LR = −2 ln LR − (−2 ln LF) is approximately χ2 with 4 df
under
H0: no-interaction SC model is appropriate, where
R denotes the reduced (no interaction SC) model and
F denotes the full (interaction SC) model.

5. The use of a no-interaction model does not allow you to
obtain stratum-specific HR estimates, even though you are
assuming that strata are important.

6. The CP approach makes sense for these data because re-
current defibrillator (shock) events on the same subject are
the same kind of event no matter when it occurred.

7. You might use the marginal approach if you determined
that different recurrent events on the same subject were
different because they were of different order.

8. The number in the risk set (nj) remains unchanged through
day 68 because every subject who failed by this time was
still at risk for a later event.

9. Subjects 3, 6, 10, 26, and 31 all fail for the third time at day
98 and are not followed afterwards.

10. Subjects 9, 15, and 28 fail for the second time at 79 days,
whereas subject #16 is censored at 79 days.

11. Subjects 4, 14, 15, 24, and 29 were censored between days
111 and 112.

12. Subject #5 gets his first event at 45 days and his second
event at 68 days, after which he drops out of the study. This
subject is the first of the 36 subjects to drop out of the study,
so the number in the risk set changes from 36 to 35 after
68 days.
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13. i. None of the above.
ii. The product limit formula is not applicable to the CP

data; in particular, P(T > t | T ≥ t) does not equal “# fail-
ing in time interval /# in the risk set at start of interval.”

14. Use the information provided in Table T.2 to complete the
data layouts for plotting the following survival curves.
a. S1(t) = Pr(T1 > t) where T1 = time to first event from

study entry

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t | T1 ≥ t)

0 36 0 0 1.00
33 36 2 0 0.94
34 34 3 0 0.86
36 31 3 0 0.78
37 28 2 0 0.72
38 26 4 0 0.61
39 22 5 0 0.47
40 17 1 0 0.44
41 16 1 0 0.42
43 15 1 0 0.39
44 14 1 0 0.36
45 13 2 0 0.31
46 11 2 0 0.25
48 9 1 0 0.22
49 8 1 0 0.19
51 7 2 0 0.19 × 5/7 = 0.14
57 5 2 0 0.14 × 3/5 = 0.08
58 3 2 0 0.08 × 1/3 = 0.03
61 1 1 0 0.03 × 0/1 = 0.00

b. Conditional S2c(t) = Pr(T2c > t) where T2c = time to
second event from first event.

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t | T1 ≥ t)

0 36 0 0 1.00
5 36 1 0 0.97
9 35 1 0 0.94

18 34 2 0 0.89
20 32 1 0 0.86
21 31 2 1 0.81
23 28 1 0 0.78
24 27 1 0 0.75

(Continued )
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(Continued)

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t | T1 ≥ t)

25 26 1 0 0.72
26 25 2 0 0.66
27 23 2 0 0.60
28 21 1 0 0.58
29 20 1 0 0.55
30 19 1 0 0.52
31 18 3 0 0.43
32 15 1 0 0.40
33 14 5 0 0.26
35 9 1 0 0.23
39 8 2 0 0.17
40 6 2 0 0.17 × 4/6 = 0.12
41 4 1 0 0.12 × 3/4 = 0.09
42 3 1 0 0.09 × 2/3 = 0.06
46 2 1 0 0.06 × 1/2 = 0.03
47 1 1 0 0.03 × 0/1 = 0.00

c. Marginal S2m(t) = Pr(T2m > t) where T2m = time to
second event from study entry.

t(j) nj mj qj S(t(j)) = S(t(j−1)) × Pr(T1 > t | T1 ≥ t)

0 36 0 0 1.00
63 36 2 0 0.94
64 34 3 0 0.86
65 31 2 0 0.81
66 29 3 0 0.72
67 26 4 0 0.61
68 22 2 0 0.56
69 20 1 0 0.53
70 19 1 0 0.50
71 18 1 0 0.47
72 17 2 0 0.42
73 15 1 0 0.39
74 14 1 0 0.36
76 13 1 0 0.33
77 12 1 0 0.31
78 11 2 0 0.25
79 9 3 1 0.25 × 6/9 = 0.17
80 5 2 0 0.17 × 3/5 = 0.10
81 3 2 0 0.10 × 1/3 = 0.03
97 1 1 0 0.03 × 0/1 = 0.00
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15. The survival curves corresponding to the above data lay-
outs will differ because they are describing different sur-
vival functions. In particular, the composition of the risk
set differs in all three data layouts and the ordered survival
times being plotted are different as well.

Chapter 9 1. Cause-specific no-interaction model for local recurrence of
bladder cancer (event = 1):

h1(t,X) = h01(t)exp[β11tx + β21num + β31size]

2. Censored subjects have bladder metastasis (event = 2) or
other metastasis (event = 3).

3. Cause-specific no-interaction model for bladder metastasis
(event = 1):

h2(t,X) = h02(t)exp[β12tx + β22num + β32size]

where censored subjects have local recurrence of bladder
cancer (event = 1) or other metastasis (event = 3).

4. A sensitivity analysis would consider worst-case violations
of the independence assumption. For example, subjects
censored from failing from events = 2 or 3 might be treated
in the analysis as either all being event-free (i.e., change
event status to 0 and time to 53) or all experiencing the
event of interest (i.e., change event status to 1 and leave
time as is).

5. a. Verify the CIC1 calculation provided at failure time
tj = 8 for persons in the treatment group (tx = 1):

ĥ1(8) = 1/23 = 0.0435

Ŝ(4) = Ŝ(3)Pr(T > 4|T ≥ 4) = 0.9630(1 − 2/26)

= 0.9630(0.9231) = 0.8889

Î1(8) = ĥ1(8)Ŝ(4) = 0.0435(.8889) = 0.0387

CIC1(8) = CIC1(4) + 0.0387 = 0 + 0.0387 = 0.0387

b. Verify the CIC1 calculation provided at failure time
tj = 25 for persons in the placebo group (tx = 0):

ĥ1(25) = 1/6 = 0.1667

Ŝ(23) = Ŝ(21)Pr(T > 23|T ≥ 23) = 0.4150(1−1/8)

= 0.4150(0.875) = 0.3631

Î1(25) = ĥ1(25)Ŝ(23) = 0.1667(.3631) = 0.0605

CIC1(25) = CIC1(23) + 0.0605 = 0.2949 + 0.0605

= 0.3554

c. Interpret the CIC1 values obtained for both the treat-
ment and placebo groups at tj = 30.
For tx = 1, CIC1(tj = 30) = 0.3087 and for tx = 0,
CIC1(tj = 30) = 0.3554.
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Thus, for treated subjects (tx = 1), the cumulative risk
(i.e., marginal probability) for local bladder cancer re-
currence is about 30.1% at 30 months when allowing for
the presence of competing risks for bladder metastasis
or other metastasis.
For placebo subjects (tx = 1), the cumulative risk (i.e.,
marginal probability) for local bladder cancer recur-
rence is about 35.5% at 30 months when allowing for
the presence of competing risks for bladder metastasis
or other metastasis.
The placebo group therefore has a 5% increased risk of
failure than the treatment group by 30 months of follow-
up.

d. Calculating the CPC1 values for both treatment and
placebo groups at ti = 30:
The formula relating CPC to CIC is given by
CPCc = CICc/(1 − CICc′ ) where CICc = CIC for cause-
specific risk event = 1 and CICc′ = CIC from risks for
events = 2 or 3 combined
For tx = 1, CIC1(ti = 30) = 0.3087 and for tx = 0,

CIC1(tj = 30) = 0.3554.
The calculation of CICc′ involves recoding the event vari-
able to 1 for subjects with bladder metastasis or other
metastasis and 0 otherwise and then computing CICc′ .
Calculation of CICc′ involves the following calculations.

tx = 1 (Treatment A)

tj nj d1j ĥ 1(tj) Ŝ(tj−1) Î1(tj) CIC1′ (tj)

0 27 0 0 — — —
2 27 1 .0370 1 .0370 .0370
3 26 2 .0769 .9630 .0741 .1111
4 24 0 0 .8889 0 .1111
8 23 1 .0435 .8889 .0387 .1498
9 21 1 .0476 .8116 .0386 .1884

10 20 1 .0500 .7729 .0386 .2270
15 17 1 .0588 .7343 .0432 .2702
16 15 1 .0667 .6479 .0432 .3134
18 14 0 0 .6047 0 .3134
22 12 0 0 .6047 0 .3134
23 11 0 0 .5543 0 .3134
24 8 0 0 .5039 0 .3134
26 7 0 0 .4409 0 .3134
28 4 1 .2500 .3779 .0945 .4079
29 2 0 0 .2835 0 .4079
30 1 0 0 .2835 0 .4079
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tx = 0 (Placebo)

tj nj d1j ĥ 1(tj) Ŝ(tj−1) Î1(tj) CIC1(tj)

0 26 0 0 — — —
1 26 0 0 1 0 0
2 24 0 0 .9615 0 0
3 23 0 0 .9215 0 0
5 21 1 .0476 .8413 .0400 .0400
6 20 2 .1000 .8013 .0801 .1201
7 18 1 .0556 .7212 .0401 .1602

10 16 1 .0625 .6811 .0426 .2028
12 15 1 .0667 .6385 .0426 .2454
14 13 0 0 .6835 0 .2454
16 12 1 .0833 .5534 .0461 .2915
17 10 0 0 .4612 0 .2915
18 9 0 0 .4150 0 .2915
21 8 1 .1250 .4150 .0519 .3434
23 7 0 0 .3632 0 .3434
25 6 1 .1667 .3632 .0605 .4039
29 4 0 0 .2421 0 .4039
30 2 0 0 .2421 0 .4039

From these tables, we find that for tx = 1, CIC1′ (ti = 30) =
0.4079 and for tx = 0, CIC1′ (tj = 30) = 0.4039.
Thus, for tx = 1, CPC1(tj = 30) = CIC1/(1 − CIC1′ ) =
0.3087/(1 − 0.4079) = 0.5213 and for tx = 0, CPC1(tj =
30) = CIC1/(1 − CIC1′ ) = 0.3554/(1 − 0.4039) = 0.5962.

6. a. What is the effect of treatment on survival from hav-
ing a local recurrence of bladder cancer and is it signi-
ficant?

HR1(tx = 1 vs. tx = 0) = 0.535(= 1/1.87),

p-value = 0.250, N.S.

b. What is the effect of treatment on survival from de-
veloping metastatic bladder cancer and is it signifi-
cant?

HR2(tx = 1 vs. tx = 0) = 0.987,

p-value = .985, N.S.

c. What is the effect of treatment on survival from other
metastatic cancer and is it significant?

HR3(tx = 1 vs. tx = 0) = 0.684 (= 1/1.46),

p-value = .575, N.S.
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7. a. State the hazard model formula for the LM model used
for the above output.

hg
∗(t,X)

g=1,2,3
= h0g

∗(t)exp[β1tx + β2num + β3size

+ δ1(txd2) + δ2(numd2)

+ δ3(sized2) + δ4(txd3)

+ δ5(numd3) + δ6(sized3)]

where d2 = 1 if bladder metastasis and 0 otherwise,
and

d3 = 1 if or other metastasis and 0 otherwise

b. Determine the hazard ratios for the effect of each of the
3 cause-specific events based on the above output.

HR1(tx = 1 vs. tx = 0) = exp(−0.6258)

= 0.535(= 1/1.87)

HR2(tx = 1 vs. tx = 0) = exp(−0.6258 + .6132)

= 0.987

HR3(tx = 1 vs. tx = 0) = exp(−0.6258 + .2463)

= 0.684(= 1/1.46)
c. Verify that the hazard ratios computed in Part b are

identical to the hazard ratios computed in Question 6.
The HRs are identical.

8. a. State the hazard model formula for the LMalt model
used for the above output.

hg
′(t,X)

g=1,2,3
= h0g

′(t)exp[δ′
11txd1 + δ′

12numd1 + δ′
13sized1

+ δ′
21txd2 + δ′

22numd2

+ δ′
23sized2 + δ′

31txd3

+ δ′
32numd3 + δ′

33sized3]

where d1 = 1 if local bladder cancer recurrence and 0
otherwise

d2 = 1 if bladder metastasis and 0 otherwise,
and

d3 = 1 if or other metastasis and 0 otherwise
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b. Determine the hazard ratios for the effect of each of
the three cause-specific events based on the above
output.

HR1(tx = 1 vs. tx = 0) = exp(−0.6258)

= 0.535 (= 1/1.87)

HR2(tx = 1 vs. tx = 0) = exp(−0.0127) = 0.987

HR3(tx = 1 vs. tx = 0) = exp(−0.3796)

= 0.684(= 1/1.46)

c. Verify that the hazard ratios computed in Part b are
identical to the hazard ratios computed in Questions 6
and 7.
Corresponding hazard ratios are identical.

9. State the formula for a no-interaction SC LM model for
these data.

h∗
g(t,X)

g=1,2,3

= h∗
0g(t)exp[β1tx + β2num + β8size]

Assumes HR1(X) = HR2(X) = HR3(X) for any X variable
e.g., Rx = 0 vs. Rx = 1:
HR1(tx) = HR2(tx) = HR3(tx) = exp[β1]

10. Describe how you would test whether a no-interaction SC
LM model would be more appropriate than an interaction
SC LM model.
Carry out the following likelihood ratio test:

H0: δgj = 0, g = 2, 3; j = 1, 2, 3

where δgj is coefficient of DgXj in the interaction SC LM
model

Likelihood Ratio test: LR = −2 log LR − (−2 log LF)
approx χ2

6 under H0

R = no-interaction SC (reduced) model
F = interaction SC (full) model
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Accelerated failure time
(AFT), see AFT
entries

Acceleration factor, 266–267
exponential, 269–271
with frailty, 303, 309
log-logistic, 281
Weibull, 276

Addicts dataset, 464
data analysis, 230–234,

248
with SAS programming,

508–538
with SPSS programming,

542–555
with STATA

programming,
467–502

Additive failure time model,
285

Adjusted survival curves,
104

log-log plots, 159
observed versus expected

plots, 150
stratified Cox procedure,

180
using Cox PH model,

103–107, 116, 118
AFT (accelerated failure

time) assumption,
266–268

AFT models, 265–266,
282–284, 309,
313–317

Age–Related Eye Disease
Study (AREDS),
359–364

AIC (Akaike’s information
criterion), 286
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Average hazard rate, 24
in Cox PH model, 94–95, 134
in extended Cox model, 219
in stratified Cox model, 181

Baseline hazard function, 94, 134
Biased results, 405
Binary regression, 290
Bladder cancer dataset, 464–465
Bladder cancer patients

comparison of results for, 355–357
counting process for first 26

subjects, 339
hypothetical subjects, 336–337
interaction model results for, 354
no-interaction model results for, 354

Byar data, 399–400
cause-specific competing risk analysis,

401–403
Lunn-McNeil models, 422, 427

Cause-specific hazard function, 400
Censored data, 5–8

interval-censored, 286, 289
left-censored, 7, 286
right-censored, 7, 286

Censoring, 5
non-informative (independent),

403–407
informative (dependent), 405–406

CIC (cumulative incidence curves), 393,
412–420

Competing risks, 4, 392, 396
examples of data, 396–398
CIC, 412
CPC (Conditional Probability Curves),

420
independence assumption, 403
Lunn-McNeil models, 421, 427
separate models for different event

types, 400–403
Complementary log-log binary model, 293
Complementary log-log link function, 292
Computer

augmented (Lunn-McNeil approach)
data layout for, 422

counting process data layout for,
337–338

general data layout for, 15–19
marginal approach data layout for,

348–349
Conditional failure rate, 11
Conditional probability curves (CPC),

420–421
Conditional survival function, 295
Confounding effect, 26–27
Counting process (CP) approach, 334–336

example, 336–337
general data layout, 338–344
results for example, 346–347

Cox adjusted survival curves
using SAS, 525–529
using SPSS, 549–550
using Stata, 485–488

Cox likelihood, 111–115
extended for time dependent variables,

239–242
Cox PH cause-specific model, 400
Cox proportional hazards (PH) model

adjusted survival curves using,
103–107

computer example using, 86–94
extension of, see Extended Cox model
formula for, 94–96
maximum likelihood estimation of,

98–100
popularity of, 96–98
review of, 214–216
using SAS, 514–518
using SPSS, 548
using Stata, 476–481

CP, see Counting process approach
CPC (conditional probability curves),

420–421
Cumulative incidence, viii
Cumulative incidence curves (CIC), 393,

412–420

Data layout for computer, 15–19
Datasets, 464–465
Decreasing Weibull model, 13
Discrete survival analysis, 293
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Empirical estimation, 344
Estimated -ln(-ln) survivor curves, 136
Estimated survivor curves, 25
Evans County Study,

Cox proportional hazards (PH) model
application to, 124–126

Kaplan-Meier survival curves for,
73–75

multivariable example using, 29–31
ordered failure times for, 41–42
survival data from, 119–122

Event, 4
Event types, different, separate models for,

400–403
Expected versus observed plots, 145–150
Exponential regression, 12

accelerated failure-time form, 319
log relative-hazard form, 319

Extended Cox likelihood, 239–242
Extended Cox model, 110, 219

application to Stanford heart
transplant data, 235–239

application to treatment of heroin
addiction, 230–234

hazard ratio formula for, 221–223
using SAS, 530–533
using SPSS, 552–555
using Stata, 488–492
time-dependent variables,

219–221

Failure, 4
Failure rate, conditional, 11
Flemington-Harrington test, 65
Frailty component, 295
Frailty effect, 300
Frailty models, 294–308

using Stata, 499–502

Gamma distribution, 296
Gamma frailty, 301
Gastric carcinoma data, 253–254
General stratified Cox (SC) model,

180–181
Generalized gamma model, 284
GOF, see Goodness-of-fit entries

Gompertz model, 285
Goodness-of-fit (GOF) testing approach,

151–153
Goodness-of-fit (GOF) tests, 136

Hazard function, 8, 9–10
cause–specific, 400
probability density function and,

262–263
Hazard ratio, 32

formula fpr Cox PH model, 100–103
formula for extended Cox
model, 221–223

Heaviside function, 227

Increasing Weibull model, 13
Independence assumption, 403–411
Information matrix, 346
Informative censoring, in competing

risks survival analysis, 405
Instantaneous potential, 49
Interactions, 27
Interval-censored data, 286, 289–294
Inverse-Gaussian distribution, 296

Kaplan-Meier (KM) curves, 46
example of, 51–55
general features of, 56–57
log-log survival curves, 141

Left-censored data, 7–8, 286
Leukemia remission-time data, 17, 26

Cox proportional hazards (PH) model
application to, 86–94

increasing Weibull for, 13
Kaplan-Meier survival curves for,

51–55, 75–77
log-log KM curves for, 141–145

recurrent event data for, 335
exponential survival, 263–265
stratified Cox (SC) model application

to, 176–188
Likelihood function, 111–115

for Cox PH model,
for extended Cox model, 239–242
for parametric models, 286–289
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Likelihood ratio (LR) statistic, 89
LM, see Lunn-McNeil approach
Log-log plots, 137–145
Log–log survival curves, 137–145
Log-logistic regression, 277–282

accelerated failure-time form, 320
Log-rank test, 46

alternatives to, 63–68
for several groups, 61–63
for two groups, 57–61

Logit link function, 292
Lognormal survival models, 13, 284
Lunn-McNeil (LM) approach, 393,

421–427
alternative, 427–434

Macular degeneration data set, 359–364
results for, 361–362
Marginal probability, 414

Maximum likelihood (ML) estimation of
Cox PH model, 98–100

Multiplicative model, 285

No-interaction assumption in stratified
Cox model, 182–188

Noninformative censoring, 403–407

Observed versus expected plots, 145–150

Parametric approach using shared frailty,
357–359

Parametric survival models,
defined, 260
examples

exponential model, 263–265, 268–277
log-logistic model, 277–282
Weibull model, 272–277

likelihood function, 286–289
other models, 284–286
SAS use, 533–538
Stata use, 492–499

Pepe-Mori test, 421, 437
Peto test, 63
PH assumption

assessment using time-dependent
covariates, 153–157, 224–229

evaluating (Chapter 4), 132–171
meaning of, 107–111
assessment using goodness of fit test

with Schonfield residuals, 151–153
assessment using Kaplan-Meier log-log

survival curves, 546–547
assessment using observed versus

expected plots, 145–150
assessment using SAS, 522–525
assessment using SPSS, 550–552
assessment using Stata, 473–476,

483–485
PH model, Cox, see Cox proportional

hazards (PH) model
PO (proportional odds) assumption, 292
Precision, 92
Probability, 11
Probability density function, 262–263
PROC LIFEREG (SAS), 533–538
PROC LIFETEST (SAS), 510–514
PROC PHREG, 514–518
Product limit formula, 46
Proportional hazards, see PH entries
Proportional odds (PO) assumption, 292

Recurrent event survival analysis
(Chapter 8), 332–390

Counting process approach, 336–344
definition of recurrent events, 4, 332
examples of recurrent event data,

334–336
other approaches for analysis 347–353
parametric approach using shared

frailty, 357–359
SAS modeling, 538–542
Stata modeling, 502–508
survival curves with, 364–367

Right-censored data, 7, 286
Risk set, 22
Robust estimation, 344–346
Robust standard error, 347
Robust variance, 345

SAS, 508–542
assessing PH assumption, with

statistical tests, 522–525
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demonstrating PROC LIFETEST,
510–514

modeling recurrent events, 538–542
obtaining Cox adjusted survival

curves, 525–529
running Cox proportional hazards (PH)

model, with PROC PHREG,
514–518

running extended Cox model, 530–533
running parametric models, with PROC

LIFEREG, 533–538
running stratified Cox (SC) model,

519–521
SC, see Stratified Cox model
Schonfield residuals, 151–152, 522–523
Score residuals, 346
Semi-parametric model, 96, 261
Sensitivity analysis (with competing

risks), 408–411
Shape parameter, 272
Shared frailty, 306–308, 358

recurrent events analysis using,
357–359

Shared frailty model, 306
SPSS, 542–555

assessing PH assumption
with statistical tests, 550–552
using Kaplan-Meier log-log survival

curves, 546–547
estimating survival functions, 544–546
running Cox proportional hazards (PH)

model, 548
running extended Cox model, 552–555
running stratified Cox (SC) model,

549–550
Stanford Heart Transplant Study

extended Cox model application to,
235–239

transplants versus nontransplants,
244–245

Stata, 60, 465–508
assessing PH assumption

using graphical approaches, 473–476
using statistical tests, 483–485

estimating survival functions, 469–473
modeling recurrent events, 502–508

obtaining Cox adjusted survival curves
with, 485–488

running Cox proportional hazards (PH)
model, 476–481

running extended Cox model,
488–492

running frailty models, 499–502
running parametric models, 492–499
running stratified Cox (SC) model,

481–483
Step functions, 9
Strata variable, 347
Stratification variables, several, 188–193
Stratified Cox (SC) model, 176–180,

364–367
for analyzing recurrent event data,

347–353
conditional approaches, 347–351
general, 180–181
graphical view of, 193–194
marginal approach, 347–351
using SAS, 519–521
using SPSS, 549–550
using Stata, 481–483 Subdistribution

function, 419
Survival curves

adjusted, 104
using Cox PH model, 103–107

Cox adjusted, see Cox adjusted
survival curves

with recurrent events, 364–367
Survival functions

conditional, 295
probability density function and,

262–263
SAS estimation, 525–529
SPSS estimation, 544–546
Stata estimation , 469–473
unconditional, 295

Survival time, 4
Survival time variable, 14
Survivor function, 8–9

Tarone-Ware test statistic, 64
Time-dependent covariates, assessing PH

assumption using, 153–157
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Time-dependent variables, 134
definition and examples of, 216–219
extended Cox model for, 219–221

Time-independent variables, PH
assumption and, 224–229

Unconditional survival function, 295
Unshared frailty, 306

Veterans Administration Lung Cancer
Data

Kaplan–Meier survival curves for, 62–63
model with no frailty, 296

proportional hazards assumption
evaluation for, 161–164

with several stratification variables,
188–193

stratified Cox (SC) model application
to, 201–204

Wald statistic, 89
Weibull model, 272–277
Weibull regression

accelerated failure-time form, 322, 325
log relative-hazard form, 323, 325

Wilcoxon test, 64
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